
An Efficient Algorithm To Compute Distance Between Lexicographic Preference
Trees

Minyi Li and Borhan Kazimipour
Monash University, Australia

minyi.li@monash.edu, borhan.kazimipour@monash.edu

Abstract
Very often, we have to look into multiple agents’
preferences, and compare or aggregate them. In
this paper, we consider the well-known model,
namely, lexicographic preference trees (LP-trees),
for representing agents’ preferences in combinato-
rial domains. We tackle the problem of calculat-
ing the dissimilarity/distance between agents’ LP-
trees. We propose an algorithm LpDis to compute
the number of disagreed pairwise preferences be-
tween agents by traversing their LP-trees. The pro-
posed algorithm is computationally efficient and al-
lows agents to have different attribute importance
structures and preference dependencies.

1 Introduction
There are many situations where we have to represent and
reason about different agents’ preferences over a set of pos-
sibly interrelated attributes or variables [Lang et al., 2012;
Horniaček, 2008]. For example, one may need to group cus-
tomers based on their preferences to discover common deci-
sion patterns, and recommend actions [Bräuning et al., 2017].
Several work has been published on clustering and predicting
preference/ranking data where the ranking over the training
labels (correspond to alternative outcomes) is assumed to be
given [Hüllermeier et al., 2008; Vembu and Gärtner, 2011;
Grbovic et al., 2013; Todorovski et al., 2002]. The task then
involves the prediction of strict label order relations. This
is, however, impractical when a combinatorial domain is in-
volved: i) data collection becomes infeasible when there is a
large number of decision attributes. For instance, even with 5
binary attributes, there will be 25 = 32 unique outcomes. If
we collect the preference data via pairwise comparison query,
there will be

(
32
2

)
= 496 pairs of outcomes that each user

needs to compare. ii) predicting ranking is considered as a
complex learning task, as the predicted output is a ranking
relation rather than single values like those in traditional ML
tasks. More generally, with a combinatorial domain, the num-
ber of alternatives grows exponentially fast with the number
of attributes. In such case, the output of the algorithm is a
huge ranking list over the alternative space. Moreover, in
tasks like clustering, it is more meaningful to build explana-
tory models so that one can examine the intra-cluster attribute

preferences and attribute importance structures to discover
common decision patterns among agents.

In this paper, we consider lexicographic preference trees
(LP-trees) [Wilson, 2006; Booth et al., 2011] for represent-
ing agents’ preferences over combinatorial domains. LP-trees
are one of the most intuitive and compact representations
that correspond to many real-world preferences exhibited
by human decision makers [Schmitt and Martignon, 2006;
Yaman et al., 2008; Wilson, 2014; Liu and Truszczynski,
2015]. They have a variety of potential applications in the
current ML era. For example, they can be used as inputs to
cluster agents based on agents’ preferences, or to predict the
satisfaction level of an agent based on similar agents’ LP-
trees. However, in common ML practices like clustering or
prediction, many existing algorithms rely on the assumption
that there is a numerical space they can model. For instance,
the famous KNN classification [Cover and Hart, 1967] and K-
Means clustering algorithms [Hartigan and Wong, 1979] can-
not directly classify or cluster LP-trees. They need to measure
the distance between any pair of samples while LP-trees do
not provide such information per se. Therefore, some trans-
formations are required to extract distance information be-
tween LP-trees. Otherwise, many existing ML algorithms are
inapplicable.

In this paper, we tackle the problem of calculating the num-
ber of pairwise disagreements (commonly called Kendall tau
ranking distance) between agents’ preferences represented by
LP-trees. We propose a novel algorithm, LpDis, to compute
the distance between two agents’ LP-trees without the need of
explicitly generating all possible pairs. It avoids any unneces-
sary comparisons while preserving the accuracy. Moreover,
LpDis is very flexible: it neither poses any restriction on
the structures of LP-trees, nor requires agents to share com-
mon preference dependencies or importance structures. Ex-
perimental results show that LpDis performs very fast and
scales well compared to an exhaustive querying method.

In the next section, we provide the preliminaries of LP-
trees. We then present the theoretical basis and our algorithm
in Section 3 and 4, respectively. At last, we discuss the exper-
imental results in Section 5 and close with conclusions and a
brief account of future work in Section 6.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1898

e ≻ ē

d ≻ d ̄

s ≻ s ̄

n1

E

n2

D

n3

S
(a) an LP-tree T

ē ≻ e
d

d ≻ d̄

s ≻ s ̄

e ≻ ē e: s ≻ s
ē: s ≻ s

̄
̄

d̄

n’1
D

n’2
E

n’4
S

n’3
S

n’5
E

(b) another LP-tree T ′

Figure 1: LP-tree Examples

2 Lexicographic Preference And LP-trees
Let V = {X1, · · · , XN} be a set of N attributes and DX

be the domain of an attribute X . When X is binary, we write
DX = {x, x̄}. LetO be the outcome space, i.e., the Cartesian
product of attribute domains

∏
X∈V

DX . We denote outcomes

as lowercase Greek letters (α, β, etc.). An outcome α ∈ O is
represented as a vector α = (x1, · · · , xN) where xi ∈ DXi .

