
On Concept Forgetting in Description Logics
with Qualified Number Restrictions

Yizheng Zhao and Renate A. Schmidt
School of Computer Science, The University of Manchester, UK

Abstract
This paper presents a practical method for comput-
ing solutions of concept forgetting in the descrip-
tion logic ALCOQ(¬,u,t), basic ALC extended
with nominals, qualified number restrictions, role
negation, role conjunction and role disjunction.
The method is based on a non-trivial generalisation
of Ackermann’s Lemma, and attempts to compute
either semantic solutions of concept forgetting or
uniform interpolants in ALCOQ(¬,u,t). It is so
far the only approach to concept forgetting in de-
scription logics with number restrictions plus nom-
inals, as well as in description logics with ABoxes.
Results of an evaluation with a prototypical imple-
mentation have shown that the method was success-
ful in more than 90% of the test cases from a large
corpus of biomedical ontologies. In only 13.2% of
these cases the solutions were semantic solutions.

1 Introduction
Forgetting is a non-standard reasoning service that seeks to
create restricted views of ontologies by eliminating concept
and role names from ontologies in a way such that all logical
consequences are preserved up to the remaining signature. It
has proved to be a very useful technique in ontology-based
knowledge processing, as it allows users to focus on specific
parts of (usually very large) ontologies for easy reuse, or to
zoom in on (usually very complex) ontologies for in-depth
analysis. Other uses of forgetting are information hiding, ex-
planation generation (abduction), ontology debugging and re-
pair, as well as computing the logical difference between on-
tology versions [Bicarregui et al., 2001; Lang et al., 2003;
Konev et al., 2009; Grau and Motik, 2012; Wernhard, 2013;
Ludwig and Konev, 2014; Wang et al., 2014].

Forgetting can be defined in two ways that are closely re-
lated; it can be defined syntactically as the dual of uniform in-
terpolation [Visser, 1996] (related notions include weak for-
getting [Zhang and Zhou, 2010], consequence-based insepa-
rability [Lutz and Wolter, 2010] and consequence-based con-
servative extensions [Ghilardi et al., 2006]) and it can be de-
fined model-theoretically as semantic forgetting [Wang et al.,
2014] (related notions include strong forgetting [Lin and Re-
iter, 1994], model inseparability [Konev et al., 2013], model

conservative extensions [Lutz et al., 2007] and second-order
quantifier elimination [Gabbay et al., 2008]). The two notions
differ in the sense that uniform interpolation preserves all log-
ical consequences up to certain names whereas semantic for-
getting preserves equivalence up to certain names. In this
sense, semantic solutions are in general stronger than the uni-
form interpolants; they often require more expressivity than is
available in the source logic. For example, the semantic solu-
tion of forgetting the role name {r} from the ALC-ontology
{A1 v ∃r.B,A2 v ∀r.¬B} is {A1 v ∃O.B,A1uA2 v ⊥},
whereas the uniform interpolant is {A1 uA2 v ⊥}, which is
weaker. Observe in this case that the target language must in-
clude the universal role O to represent the semantic solution.
If a semantic solution is expressible in the source logic, then
it is equivalent to the uniform interpolant, which means, in
this case, the two notions coincide [Zhang and Zhou, 2010].

Despite the notable usefulness in ontology engineering as
described above, forgetting is an inherently difficult problem;
it is much harder than standard reasoning (satisfiability test-
ing) and very few logics are known to have the uniform inter-
polation property or are complete for semantic forgetting. It
is known that: (i) uniform interpolants and semantic solutions
of forgetting do not always exist for EL and ALC [Konev
et al., 2008; Lutz and Wolter, 2011; Konev et al., 2013],
(ii) deciding the existence of uniform interpolants is EXP-
TIME-complete for EL [Lutz et al., 2012] and 2EXPTIME-
complete forALC [Lutz and Wolter, 2011], (iii) the existence
of semantic solutions of forgetting is undecidable for EL and
ALC [Konev et al., 2013; Botoeva et al., 2016], and (iv) uni-
form interpolants can be triple exponential in size w.r.t. the
input ontologies for EL and ALC [Lutz and Wolter, 2011;
Nikitina and Rudolph, 2014].

These not very encouraging results have not prevented the
community from developing practical methods for comput-
ing uniform interpolants and semantic forgetting solutions for
various description logics. For example, [Ludwig and Konev,
2014] have developed a resolution-based method for comput-
ing uniform interpolants for ALC TBoxes. Since ALC does
not have the uniform interpolation property, the method intro-
duces a depth-bounded version of the core algorithm to guar-
antee finite representations of uniform interpolants. Another
resolution-based method for uniform interpolation for ALC
TBoxes is by [Koopmann and Schmidt, 2013b]. This method
introduces fixpoint operators in the target language to ensure

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1984

that uniform interpolants can always be finitely represented.
The method has been extended to the languages of ALCH,
ALCQ and SIF TBoxes [Koopmann and Schmidt, 2013a;
2014; 2015a], and ALC and SHI with ABoxes [Koopmann
and Schmidt, 2015b; Koopmann, 2015]. Practical methods
for computing semantic solutions of forgetting are developed,
implemented and evaluated in [Zhao and Schmidt, 2015;
2016]. These methods are based on generalisations of Acker-
mann’s Lemma [Ackermann, 1935], and attempt to eliminate
concept and role names from ontologies expressible in the
description logic ALCOIH(O,u). The methods are incom-
plete however; for example, they cannot handle the case of
forgetting the concept name {B} from {A1 v ∃r.B,A2 v
∃r.¬B}, because the forgetting solution {A1 v ∃r.>, A2 v
∃r.>, A1 u A2 v ≥2r.>} requires more expressivity than is
available in the source logic (number restrictions). The meth-
ods have been extended to description logics with number re-
strictions [Zhao and Schmidt, 2017], but the work is focused
only on role forgetting.

This paper presents a practical method for computing solu-
tions of concept forgetting in description logics with number
restrictions and nominals. While allowing the given example
to be solved, admitting number restrictions and nominals sig-
nificantly increases the difficulty of the problem. Our method
handles in particular ontologies expressed in ALCOQ and
the extension with role negation, role conjunction and role
disjunction, which means that it can handle expressive de-
scription logics that cannot be handled by other methods at
present. The method follows an Ackermann-based approach,
it is terminating, sound and nearly concept forgetting com-
plete for ALCOQ(¬,u,t). When it succeeds, the method
outputs either a semantic solution of concept forgetting, or a
uniform interpolant in ALCOQ(¬,u,t). Results of an eval-
uation with a prototypical implementation have shown that
the method is computationally feasible and is able to find so-
lutions of concept forgetting in more than 90% of the test
cases from a large corpus of biomedical ontologies. In only
13.2% of these cases the solutions were semantic solutions.

2 The Description Logic ALCOQ(¬,u,t)
Let NC, NR and NI be countably infinite and pairwise disjoint
sets of concept names, role names and individual names (aka
nominals), respectively. Roles in ALCOQ(¬,u,t) can be a
role name r ∈ NR, or formed with negation ¬, conjunction u
and disjunction t. Concepts in ALCOQ(¬,u,t) have one
of the following forms:

> | ⊥ | a | A | ¬C | C uD | C tD | ≥mR.C | ≤nR.C,

where a ∈ NI, A ∈ NC, C and D are any concepts, R is any
role, and m ≥ 1 and n ≥ 0 are natural numbers. Additional
concepts are represented as abbreviations: ∃R.C = ≥1R.C,
∀R.C = ≤0R.¬C, ¬≥mR.C = ≤nR.C and ¬≤nR.C =
≥mR.C, where n = m − 1. Concepts of the form ≥mR.C
and ≤nR.C are called (qualified) number restrictions, which
allow one to specify cardinality constraints on roles.

An ALCOQ(¬,u,t)-ontology comprises of a TBox and
an ABox. A TBox is a finite set of axioms of the formC v D
(concept inclusions), where C and D are concepts. An ABox

is a finite set of axioms of the formC(a) (concept assertions),
where a ∈ NI and C is a concept. As this paper is only con-
cerned with concept forgetting, not including role assertions
or role inclusions in the language is without loss of general-
ity, because concept names do not occur in them. Concept as-
sertions are superfluous in description logics with nominals,
because they can be expressed equivalently as concept inclu-
sions via nominals: C(a) as a v C. Hence, in this paper, an
ALCOQ(¬,u,t)-ontology is assumed to contain only TBox
axioms. The semantics of ALCOQ(¬,u,t) is as expected.

Theorem 1. Reasoning in ALCOQ(¬,u,t) is decidable.

Theorem 1 follows from the decidability of C2 [Grädel et
al., 1997], which subsumes the logic ALCOQ(¬,u,t).

Our forgetting method works with TBox axioms in clausal
form. A TBox literal in ALCOQ(¬,u,t) is a concept of the
form a, ¬a, A, ¬A, ≥mR.C or ≤nR.C. A TBox clause in
ALCOQ(¬,u,t) is a disjunction of a finite number of TBox
literals. TBox clauses are obtained from TBox axioms using
the standard clausal form transformations.

Let A ∈ NC be a designated concept name. An occurrence
of A is said to be positive (negative) in an axiom (clause) if it
is under an even (odd) number of explicit and implicit nega-
tions, e.g., A is positive in ≥mr.A and ≤nr.¬A, and nega-
tive in ≥mr.¬A and ≤nr.A. An axiom or clause is called an
A-axiom or A-clause if it contains an occurrence of A. An
axiom or clause is called an A+-axiom or A+-clause (A−-
axiom orA−-clause) if it contains a positive (negative) occur-
rence ofA. A setN of clauses is said to be positive (negative)
w.r.t. A if every occurrence of A in N is positive (negative).

By sigC(X), sigR(X) and sigI(X), we denote respectively
sets of the concept names, role names and individual names
occurring inX , whereX ranges over concepts, roles, axioms,
clauses, sets of axioms and sets of clauses. Let A ∈ NC be
any concept name, and let I and I ′ be two interpretations.
We say that I and I ′ are equivalent up to A, or A-equivalent,
if I and I ′ coincide but differ possibly in the interpretation
of A. More generally, I and I ′ are equivalent up to a set F
of concept names, or F -equivalent, if I and I ′ coincide but
differ possibly in the interpretations of the names in F .

Definition 1 (Semantic Forgetting). Let O be an ontology
and let F ⊆ sigC(O) be a forgetting signature. An ontol-
ogy O′ is a semantic solution of forgetting F from O iff the
following conditions hold: (i) sigC(O′) ⊆ sigC(O)\F , and
(ii) for any interpretation I: I |= O′ iff I ′ |= O, for some
interpretation I ′ F -equivalent to I.

Definition 2 (Uniform Interpolation). LetO be an ontology
and let F ⊆ sigC(O) be a forgetting signature. An ontology
O′ is a uniform interpolant ofO for the signature sigC(O)\F
iff the following conditions hold: (i) sigC(O′) ⊆ sigC(O)\F ,
and (ii) for any axiom α with sig(α) ⊆ sig(O)\F , O′ |= α
iff O |= α, i.e., O′ preserves all logical consequences up to
the names in sigC(O)\F .