For any subset of attributes X ⊆ V , we write DX =∏
X∈X

DX . We denote the projection of an outcome α on X

as α [X]. For convenience, if X = {X} is a single attribute,
we write α [X] instead of α [{X}].
Definition 1 (Consistent assignments). Let x and y be the
value assignments to two attribute subsets X and Y, respec-
tively. We call, x is consistent with y, written as x ./ y, if
they assign the same values to all common attributes X ∩Y
(i.e., x[X∩Y] = y[X∩Y]); Otherwise, they are conflicting
x 6./ y, i.e., ∃X ∈ X ∩Y such that x[X] 6= y[X].

Obviously, if Y ∩ X = ∅, we have x ./ y. Also, when
Y ⊆ X and x ./ y, we have x[Y] = y.

A lexicographic order on O is a total order induced by two
major elements: i) the attribute importance order on V; ii)
local preferences on attribute values. It orders a pair of out-
comes {α, β} by looking at the attributes in sequence accord-
ing to their importance, until we reach an attribute X such
that the values of X are different between α and β. α and
β are then ordered according to the local preference relation
over the values of X . This corresponds to the conditional
preference theory discussed in [Wilson, 2004], given the as-
signment u to the more important attributes in both α and
β, α � β if and only if α[X] �u β[X], irrespective of val-
ues assigned to the less important attributes in α and β. In
general, both the importance relations between attributes and
the attribute preferences can be conditioned on the values of
more important attributes. Such lexicographic preference re-
lations can be compactly represented by lexicographic pref-
erence trees (LP-trees).

2.1 Lexicographic Preference Trees
According to [Booth et al., 2011], an LP-tree T is a tree
where each node n is labelled with an attribute denoted by Vn.
Every non-leaf node has between one to a maximum of |DVn

|
outgoing branches, each with a branching constraint Vn = x
(x ∈ DVn

). Every attribute appears exactly once on every
branch of the tree. The tree structure defines the importance

relations over attributes: each branch of the tree specifics a
descending order (from root to leaf) over attributes. We use .
to denote the importance relation over attributes to distinguish
it from the preference relation �.

There is a conditional preference table (CPT) associated
with each node n in an LP-tree, which is defined as follows.
Let P be the set of parent attributes where the preferences
over the values of Vn would condition on. The CPT of n
is then composed of the local preferences over DVn

for all
valuations of P: {p : x1 � · · · � xk |xi ∈ DVn

and p ∈
DP}. p is called a parent context.

Example 1 (LP-trees). Figure 1 illustrates two different LP-
trees T and T ′ for a simple conference flight reservation sce-
nario. We label every node as ni and n′i in T and T ′ respec-
tively. Consider the following binary-valued attributes:

E - Early departure. e denotes an early trip (e.g., departing
at least 2 days earlier); and ē is a just-on-time trip;

D - Day-time flight. d (resp. d̄) denotes a day-time (resp. a
night-time) flight;

S - Stop-over. s (resp. s̄) means a stop-over (resp. non-stop)
flight.

Figure 1a is a simple LP-tree T where the user considers the
departure date (E) as the most important attribute: he prefers
an early trip (e � ē); followed by the time of flight (D): he
likes a day-time flight more than a night-time flight (d � d̄);
and at last the stop-over feature (S): he prefers to have some
stop-overs (s � s̄). Note that in T , the attribute importance
and attribute preferences are unconditional.
Figure 1b shows a more general example of LP-tree T ′,
where the user has both conditional attribute importance and
conditional attribute preferences. D is the most important at-
tribute, and the user prefers night-time flight over day-time
flight (d̄ � d). Then, conditioned on the value of D:

• If D = d, the next most important attribute is E (on n′2)
and ē � e. Then the least important variable is S (on
n′3), where the CPT of S states that s � s̄ if E = e;
otherwise if E = ē, then s̄ � s.
• If D = d̄, the second most important attribute is S (on
n′4), and followed by E (on n′5). For S (resp. E), the
CPT states that s̄ � s (resp. e � ē).

An LP-tree T induces a total order �T on the outcome
spaceO. For a pair of outcomes {α, β}, we query T in a top-
down manner, following the relevant branch according to the
common value assignment in α and β. Until we reach a node
n in T , where α and β have different values assigned to Vn
(α[Vn] 6= β[Vn]). We look into the CPT of n and conclude
that α �T β if and only if α[Vn] �p β[Vn] where p is the
parent context of Vn specified in α and β (p = α[P] = β[P]).

Example 2 (Outcome Comparison). Consider the outcome
pairs α = ēds̄, β = eds, and T ′ in Figure 1b, we query T ′
accordingly. The first visited node is n′1 and Vn′

1
= D. As

α[D] = β[D] = d, we continue to move to the left child
n′2, where Vn′

2
= E. Now, as α[E] 6= β[E] (α[E] = ē but

β[E] = e). According to the CPT on n′2, we have ē � e.
Therefore, we can directly conclude that α �T ′ β.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1899

3 Kendall Tau Distance Between LP-trees
A typical ML scenario is to cluster agents based on their pref-
erences, where we need to look into the similarity or dis-
tance between different agents’ preferences. In this section,
we introduce our novel LpDis algorithm that efficiently tra-
verses LP-trees and calculates the number of disagreed pair-
wise preference relations (Kendall tau ranking distance) be-
tween two LP-trees. LpDis has the following advantages:

(i) It does not restrict the structures of the LP-trees. The
LP-trees can have different preference dependencies be-
tween attributes and attribute importance structures;

(ii) It considers general multi-valued domains, instead of re-
stricting to binary-valued attributes;

(iii) It only traverses the nodes in two LP-trees without the
need of generating the entire outcome space or query-
ing LP-trees for any outcome pair. Hence, it signifi-
cantly improves the computation time, which is crucial
in large-scale ML tasks.