In this paper, we use the notationF to denote the forgetting
signature, i.e., the set of concept names to be forgotten. The
concept name in F under current consideration for forgetting
is referred to as the pivot in our method.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1985

3 Major Obstacles to Semantic Concept
Forgetting in Description Logics with
Qualified Number Restrictions

Solutions of forgetting the names in F are computed by suc-
cessively eliminating single names in F . For most cases the
elimination can be based on generalisations of Ackermann’s
Lemma [Ackermann, 1935], which allow one to eliminate a
single concept or role name from an ontology in a way such
that the original ontology and the resulting one are equivalent
up to the interpretations of the eliminated name (i.e., Condi-
tions (i) and (ii) of Definition 1 hold). The proof is an easy
adaptation of the Ackermann’s original result [Gabbay et al.,
2008]. In Ackermann-based approaches, e.g. [Szałas, 2006;
Schmidt, 2012; Zhao and Schmidt, 2015; 2016; 2017], the
lemma is the basis for the following rules:

O(S−), α1 v S, ..., αn v S (premises)

O(S−)Sα1t...tαn
(conclusion)

(1)

O(S+),S v α1, ...,S v αn (premises)

O(S+)Sα1u...uαn
(conclusion)

(2)

where S ∈ NC (S ∈ NR) is the pivot, the αi (1 ≤ i ≤ n) are
concepts (roles) that do not contain S , O(S+) and O(S−)
denote respectively the ontology O being positive and nega-
tive w.r.t. S , and OSα denotes the ontology obtained from O
by substituting α for every occurrence of S in O. S is thus
eliminated fromO (by substitution). In this case, α is referred
to as the definition of S in O.

Observe that the Rules (1) and (2) are applicable to an on-
tology O to eliminate a name S , only if (i) every S+-axiom
in O has the form α v S , where S 6∈ sig(α), or (ii) every
S−-axiom in O has the form S v α, where S 6∈ sig(α). On
the other hand, since concept names may occur under a role
restriction or a sequence of role restrictions (in this paper,
a number restriction or a sequence of number restrictions),
e.g., α v ∀r.S and α v ∃r.∃s.S , there are cases where O
is not in a form suitable for application of either of the two
rules. In these cases,O needs to be reformulated so that those
syntactically unsatisfactory S-axioms in O are equivalently
expressed in the form of α v S or S v α.

In the approach of [Zhao and Schmidt, 2015] to semantic
concept forgetting in the description logicALCOI , a concept
name under a (or a sequence of) universal role restriction can
be moved outwards using Galois connections between ∀r and
∀r−, e.g., α v ∀r.S is equivalently expressed as ∃r−.α v S ,
and in the case of concept assertions, Skolemisation allows
a concept name under an (or a sequence of) existential role
restriction to be moved outwards, e.g., a v ∃r.S is replaced
by a v ∃r.b and b v S , where a is a nominal and b is a
fresh nominal. However, this approach has three drawbacks:
(i) Galois connections require inverse roles in the language
and Skolemisation adds new nominals in the forgetting solu-
tions, (ii) Skolemisation can be used only in the cases where
the axiom is a concept assertion, but not when the axiom is
a concept inclusion, and most importantly, (iii) Galois con-
nections and Skolemisation are not sufficient in axioms with

number restrictions. This means that these two methods can-
not be used for the logic considered in this paper.

[Zhao and Schmidt, 2017] have developed an Ackermann-
based approach to semantic role forgetting in description log-
ics with number restrictions (but have left the problem of con-
cept forgetting open). For concept forgetting in these logics, a
seemingly feasible solution is the reduction of concept forget-
ting to role forgetting. The idea is to first replace in the given
ontology every occurrence of the concept name one wants to
forget by the concept ≥1r.>, where r is a fresh role name,
and then forget {r} from the present ontology using the ap-
proach of [Zhao and Schmidt, 2017]. However, this approach
has proved to be unfeasible in practice, because the solution
of role forgetting (i.e., an ontology that does not contain r)
computed by the method include newly introduced definer
names,1 which are supposed not to be present in the forget-
ting solutions (they are supposed to be eliminated from the
intermediate solutions as regular concept names). Moreover,
it can be observed that the axioms in resulting ontology often
have the same syntactic patterns as those given in the original
concept forgetting. This brings the problem back to the orig-
inal concept forgetting. For example, forgetting the concept
name {B} from the ontology {A1 v ≥2s.B,A2 v ≤1s.B}
can be reduced to the problem of forgetting the role name
{r} from {A1 v ≥2s.≥1r.>, A2 v ≤1s.≥1r.>}, where r
is a fresh role name. The solution of the role forgetting com-
puted by the method is {A1 v ≥2s.D, A2 v ≤1s.D}, where
D ∈ ND is a fresh concept definer name. Observe that the ax-
ioms in the resulting set and those in the given one have the
same syntactic patterns, and the problem then becomes for-
getting the definer {D} from {A1 v ≥2s.D, A2 v ≤1s.D},
which is basically the same problem of forgetting {B} from
{A1 v ≥2s.B,A2 v ≤1s.B}.