3.1 Preference Encoded In LP-tree Nodes
As mentioned earlier, an LP-tree T induces a total order over
the outcome space O. This means, for any possible outcome
pair {α, β}, it can only be either α �T β or β �T α. Such
pairwise preferences are encoded in the nodes of an LP-tree.

Given an LP-tree T and a node n in T , let A be the set of
ancestor attributes of n, B be the set of branching attributes
(attributes on nodes that have multiple outgoing edges) along
the path to n (B ⊆ A), and b be branching constraints, i.e.,
the value assigned to B along the path to n. Then, n decides
the preference order over a pair of outcomes {α, β} in T if
it is the first node where α and β have different values. We
denote the set of all such outcome pairs as Pn. For any of
these outcome pairs {α, β} ∈ Pn, α and β have the same as-
signment to A (and with α[B] = β[B] = b), but differ on Vn
(i.e., attribute on n), and irrespective of the values assigned to
the rest of the descendants of n. Formally,
Pn =

{
{α, β} | α, β ∈ O, α[A] = β[A], α[B] = β[B] = b

and α[Vn] 6= β[Vn]
}

(1)
Note that {α, β} and {β, α} are considered as the same out-
come pairs. For any pair of nodes ni, nj in an LP-tree,
Pni ∩Pnj = ∅ (i.e., they are disjoint) because every outcome
pair {α, β} is decided at exactly one node in the tree: α �T β
if and only if the CPT of Vn states that α[Vn] �p β[Vn] in the
parent context p included in α[A] (=β[A]). Also, the sum
of |Pn| of all the nodes in an LP-tree, i.e.,

∏
n∈T
|Pn|, is then

equal to the total number of outcome pairs.
Example 3 (Node Outcome Pairs). Consider node n2 of the
LP-tree T in Figure 1a, where Vn2

= D. we have A = {E},
B = ∅. So Pn2

= {{α, β} | α[E] = β[E] and α[D] 6=
β[D]}. Therefore, Pn2

contains the following outcome pairs:
{eds, ed̄s}, {ēds, ēd̄s}, {eds, ed̄s̄}, {ēds, ēd̄s̄}, {eds̄, ed̄s},
{ēds̄, ēd̄s}, {eds̄, ed̄s̄}, {ēds̄, ēd̄s̄}. Similarly, consider node
n′2 in T ′ in Figure 1b. We have Vn′

2
= E, A = B = {D} and

b = d. So Pn′
2

= {{α, β} | α[D] = β[D] = d and α[E] 6=
β[E]} = {{ēds, eds}, {ēds, eds̄}, {ēds̄, eds}, {ēds̄, eds̄}}.

3.2 Node Disagreement Between LP-trees
Since two LP-trees could have different attribute importance
structures, for any pair of nodes n, n′ in two LP-trees T and
T ′, respectively, Pn and Pn′ could contain different sets of
outcome pairs. In the following, we define the set of dis-
agreed outcome pairs between nodes in two LP-trees.

Definition 2 (Disagreed outcome pairs between nodes). Let
T , T ′ be two LP-trees, n and n′ be a node in T and T ′, re-
spectively. The set of disagreed outcome pairs Dn,n′ (equiv-
alent to Dn′,n) is defined as follows:

Dn,n′ = {{α, β} ∈ Pn ∩ Pn′ | α �T β and β �T ′ α}

Similar to LP-tree that encodes its preferences using two
components (attribute preferences and attribute importance),
the disagreement between two LP-trees also occurs because
of two reasons: different local preferences on attribute values
and different structures of attribute importance.

Given two nodes n and n′ of the LP-trees T and T ′, re-
spectively, let A (resp. A′) be the set of ancestor attributes
of n (resp. n′), and Ă be the union of ancestor attributes
Ă = A ∪ A′. Let B (resp. B′) be the set of branching at-
tributes of n (resp. n′), and b (resp. b′) be the branching
constraints of n (resp. n′). It is important to note that if b
and b′ are conflicting (b 6./ b′), Pn ∩ Pn′ = ∅, i.e., there
exists no possible assignment to the joint ancestor Ă s.t. both
b and b′ are True. In this case, |Dn,n′ | = 0. Therefore, when
computing the disagreement between pairs of nodes in two
LP-trees, we can focus on those where b ./ b′. Let B̆ be the
union B̆ = B ∪B′ and b̆ be the union of branch constraints
specified by n and n′ (assuming b ./ b′), then the common
outcome pairs in Pn and Pn′ would be those that assign the
same values to Ă, satisfy the joint constraint b̆ but assigns
different values to Vn and Vn′ :

Pn ∩ Pn′ ={{α, β} | α[Ă] = β[Ă], α[B̆] = β[B̆] = b̆,

α[Vn] 6= β[Vn] and α[Vn′] 6= β[Vn′]}
(2)

Node Disagreement Caused By Local Preference
If n and n′ are both labeled with the same attribute (Vn =
Vn′), the disagreement between n and n′ is caused by the
conflicting local preferences over attribute values DVn . Let
P (resp. P′) be the set of parent attributes of n (resp. n′) in
T (resp. T ′), and P̆ = P∪P′. Therefore, Dn,n′ contains the
common outcome pairs where the preference over DVn

are
conflicting between n and n′ w.r.t. their joint parent context,
denoted by p̆. Therefore, we have:

Dn,n′ =
{
{α, β} ∈ Pn ∩ Pn′ | α[Vn] �p̆

n β[Vn] and

β[Vn] �p̆
n′ α[Vn] where p̆ = α[P̆](= β[P̆])

}
To count the number of outcome pairs, let ` be the set of

pairwise disagreement on attribute valuesDVn
between n and

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1900

n′ w.r.t. the possible joint parent context. Note that we only
consider a joint parent context p̆ if it is consistent with b̆.

` =
{
x �p̆

n y and y �p̆
n′ x| x, y ∈ DVn , p̆ ∈ DP̆ and

p̆ ./ b̆
}

Besides B̆ and P̆, for any {α, β} ∈ Dn,n′ , α and β must
have the same value assigned to the rest of the ancestor at-
tributes in Ă. The number of such possible assignment is∏
X∈Ă\(B̆∪P̆)

|DX |. Furthermore, they can have any values

assigned to the remaining attributes V \ (Ă ∪ {Vn}), as any
of those attributes is less important than Vn in T and Vn′ in
T ′, respectively. The number of possible combinations of
value assignments to these remaining attributes in {α, β} is∏
Y ∈V\(Ă∪{Vn})

(|DY |)2. Therefore, when Vn = Vn′ we have:

|Dn,n′ | = |`| ×
∏

X∈Ă\(B̆∪P̆)

|DX | ×
∏

Y ∈V\(Ă∪{Vn})

(|DY |)2

(3)
Example 4 (Node Disagreement - Attribute Preference).
Consider n3 in Figure 1a and n′3 in Figure 1b. We have
A = A′ = {E,D} = Ă, B = ∅, B′ = {D} and b′ = d, so
B̆ = {D} and b̆ = d. Also, P = ∅ and P′ = {E} so P̆ =
{E}. Both of the joint parent context e and ē are consistent
with b̆. Then for any {α, β} ∈ Pn3

∩Pn′
3
, α and β assign the

same values to {E,D} (either ed or ēd) while assign different
values to S. According to the CPT of the two nodes, the local
preference on S are conflicting between n3 and n′3 only when
E = ē. Therefore, we have ` = {s �ē

n3
s̄ and s̄ �ē

n′
3
s} and

|`| = 1. Dn3,n′
3

contains only one outcome pair {(ēds, ēds̄)},
and

∣∣Dn3,n′
3

∣∣ = 1× 1× 1 = 1. Note that
∏

X∈∅
|DX | = 1.

Node Disagreement Caused By Attribute Importance
If n and n′ contain different attributes, i.e., Vn 6= Vn′ ,

• If Vn′ is an ancestor attribute of n in T (Vn′ ∈ A),
then according to Equation 1, Pn contains outcome pairs
{α, β} where α[A] = β[A], and so α[Vn′] = β[Vn′].
On the other hand, Pn′ contains outcome pairs where
the values of Vn′ differ (α[Vn′] 6= β[Vn′]). In which
case, Pn ∩ Pn′ = ∅ and |Dn,n′ | = 0.
• Similarly, if Vn is an ancestor attribute of n′ in T ′ (Vn ∈
A′), we will have |Dn,n′ | = 0.
• Otherwise, if Vn′ /∈ A and Vn /∈ A′, then in the branch

of n in T , Vn is more important than Vn′ (Vn .bT Vn′).
However, in the branch of n′ on T ′, Vn′ is more impor-
tant than Vn (Vn′ .b

′

T ′ Vn).
In such case, the disagreement between n and n′ occurs
on outcome pair {α, β} where,

– For T : α assigns a more preferred value on Vn than
β (α[Vn] �n β[Vn]). So α �T β.

– For T ′: β assigns a more preferred value on Vn′

than α (β[Vn′] �n′ α[Vn′]). So β �T ′ α

The number of such combinations of values on Vn
and Vn′ is

(|DVn |
2

)
×
(|DV

n′ |
2

)
. Moreover, there are∏

X∈Ă\B̆
|DX | number of possible assignments to joint

ancestors, and
∏

Y ∈V\(Ă∪{Vn,Vn′})
(|DY |)2 possible as-

signments to the remaining variables in the pair {α, β}.
Therefore, we have:

|Dn,n′ | =
(
|DVn |

2

)
×
(
|DVn′ |

2

)
×

∏
X∈Ă\B̆

|DX |×

∏
Y ∈V\(Ă∪{Vn,Vn′})

(|DY |)2

(4)

Example 5 (Node Disagreement - Attribute Importance).
Consider the node n1 in T and n′1 in T ′ in Figure 1.
Vn1

= E, Vn′
1

= D, Ă = B̆ = ∅. Referring to the
CPTs, e �n1 ē and d̄ �n′

1
d. Therefore, ∀{α, β} ∈

Dn1,n′
1
, we have α[E] = e, β[E] = ē so α �T β.