Inspired by the same work we consider solving the problem
by working on translations of ontologies in first-order logic,
where transforming a formula into a specific form seems to
be much easier (because in first-order logic concept and role
names are syntactically more ‘easy-going’; concept names
are not explicitly preceded by role restrictions). Then concept
names can be eliminated using methods for semantic forget-
ting in first-order logic such as the SCAN algorithm (based
on resolution) and the DLS algorithm (based on Ackermann’s
Lemma) [Gabbay and Ohlbach, 1992; Doherty et al., 1997;
Gabbay et al., 2008]. The forgetting solution, which is a set
of first-order formulas, is then translated into equivalent ex-
pressions in a description logic. However, this is unfeasible
as well. The reasons can be illustrated with two examples.
Example 1. First, we consider the case of forgetting the role
name {r} from the ontology {A1 v ≥2r.B,A2 v ≤1r.B}.
The translation of this ontology in first-order logic is:

{1. ∀x(A1(x)→ r(x, f1(x))), 2. ∀x(A1(x)→ B(f1(x))),

3. ∀x(A1(x)→ r(x, f2(x))), 4. ∀x(A1(x)→ B(f2(x))),

5. ∀x(A1(x)→ f1(x) 6≈ f2(x)), 6. ∀x, y, z(A2(x)→ ¬r(x, y)
6. ∨ ¬B(y) ∨ ¬r(x, z) ∨ ¬B(z) ∨ y = z)},

1Definers names (or definers) are auxiliary concept names that do
not occur in the present ontology [Koopmann and Schmidt, 2013b];
they are used to facilitate the normalisation of a given ontology.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1986

where f1(x) and f2(x) are Skolem terms. The forgetting so-
lution computed by both the SCAN or DLS method in exis-
tential quantifier-free first-order logic is:

{1. ∀x(A1(x)→ B(f1(x))), 2. ∀x(A1(x)→ B(f2(x))),

3. ∀x(A1(x)→ f1(x) 6≈ f2(x)),
4. ∀x(A1(x) ∧A2(x)→ ¬B(f1(x)) ∨ ¬B(f2(x)))}.

This can be expressed equivalently in a description logic as
follows (if the target logic includes the universal role):

{A1 v ≥2O.B,A1 uA2 v ⊥}.

Example 2. Next, we consider the case of forgetting the con-
cept name {B} from the same ontology as given in Exam-
ple 1. The solution computed by SCAN or DLS in existential
quantifier-free first-order logic is:

{1. ∀x(A1(x)→ r(x, f1(x))), 2. ∀x(A1(x)→ r(x, f2(x))),

3. ∀x(A1(x)→ f1(x) 6≈ f2(x)),
4. ∀x, ∀x′(A1(x) ∧A2(x

′)→ ¬r(x′, f1(x)) ∨ ¬r(x′, f2(x)))},

Because of the two variables x and x′ not being unified in the
last formula of the forgetting solution, it is not clear if this
solution can be expressed equivalently in a description logic.
It has been found that solutions of concept forgetting usually
contain such ununified variables, which makes the translation
to a description logic seem impossible, but this does not hap-
pen when forgetting role names. An important reason is that
role names are binary relations and are guards, and resolving
on these unifies variables in the premises. In contrast, concept
names are unary relations, and resolving on these produces a
resolvent with more than two variables. These are the cases in
our approach (described in the next section) where the preser-
vation of equivalence is open.

4 Our Ackermann-Based Approach to
Eliminating One Concept Name

In this section, we present our approach to eliminating a con-
cept name from a set of TBox clauses in ALCOQ(¬,u,t).
It is a direct approach based on a non-trivial generalisation
of Ackermann’s Lemma. The approach has two ingredients:
(i) transformation of the given clause set into reduced form,
and (ii) an Ackermann rule. The reduced form is a specialised
normal form that is suitable for application of the Ackermann
rule. The Ackermann rule reflects the generalisation of Ack-
ermann’s Lemma and allows a concept name to be eliminated
from a set of clauses in reduced form.

4.1 Transformation into Reduced Form
Definition 3 (Reduced Form). SupposeA ∈ NC is the pivot.
A clause is in reduced form if it has the form C tA, C t¬A,
C t ≥xR.A, C t ≥xR.¬A, C t ≤yR.A or C t ≤yR.¬A,
where C is a clause that does not contain A, R is a role, and
x ≥ 1 and y ≥ 0 are natural numbers. A set N of clauses is
in reduced form if every A-clause in N is in reduced form.

The reduced forms include all elementary forms of clauses
in which a concept name could occur (i.e., a concept name
could occur at the top level, or under a ≥-restriction or ≤-
restriction of a clause). Clauses not in reduced form have the

form Ct≥xR.D or Ct≤yR.D, where (i) C is a clause that
contains A, or (ii) D 6= (¬)A is a concept that contains A.

Given a set N of TBox clauses (not in reduced form) with
A ∈ sigC(N) being the pivot, the first step in our approach
is to transform N into reduced form so that the Ackermann
rule can be applied toN to eliminate A. This involves the in-
troduction of definers. Let ND ⊂ NC be a set of definers dis-
joint from sigC(N). Definers are introduced, incrementally
replacing ‘C’ and ‘D’ in every A-clause not in reduced form
until (i) and (ii) above do not hold. A new clause ¬D1 t C
is added to N for each replaced subconcept C, a new clause
¬D2 tD is added to N for each replaced subconcept D im-
mediately under a ≥-restriction, and a new clause D3 t D
is added to N for each replaced subconcept D immediately
under a ≤-restriction, where D1,D2,D3 ∈ ND are fresh de-
finers. In this way, N is transformed into reduced form.

Theorem 2. Using the definer introduction, any set of clauses
in ALCOQ(¬,u,t) can be transformed into reduced form.
The transformation is polynomial and preserves equivalence
up to the interpretations of the introduced definers.

Proof (sketch). The definer introduction is basically the stan-
dard structural transformation (polynomial). It uses Acker-
mann’s Lemma in the reverse direction to introduce definers.

4.2 Ackermann Rule
Let N be a set of TBox clauses in reduced form for the pivot
A ∈ sigC(N). By P+

F(A) and P−F(A) we denote the sets of
the clauses of the form C t A and C t ¬A, respectively. By
P+
≥ (A) and P−≥ (A) we denote the sets of the clauses of the

form Ct≥xR.A and Ct≥xR.¬A, respectively. By P+
≤ (A)

and P−≤ (A) we denote the sets of the clauses of the form C t
≤yR.¬A and C t ≤yR.A, respectively. We use P+(A) to
denote the union of the sets P+

F(A), P+
≥ (A) and P+

≤ (A) (the
positive premises). We use P−(A) to denote the union of the
sets P−F(A), P−≥ (A) and P−≤ (A) (the negative premises). We
use N−A to denote the set of the non-A-clauses in N .

The second step in our approach is to apply the Ackermann
rule, shown in Figure 1, toN to eliminateA. The Ackermann
rule is a replacement rule which replaces the clauses above
the line (the premises) by those under the line (the conclu-
sion). The idea is to combine the set of the positive premises
P+(A) with every negative premise α ∈ P−(A) (or to com-
bine the set of the negative premises P−(A) with every pos-
itive premise α ∈ P+(A)). The result of each combination
is a finite set of clauses that does not contain A, denoted by
BLOCK(P+(A), α) (or BLOCK(P−(A), α)). The conclu-
sion of the rule, which is the solution of forgettingA fromN ,
is the union of the blocks obtained from these combinations.
It is found that in some combination cases the result obtained
from combining P+(−)(A) with α is identical to the union of
the results obtained from combining respectively P+(−)

F (A),

P+(−)
≥ (A) and P+(−)

≤ (A) with α. Thus, for clarity’s sake, we
split such combinations into separate cases in the presentation
of the Ackermann rule. For different premises, the combina-
tion is performed as nine different cases (see Fig. 1). Sound-
ness of the rule follows from the following two lemmas.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1987

N−A,

P+
F(A)︷ ︸︸ ︷

C1 t A, . . . , Cl t A,

P+
≥(A)︷ ︸︸ ︷

D1 t ≥w1Q1.A, . . . , Dm t ≥wmQm.A,

P+
≤(A)︷ ︸︸ ︷

E1 t ≤x1R1.¬A, . . . , En t ≤xnRn.¬A
P−F (A)︷ ︸︸ ︷

F1 t ¬A, . . . , Fl′ t ¬A,

P−≥ (A)︷ ︸︸ ︷
G1 t ≥y1S1.¬A, . . . , Gm′ t ≥ym′Sm′ .¬A,

P−≤ (A)︷ ︸︸ ︷
H1 t ≤z1T1.A, . . . , Hn′ t ≤zn′Tn′ .A

N−A,BLOCK(P+
F(A),P−F (A)),BLOCK(P+

F(A), G1 t ≥y1S1.¬A), ...,BLOCK(P+
F(A), Gm′ t ≥ym′Sm′ .¬A),

BLOCK(P+
F(A), H1 t ≤z1T1.A), ...,BLOCK(P+

F(A), Hn′ t ≤zn′Tn′ .A),BLOCK(P−(A), D1 t ≥w1Q1.A), . . . ,
BLOCK(P−(A), Dm t ≥wmQm.A),BLOCK(P−(A), E1 t ≤x1R1.¬A), ...,BLOCK(P−(A), En t ≤xnRn.¬A)

Notation in the Ackermann rule (1 ≤ j ≤ m, 1 ≤ k ≤ n, 1 ≤ j′ ≤ m′, 1 ≤ k′ ≤ n′):
BLOCK(P−(A), α) = BLOCK(P−F (A), α) ∪ BLOCK(P−≥ (A), α) ∪ BLOCK(P−≤ (A), α), where α ∈ P+

≥(A) ∪ P
+
≤(A)

CASE 1: BLOCK(P+
F(A),P−F (A)) denotes the set {C1 t (F1 u . . . u Fl′), . . . , Cl t (F1 u . . . u Fl′)}.

CASE 2: BLOCK(P+
F(A), Gj′ t ≥yj′Sj′ .¬A) denotes the set {Gj′ t ≥yj′Sj′ .(C1 u . . . u Cl)}.

CASE 3: BLOCK(P+
F(A), Hk′ t ≤zk′Tk′ .A} denotes the set {Hk′ t ≤zk′Tk′ .¬(C1 u . . . u Cl)}.

CASE 4: BLOCK(P−F (A), Dj t ≥wjQj .A) denotes the set {Dj t ≥wjQj .(F1 u . . . u Fl′)}.

CASE 5: BLOCK(P−F (A), Ek t ≤xkRk.¬A) denotes the set {Ek t ≤xkRk.¬(F1 u . . . u Fl′)}.