And α[D] = d, β[D] = d̄ so β �T ′ α. Hence,
Dn1,n′

1
= {{eds, ēd̄s}, {eds, ēd̄s̄}, {eds̄, ēd̄s}, {eds̄, ēd̄s̄}}.

This is consistent with Equation 4:
∣∣Dn1,n′

1

∣∣ =
(

2
2

)
×
(

2
2

)
×∏

X∈∅
|DX | ×

∏
Y ∈V\{E,D}

(|DY |)2
= 1× 1× 1× 22 = 4.

4 The Proposed LpDis Algorithm
Now, we know how to compute the number of disagreed pair-
wise preferences on different nodes of two LP-trees. In this
section, these results are used as the basis for calculating the
Kendall tau distance (the total number of disagreed outcome
pairs) between two LP-trees.

Given two LP-trees T and T ′, let n be a node in T , we
denote Dn,T ′ , as the set of disagreed outcome pairs between
n and all nodes in T ′: Dn,T ′ =

⋃
n′∈T ′

Dn,n′ . We also denote

DT ,T ′ as the set of disagreed outcome pairs between T and

T ′: DT ,T ′ =
⋃

n∈T
Dn,T ′ =

⋃
n∈T

(⋃
n′∈T

Dn,n′

)
. Obviously,

|DT ,T ′ | =
∑
n∈T
|Dn,T ′ | =

∑
n∈T

∑
n′∈T ′

|Dn,n′ |

is the Kendall tau distance.
The proposed LpDis algorithm is a nested tree traversal

algorithm (see Algorithm 1). Given two LP-trees T and T ′,
we traverse T (could be in any order) (see line 2). For each
visited node n in T , we call the function NodeDis (line 8–
23). NodeDis depth-first traverses T ′ (starting from the
root of T ′, line 3–4), and calculate the number of disagreed
outcome pairs |Dn,T ′ | between n and T ′, by summing up
|Dn,n′ | on each visited node n′ ∈ T ′. Note that the function
NodeDis in Algorithm 1 is a recursive implementation of
depth-first tree traversal. It traverses T ′, updates and accu-
mulates |Dn,n′ | into |Dn,T ′ | during each recursive call. For
each visited node n′ in T ′:

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1901

Algorithm 1: LpDis compute Kendall tau distance be-
tween two LP-trees

1 Algorithm LpDis(T , T ′)
Input: two LP-trees T and T ′
Output: |DT ,T ′ |

2 foreach node n ∈ T do
3 n′ = root of T ′
4 |DT ,T ′ |+=NodeDis(n, n′, 0)
5 end
6 return |DT ,T ′ |
7

8 Function NodeDis(n, n′, |Dn,T ′ |)
Input: n: a node in T ; n′: a node in T ′; current

value of |Dn,T ′ |
Output: |Dn,T ′ |

9 if Vn == Vn′ then
10 calculate |Dn,n′ | based on Equation 3
11 |Dn,T ′ |+= |Dn,n′ |
12 return |Dn,T ′ |
13 else
14 if Vn′ /∈ A then
15 calculate |Dn,n′ | based on Equation 4
16 |Dn,T ′ |+= |Dn,n′ |
17 end
18 foreach child node n′c of n′ do
19 if b′c ./ b then
20 |Dn,T ′ |+= NodeDis(n, n′c, |Dn,T ′ |)
21 end
22 end
23 end

• If n and n′ contain the same attribute Vn == Vn′ (line
9), we calculate the number of disagreement |Dn,n′ | ac-
cording to Equation 3, add and update the values of
|Dn,T ′ | (line 10–11). We then return to the upper-level
call and prune the rest of the branch (line 12).
• Otherwise (when Vn 6= Vn′), as mentioned in Sec-

tion 3.2, if Vn′ is one of the ancestor attributes of Vn
in T (Vn′ ∈ A), then Pn ∩ Pn′ = ∅ and |Dn,n′ | = 0.
Therefore, we only compute |Dn,n′ | if Vn′ 6∈ A (line
14). In that case, we calculate |Dn,n′ | based on Equa-
tion 4, then add and update the value of |Dn,T ′ | (line
15–16). Note that we will always have Vn /∈ A′ as we
stop traversing T ′ and return to the upper level call when
Vn == Vn′ , as mentioned in the previous bullet point.
After that, we continue to expand child branches from
n′. For each child node n′c, we examine whether the
branching constraint b′c of n′c is consistent with that of
n (i.e., b). Conflicting branches are pruned, and for each
consistent branch n′c, we call NodeDis with n, n′c and
the updated value of |Dn,T ′ | (line 18 – 22).