CASE 6: BLOCK(P−≥ (A), Dj t ≥wjQj .A) denotes the union of the following sets:

CASE 6: {Dj t ≥wjQj .>} and
⋃

1≤j′≤m′

{Gj′ t ≥yj′Sj′ .>} and
⋃

1≤j′≤m′

{Dj tGj′ t (wj + yj′)(Qj t Sj′).>}

CASE 7: BLOCK(P−≥ (A), Ek t ≤xkRk.¬A) denotes the union of the following sets:

CASE 7:
⋃

1≤j′≤m′

{Gj′ t ≥yj′Sj′ .>} and
⋃

1≤j′≤m′

{Gj′ t Ek t ≥(yj′ − xk)(Sj′ u ¬Rk).>} for any yj′ > xk

CASE 8: BLOCK(P−≤ (A), Dj t ≥wjQj .A) denotes the union of the following sets:

CASE 8: {Dj t ≥wjQj .>} and
⋃

1≤k′≤n′

{Dj tHk′ t ≥(wj − zk′)(Qj u ¬Tk′).>} for any wj > zk′

CASE 9: BLOCK(P−≤ (A), Ek t ≤xkRk.¬A) denotes the set
⋃

1≤k′≤n′

{Ek tHk′ t ≤(xk + zk′)(Rk u Tk′).>}

Figure 1: The Ackermann rule for eliminating A ∈ sigC(N) from a setN of TBox clauses in reduced form

Lemma 1. Cases 1, 2, 3, 4 and 5 in Figure 1 preserve equiv-
alence up to the interpretation of the pivot.

Proof. For Cases 1, 2, 3, 4 and 5, the idea of the combination
is analogous to that of Ackermann’s Lemma, where the pivot
is eliminated by computing the definition of the pivot from the
negative (positive) premises and substituting this definition
for the pivot in every positive (negative) premise.

The preservation of equivalence in Cases 6, 7, 8 and 9 is
open (because of the cases discussed in Section 3). We show
that the results in these cases are at least uniform interpolants.
Lemma 2. Cases 6, 7, 8 and 9 in Figure 1 preserve all logical
consequences up to the names in sigC(N)\F .

Proof (sketch). For space reasons, we only prove Case 8. The
other cases can be proved similarly. {Dj t ≥wjQj .>} fol-
lows directly from the premises. Assume a domain element
has minimally x R-successors satisfying A and maximally y
S-successors satisfying A, then, if x > y, it has minimally
x − y R- and ¬S-successors satisfying A or ¬A (>). Thus,
{Dj tHk′ t ≥(wj − zk′)(Qj u ¬Tk′).>} holds.

Two special cases are that: A occurs (i) only positively, or
(ii) only negatively, in N . Then A is said to be pure in N
(impure, otherwise). In Case (i), the solution of forgetting A
from N is computed by substituting > for every occurrence
of A in N , and in Case (ii), the solution is computed by sub-
stituting ⊥ for every occurrence of A in N . This is referred
to as the purification, which preserves equivalence up to the
interpretations of the pivot [Zhao and Schmidt, 2016].

5 The Forgetting Method
The input to the method are a set cls set of TBox clauses and
a set f sig of concept names to be forgotten. Our method per-
forms purification first (on the entire clause set), because pu-
rification often results in numerous redundancies, tautologies
and contradictions inside the clauses, which are immediately
simplified or eliminated thereby leading to a much reduced
clause set. This makes subsequent forgetting less difficult. A
notable feature of the method is that impure names are elim-
inated in a local manner, that is, a concept name A ∈ f sig
is eliminated from only the A-clauses, rather than the entire

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1988

clause set. This significantly reduces the search space. In this
way, the method eliminates the concept names in f sig one by
one. Once all these concept names have been eliminated, the
method attempts to eliminate the introduced definers to com-
pute the forgetting solution. Yet the definer elimination is not
always successful; it may fail when the original concept for-
getting involves cyclic dependencies. For example, forgetting
the concept name {A} from {¬At∃r.A} yields {¬Dt∃r.D},
where D ∈ ND is a fresh definer. Observe that the clause in
the resulting set has the same pattern with the one in the given
set. Thus, eliminating the definer {D} from {¬D t ∃r.D}
would, as one can expect, yield another ‘same pattern’ clause.
This problem can be solved using fixpoints [Koopmann and
Schmidt, 2013b], with which in the target language we may
even make our method complete. However, since at present
mainstream tools do not support fixpoints, we do not include
them for practicality of the method. What the method returns
as output are a finite set cls set of TBox clauses. If cls set
does not contain any names in f sig or any introduced defin-
ers, then the method was successful. The following theorem
states termination and soundness of the method.
Theorem 3. For any ALCOQ(¬,u,t)-ontology O and any
forgetting signature F ⊆ sigC(O), our method always termi-
nates and returns a finite set O′ of TBox clauses. If O′ does
not contain any names in F or any introduced definers, then
O′ is either a semantic solution of forgetting F from O, or a
uniform interpolant of O for the signature sigC(N)\F .
Theorem 4. Given an ALCOQ(¬,u,t)-ontology O and a
forgetting signature F ⊆ sigC(O), our method is guaranteed
to compute a semantic solution of forgetting F from O if the
following conditions hold for eachA ∈ F : (i)O is an acyclic
TBox w.r.t. the names in F (including internalised ABox ax-
ioms), and (ii) A does not occur positively (negatively) under
a ≥-restriction and a ≤-restriction.
Proof (sketch). Condition (i) ensures all definers can be elim-
inated fromO. Condition (ii) means in the reduced form ofO
for any A ∈ F , P+

≥ (A) = ∅ and P+
≤ (A) = ∅, or P−≥ (A) = ∅

and P−≤ (A) = ∅. This avoids Cases 6, 7, 8 and 9.

6 Evaluation and Empirical Results
In order to gain insight into the practicality of our forgetting
method, we implemented a prototype in Java using the OWL
API2 and evaluated it on a corpus of biomedical ontologies.
The corpus was based on a snapshot of the BioPortal repos-
itory taken in March 2017 [Matentzoglu and Parsia, 2017],
containing 396 OWL API compatible ontologies.