After ending all recursive calls, NodeDis returns |Dn,T ′ | to
its parent function LpDis. We then add |Dn,T ′ | to |DT ,T ′ |
(line 4). After repeating it for each node in T , LpDis then
returns |DT ,T ′ | as the final output (line 6).
Theorem 1. The proposed LpDis algorithm is complete,

LP-tree T LP-tree T’

e ≻ ē

d ≻ d ̄

s ≻ s ̄

n1
E

n2
D

n3
S

|D n1,T’| = 9

ē ≻ e

d
d ≻ d̄

s ≻ s ̄

e ≻ ē
e: s ≻ s
ē: s ≻ s

̄
̄

d̄

n’1
D

n’2
E

n’4
S

n’3
S

n’5
E

|D n1,n’2| = 4

|D n1,n’1| = 4

|D n1,n’4| = 1

|D n1,n’5| = 0

(a) calculated |Dn1,T ′ | = 9
LP-tree T LP-tree T’

e ≻ ē

d ≻ d ̄

s ≻ s ̄

n1
E

n2
D

n3
S

ē ≻ e

d ≻ d̄

s ≻ s ̄

e ≻ ē
e: s ≻ s
ē: s ≻ s

̄
̄

n’1
D

n’2
E

n’4
S

n’3
S

n’5
E

|D n2,T’| = 8

|D n2,n’1| = 8

d d̄

(b) calculated |Dn2,T ′ | = 8
LP-tree T LP-tree T’

e ≻ ē

d ≻ d ̄

s ≻ s ̄

n1
E

n2
D

n3
S

ē ≻ e

d ≻ d̄

s ≻ s ̄

e ≻ ē
e: s ≻ s
ē: s ≻ s

̄
̄

n’1
D

n’2
E

n’4
S

n’3
S

n’5
E

|D n3,T’| = 3

|D n3,n’4| = 2

|D n3,n’3| = 1

d d̄

(c) calculated |Dn3,T ′ | = 3

Figure 2: Illustration

i.e., the final output is equal to the total number of disagreed
outcome pairs between T and T ′.

Proof. During the execution of LpDis, we cover every node
n in T . For each node n we traverse every node n′ in T ′ and
accumulate |Dn,n′ |, except the followings:

• If Vn = Vn′ , we prune all child branches from n′. In this
case, for any child n′c of n′, we will have Vn (= Vn′)
as an ancestor attribute of n′c in T ′. As discussed in
Section 3.2, Pn ∩ Pn′

c
= ∅ and

∣∣Dn,n′
c

∣∣ = 0.

• Similarly, if Vn′ is an ancestor of Vn in T , we do not
consider |Dn,n′ |, as Pn ∩ Pn′ = ∅ and |Dn,n′ | = 0.

• If a child node n′c of n′ conflicts with the branching con-
straints of n, as also discussed in Section 3.2 we will
also have Pn ∩ Pn′ = ∅ and |Dn,n′ | = 0.

In other words, for all possible prunings occur in LpDis,
we prove that |Dn,n′ | = 0. And therefore, the final returned

output is equal to
∑
n∈T

(∑
n′∈T

|Dn,n′ |
)

= |DT ,T ′ |.

Theorem 2. The computation time of the proposed LpDis
algorithm is polynomial, quadratic, in the size of the input,
i.e., the size of the two LP-trees.

Proof. For a node n in an LP-tree T , let dn be the do-
main size of Vn and pn be the number of rows in the CPT
of n. We can consider the size of an LP-tree as the sum

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1902

of the sizes of the CPT on each node of the LP-tree. As-
sume an LP-tree T has j nodes and T ′ has k nodes, we
denote s (resp. s′) as the size of T (resp. T ′), then s =∏
i∈{1,··· ,j}

dni
pni

and s′ =
∏

i∈{1,··· ,k}
dn′

i
pn′

i
. During the exe-

cution of LpDis, we do a nested tree traverse of T and T ′,
so the running time of node visiting is j · k. For each pair
of nodes n and n′ when Vn 6= Vn′ , we can directly calculate
|Dn,n′ | with Equation 4. Otherwise, if Vn = Vn′ , we will
have to count the number of pairwise disagreements on at-
tribute values in every possible joint parent context, the worst
case running time is dnpn · dn′pn′ . Therefore, the worst
case complexity of LpDis is O (j · k · dnpn · dn′pn′) =
O (j · dnpn · k · dn′pn′) = O (s · s′).

Essentially, the running time of LpDis depends on the
complexity of the LP-trees, i.e., whether they have complex
importance structures (with many different branches), and
whether the preference on an attribute depends on many other
attributes. In the worst case, the number of nodes in an LP-
tree and the number of parent context of an attribute grow ex-
ponentially in the number of attributes. In which case, how-
ever, it is not meaningful to use LP-trees to represent agents’
preferences as it constructs a full tree. This is then equivalent
to giving out the full ranking over the alternative space.

4.1 Illustration
We now demonstrate the execution of LpDis with the two
LP-trees T (Figure 1a) and T ′ (Figure 1b). LpDis traverses
T , calculates and accumulates |Dn,T ′ | for every node n. Fig-
ure 2 shows the calculation for each node.

For n1 in T (Figure 2a), Vn1 = E, we depth-first traverse
T ′:
• Starting from n′1 in T ′, as demonstrated in Example 5,∣∣Dn1,n′

1

∣∣ = 4. We update the value of |Dn1,T ′ | as 0 +∣∣Dn1,n′
1

∣∣ = 4. Since there is no branching constraint for
n1 in T , all child branches of n′1 are consistent with n1.
Therefore, we proceed to each child of n′1.

• We now reach n′2 in T ′. As Vn′
2

= E = Vn1 ,
we calculate

∣∣Dn1,n′
2

∣∣ based on Equation 3. For n1:
A = B = P = ∅, and for n′2: A′ = B′ = {D},
P = ∅, so Ă = B̆ = {D}, b̆ = d and P̆ = ∅. Re-
ferring to the CPT of n1 and n′2: e �n1

ē, however,
ē �n′

2
e. Hence, the number of disagreed pairwise pref-

erence on values of Vn1
(= Vn′

2
) is |`| = 1. Therefore:∣∣Dn1,n′

2

∣∣ = 1×
∏

X∈∅
|DX | ×

∏
Y ∈V\({D}∪{E})

(|DY |)2
=

1× 1× 22 = 4.
We subsequently end the current recursive call, return to
the parent node n′1 without visiting n′3, and proceed to
another call with parameters n1, child node n′4, and the
current value |Dn1,T | = 4 +

∣∣Dn1,n′
2

∣∣ = 8.

• Similarly for n′4, Vn′
4

= S 6= Vn1
, Ă = B̆ = {D},

therefore, according to Equation 4,
∣∣Dn1,n′

4

∣∣ = 1, and
the current value |Dn1,T | = 8 +

∣∣Dn1,n′
4

∣∣ = 9.

(a) General LP-trees (b) LP-trees with constraints

Figure 3: Running time comparison (in µs; log-scaled; the blue
curve and red dashed curve plot the running time of LpDis and
Exhau, respectively)

• At the end, we reach the leaf node n′5, where Vn′
5

= E =
Vn. As they both have the same local preference on E
(e � ē), therefore, |`| = 0 and

∣∣Dn1,n′
5

∣∣ = 0

After that, NodeDis returns to its parent function LpDis
with |Dn1,T ′ | = 9. We then update |DT ,T ′ | = |Dn1,T ′ | = 9.

We then move to n2 in T , and depth-first traverse T ′ (see
Figure 2b). Right on the root node n′1, as Vn2

= Vn′
1

= D,
Ă = {E}, B̆ = P̆ = ∅, and |`| = 1 (d �n2 d̄ but d̄ �n′

1
d),

we have
∣∣Dn2,n′

1

∣∣ = 1 × 2 × 22 = 8 (according to Equa-
tion 3). We then directly return to LpDis with |Dn2,T ′ | =∣∣Dn2,n′

1

∣∣ = 8, and update |DT ,T ′ | = 9 + |Dn2,T ′ | = 9 + 8 =
17. All child branches of n′1 in T ′ are pruned in this iteration.

Lastly, for n3 in T (Figure 2c), we depth-first traverse T ′:
• On n′1, Vn′

1
= D is an ancestor attribute of n3 in T , we

proceed to its child nodes without any computation.
• Similarly on n′2, as Vn′

2
= E is an ancestor attribute of

n3 in T , we proceed to the next call to the leaf node n′3.
• On n′3, as shown previously in Example 4, we have∣∣Dn3,n′

3

∣∣ = 1. We update |Dn3,T ′ | = 0 + 1 = 1. Then,
we return to n′2, and subsequently return to n′1 and fur-
ther proceed to its right child n′4.

• On n′4, Vn′
4

= Vn3
= S, Ă = {E,D}, B̆ = {D}, and

|`| = 1. According to Equation 3,
∣∣Dn3,n′

4

∣∣ = 1 × 2 ×
1 = 2. So |Dn3,T ′ | = 1 +

∣∣Dn3,n′
4

∣∣ = 3. It then prunes
the rest of the branch and return to n′1. NodeDis then
returns to LpDis with |Dn3,T ′ | = 3

After that, |DT ,T ′ | = 17 + |Dn3,T ′ | = 20. Now, we have
completed the traverse of T and LpDis returns |DT ,T ′ | = 20
as the Kendall tau distance between T and T ′.

5 Experiments
We compare the proposed approach with a baseline technique
called Exhau which performs an exhaustive query over all
possible outcome pairs. We generate random LP-trees by
varying the number of attributes, the structure of the trees,
and the local attribute preferences.

In the first set of experiments, we consider N (number of
variables) between 1 to 20 and run 1000 experiments on each
number of attributes. All variables are binary. Figure 3a plots
the average time spent by these algorithms against the number

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1903

of attributes. We can see that LpDis runs significantly faster
than the Exhau algorithm. As the number of attributes grows
the gap between LpDis and Exhau increases. When N =
10, LpDis performs 1000 times faster than Exhau. While it
is infeasible to run large-scale experiments with Exhauwhen
the number of variables is more than 11, on average, LpDis
runs on 20 attributes in about 15 seconds.

In the second set of experiments, we limit the maximum
number of parents of each attribute to 5, and the maximum
number of nodes in an LP-tree to be the square of the num-
ber of attributes (N2). The results are shown in Figure 3b.
In this case, LpDis presents only a polynomial growth on
the number of attributes. It runs on 50 attributes in about 25
seconds. In contrast, Exhau does not show any noticeable
improvements even after introducing the constraints.