Because the ontologies in the snapshot can be as expressive
as SHOIN (D) and SROIQ(D), we adjusted the selected
ontologies to the language ofALCOQ(¬,u,t) using simple
simulations and replacements, e.g., an exact number restric-
tion =1r.C was simulated by≥1r.C u ≤1r.C and concepts
not expressible inALCOQ(¬,u,t) were replaced by>. Ta-
ble 1 shows statistical information about the adjusted ontolo-
gies, where #(O) denotes the numbers of axioms in the on-
tologies, and #sigC(O), #sigR(O) and #sigI(O) denote re-
spectively the numbers of the concept names, role names and

2https://github.com/owlcs/owlapi

Max. Min. Mean Mdn. 90th Ptl.
#(O) 1.8M 100 4.6K 1.1K 12.6K

#sigC(O) 847.8K 36 2.1K 502 5.6K
#sigR(O) 1.4K 0 54 12 144
#sigI(O) 87.9K 0 216 0 206

Mdn.: Median, 90th Pct.: 90th Percentile

Table 1: Statistics of adjusted ontologies used for our evaluation

Settings Results (unit of time: second)
Forget % Time T.O. S. Rate ND S. Sol.

10% 3.131 1.3% 96.2% 2.5% 25.0%
30% 8.995 4.0% 89.7% 6.3% 8.8%
50% 14.213 7.5% 85.2% 8.8% 5.8%
Avg. 8.780 4.3% 90.4% 5.9% 13.2%

T.O.: Timeout, S. Rate: Success Rate, S. Sol.: Semantic Solution

Table 2: Results of forgetting 10%, 30% and 50% of concept names

individual names in the ontologies. It was found that 38.9%
of the test ontologies included ABoxes (154 out of 396).

To fit in with different real-world application scenarios, we
evaluated the performance of the prototype for forgetting dif-
ferent numbers of concept names from each test ontology. In
particular, we considered respectively the cases of forgetting
10%, 30% and 50% of concept names in the signature of each
ontology. The names to be forgotten were randomly selected.
The experiments were conducted on a desktop computer with
an Intelr CoreTM i7-4790 processor, four cores running at up
to 3.60 GHz, and 8 GB of DDR3-1600 MHz RAM. The ex-
periments were run 100 times on each ontology and we aver-
aged the results in order to verify the accuracy of our findings.
A timeout of 1000 seconds was imposed on each run.

The results are shown in Table 2. The most encouraging re-
sults are that on average: (i) the prototype was successful (i.e.,
eliminated all specified concept names and the introduced de-
finers) in more than 90% of the test cases, and (ii) in most of
these cases forgetting solutions were computed within 10 sec-
onds. The column headed T.O. shows the percentages of the
test cases where the solutions could not be computed within
the timeout. The column headed ND shows the percentages
of the test cases where the definers could not be all eliminated
from the results. The column headed S. Sol. shows the per-
centages of the test cases where the solution was a semantic
solution; in 13.2% of the successful cases, the solution was a
semantic solution and it was a uniform interpolant in the other
cases. An important finding, which is not shown in the table,
is that role constructs (¬, u and t) occurred in the forgetting
solutions in 32% of the test cases.

7 Conclusions
In this paper, we developed an Ackermann-based method for
computing solutions of concept forgetting in the description
logic ALCOQ(¬,u,t). When it succeeds, the method out-
puts either a semantic solution of concept forgetting or a uni-
form interpolant in ALCOQ(¬,u,t). An evaluation with a
prototype has shown that the method is practical and semantic
solutions of concept forgetting are rare forALCOQ(¬,u,t).

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1989

References
[Ackermann, 1935] W. Ackermann. Untersuchungen über das

Eliminationsproblem der mathematischen Logik. Mathematische
Annalen, 110(1):390–413, 1935.

[Bicarregui et al., 2001] J. Bicarregui, T. Dimitrakos, D. M. Gab-
bay, and T. S. E. Maibaum. Interpolation in practical formal de-
velopment. Logic Journal of the IGPL, 9(2):231–244, 2001.

[Botoeva et al., 2016] E. Botoeva, B. Konev, C. Lutz, V. Ryzhikov,
F. Wolter, and M. Zakharyaschev. Inseparability and conservative
extensions of description logic ontologies: A survey. In Proc.
RW’14, volume 9885 of LNCS, pages 27–89. Springer, 2016.

[Doherty et al., 1997] P. Doherty, W. Lukaszewicz, and A. Szalas.
Computing circumscription revisited: A reduction algorithm. J.
Autom. Reasoning, 18(3):297–336, 1997.

[Gabbay and Ohlbach, 1992] D. M. Gabbay and H. J. Ohlbach.
Quantifier elimination in second-order predicate logic. In Proc.
KR’92, pages 425–435. Morgan Kaufmann, 1992.

[Gabbay et al., 2008] D. M. Gabbay, R. A. Schmidt, and A. Szałas.
Second-Order Quantifier Elimination. College Publi., 2008.

[Ghilardi et al., 2006] S. Ghilardi, C. Lutz, and F. Wolter. Did i
damage my ontology? A case for conservative extensions in de-
scription logics. In Proc. KR’06, pages 187–197. AAAI Press,
2006.

[Grädel et al., 1997] E. Grädel, M. Otto, and E. Rosen. Two-
variable logic with counting is decidable. In Proc. LICS’97,
pages 306–317. IEEE Computer Society, 1997.