6 Conclusion and Future Work
We investigated the problem of computing the number of
pairwise disagreements (Kendall tau distance) between two
agents’ preferences represented by LP-trees. We proposed
an algorithm called LpDis to calculate such distance with
any classes of LP-trees, where the agents do not necessarily
share common preference dependencies or attribute impor-
tance structures. LpDis retains the accuracy, yet efficiently
computes the Kendall tau distance by traversing the LP-trees
without generating or querying any outcome pair. As demon-
strated with experiments, the improvement in running time
compared to the exhaustive querying method is significant.

This research opens up a couple of interesting topics for fu-
ture exploration, including but not limited to: i) extension for
incomplete LP-trees, where some of the attributes are miss-
ing in the LP-tree branches, or some of the conditional pref-
erence tables (CPTs) on the nodes of the LP-tree are incom-
plete. While in this work we assume the LP-trees are com-
plete, human preferences in real-world are often incomplete,
and possibly inconsistent. We intend to extend the current
formulation to accommodate incomplete and/or inconsistent
LP-trees. ii) various ML tasks on LP-trees. It would be inter-
esting to cluster or predict agents’ preferences by having LP-
trees as training samples. We also plan to apply LP-trees in
label ranking problem, to discover common decision-making
patterns in a group of agents.

References
[Booth et al., 2011] Richard Booth, Yann Chevaleyre,

Jérôme Lang, Jérôme Mengin, and Chattrakul Sombat-
theera. Learning conditionally lexicographic preference
relations. In Proceedings of the 23rd Benelux Conference
on Artificial Intelligence, pages 371–372, 2011.

[Bräuning et al., 2017] Michael Bräuning, Eyke Hüller-
meier, Tobias Keller, and Martin Glaum. Lexicographic
preferences for predictive modeling of human decision
making: A new machine learning method with an appli-
cation in accounting. European Journal of Operational
Research, 258(1):295–306, 2017.

[Cover and Hart, 1967] Thomas Cover and Peter Hart. Near-
est neighbor pattern classification. IEEE transactions on
information theory, 13(1):21–27, 1967.

[Grbovic et al., 2013] Mihajlo Grbovic, Nemanja Djuric,
Shengbo Guo, and Slobodan Vucetic. Supervised cluster-
ing of label ranking data using label preference informa-
tion. Machine Learning, 93(2):191–225, Nov 2013.

[Hartigan and Wong, 1979] John A Hartigan and
Manchek A Wong. Algorithm as 136: A k-means
clustering algorithm. Journal of the Royal Statistical
Society. Series C (Applied Statistics), 28(1):100–108,
1979.

[Horniaček, 2008] Milan Horniaček. Negotiation, prefer-
ences over agreements, and the core. International Journal
of Game Theory, 37(2):235–249, Jun 2008.

[Hüllermeier et al., 2008] Eyke Hüllermeier, Johannes
Fürnkranz, Weiwei Cheng, and Klaus Brinker. Label
ranking by learning pairwise preferences. Artificial
Intelligence, 172(16):1897 – 1916, 2008.

[Lang et al., 2012] Jérôme Lang, Jérôme Mengin, and
Lirong Xia. Aggregating Conditionally Lexicographic
Preferences on Multi-issue Domains, pages 973–987.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[Liu and Truszczynski, 2015] Xudong Liu and Miroslaw
Truszczynski. Learning partial lexicographic preference
trees over combinatorial domains. In Proceedings of the
29th AAAI Conference on Artificial Intelligence (AAAI),
pages 1539–1545. AAAI Press, 2015.

[Schmitt and Martignon, 2006] Michael Schmitt and Laura
Martignon. On the complexity of learning lexicographic
strategies. Journal of Machine Learning Research, 7:55–
83, 2006.

[Todorovski et al., 2002] Ljupco Todorovski, Hendrik Bloc-
keel, and Saso Dzeroski. Ranking with Predictive Clus-
tering Trees, pages 444–455. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2002.

[Vembu and Gärtner, 2011] Shankar Vembu and Thomas
Gärtner. Label Ranking Algorithms: A Survey, pages 45–
64. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[Wilson, 2004] Nic Wilson. Extending cp-nets with stronger
conditional preference statements. In AAAI, volume 4,
pages 735–741, 2004.

[Wilson, 2006] Nic Wilson. An efficient upper approxima-
tion for conditional preference. In Proceedings of the 2006
Conference on ECAI 2006: 17th European Conference
on Artificial Intelligence August 29 – September 1, 2006,
Riva Del Garda, Italy, pages 472–476, Amsterdam, The
Netherlands, The Netherlands, 2006. IOS Press.

[Wilson, 2014] Nic Wilson. Preference inference based on
lexicographic models. In Proceedings of the Twenty-
first European Conference on Artificial Intelligence,
ECAI’14, pages 921–926, Amsterdam, The Netherlands,
The Netherlands, 2014. IOS Press.

[Yaman et al., 2008] Fusun Yaman, Thomas J. Walsh,
Michael L. Littman, and Marie desJardins. Democratic ap-
proximation of lexicographic preference models. In ICML,
volume 307 of ACM International Conference Proceeding
Series, pages 1200–1207. ACM, 2008.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1904