[Grau and Motik, 2012] B. C. Grau and B. Motik. Reasoning over
ontologies with hidden content: The import-by-query approach.
J. Artif. Intell. Res., 45:197–255, 2012.

[Konev et al., 2008] B. Konev, D. Walther, and F. Wolter. The
logical difference problem for description logic terminologies.
In Proc. IJCAR’08, volume 5195 of LNCS, pages 259–274.
Springer, 2008.

[Konev et al., 2009] B. Konev, D. Walther, and F. Wolter. Forget-
ting and uniform interpolation in large-scale description logic
terminologies. In Proc. IJCAI’09, pages 830–835. IJCAI/AAAI
Press, 2009.

[Konev et al., 2013] B. Konev, C. Lutz, D. Walther, and F. Wolter.
Model-theoretic inseparability and modularity of description
logic ontologies. Artif. Intell., 203:66–103, 2013.

[Koopmann and Schmidt, 2013a] P. Koopmann and R. A. Schmidt.
Forgetting concept and role symbols in ALCH-ontologies. In
Proc. LPAR’13, volume 8312 of LNCS, pages 552–567. Springer,
2013.

[Koopmann and Schmidt, 2013b] P. Koopmann and R. A. Schmidt.
Uniform interpolation of ALC-ontologies using fixpoints. In
Proc. FroCoS’13, volume 8152 of LNCS, pages 87–102.
Springer, 2013.

[Koopmann and Schmidt, 2014] P. Koopmann and R. A. Schmidt.
Count and forget: Uniform interpolation of SHQ-ontologies.
In Proc. IJCAR’14, volume 8562 of LNCS, pages 434–448.
Springer, 2014.

[Koopmann and Schmidt, 2015a] P. Koopmann and R. A. Schmidt.
Saturated-based forgetting in the description logic SIF . In Proc.
DL’15, volume 1350 of CEUR Workshop Proceedings, 2015.

[Koopmann and Schmidt, 2015b] P. Koopmann and R. A. Schmidt.
Uniform interpolation and forgetting for ALC ontologies with
aboxes. In Proc. AAAI’15, pages 175–181. AAAI Press, 2015.

[Koopmann, 2015] P. Koopmann. Practical Uniform Interpolation
for expressive Description Logics. PhD thesis, The University of
Manchester, UK, 2015.

[Lang et al., 2003] J. Lang, P. Liberatore, and P. Marquis. Proposi-
tional independence: Formula-variable independence and forget-
ting. J. Artif. Intell. Res., 18:391–443, 2003.

[Lin and Reiter, 1994] F. Lin and R. Reiter. Forget It! In Proc.
AAAI Fall Symposium on Relevance, pages 154–159. AAAI
Press, 1994.

[Ludwig and Konev, 2014] M. Ludwig and B. Konev. Practical uni-
form interpolation and forgetting for ALC TBoxes with applica-
tions to logical difference. In Proc. KR’14, pages 318–327. AAAI
Press, 2014.

[Lutz and Wolter, 2010] C. Lutz and F. Wolter. Deciding insepara-
bility and conservative extensions in the description logic EL. J.
Symb. Comput., 45(2):194–228, 2010.

[Lutz and Wolter, 2011] C. Lutz and F. Wolter. Foundations for uni-
form interpolation and forgetting in expressive description logics.
In Proc. IJCAI’11, pages 989–995. IJCAI/AAAI Press, 2011.

[Lutz et al., 2007] C. Lutz, D. Walther, and F. Wolter. Conservative
extensions in expressive description logics. In Proc. IJCAI’07,
pages 453–458, 2007.

[Lutz et al., 2012] C. Lutz, I. Seylan, and F. Wolter. An automata-
theoretic approach to uniform interpolation and approximation in
the description logic EL. In Proc. KR’12. AAAI Press, 2012.

[Matentzoglu and Parsia, 2017] N. Matentzoglu and B. Parsia. Bio-
Portal Snapshot 30.03.2017, March 2017.

[Nikitina and Rudolph, 2014] N. Nikitina and S. Rudolph. (Non-
)Succinctness of uniform interpolants of general terminologies in
the description logic EL. Artif. Intell., 215:120–140, 2014.

[Schmidt, 2012] R. A. Schmidt. The Ackermann approach for
modal logic, correspondence theory and second-order reduction.
J. Applied Logic, 10(1):52–74, 2012.

[Szałas, 2006] A. Szałas. Second-order reasoning in description
logics. Journal of Applied Non-Classical Logics, 16(3-4):517–
530, 2006.

[Visser, 1996] A. Visser. Bisimulations, Model Descriptions and
Propositional Quantifiers. Logic Group Preprint Series. Depart-
ment of Philosophy, Utrecht Univ., 1996.

[Wang et al., 2014] K. Wang, Z. Wang, R. W. Topor, J. Z. Pan,
and G. Antoniou. Eliminating concepts and roles from ontolo-
gies in expressive descriptive logics. Computational Intelligence,
30(2):205–232, 2014.

[Wernhard, 2013] C. Wernhard. Abduction in logic programming
as second-order quantifier elimination. In Proc. FroCoS’13, vol-
ume 8152 of LNCS, pages 103–119. Springer, 2013.

[Zhang and Zhou, 2010] Y. Zhang and Y. Zhou. Forgetting Revis-
ited. In Proc. KR’10, pages 602–604. AAAI Press, 2010.

[Zhao and Schmidt, 2015] Y. Zhao and R. A. Schmidt. Concept for-
getting inALCOI-ontologies using an Ackermann approach. In
Proc. ISWC’15, volume 9366 of LNCS, pages 587–602. Springer,
2015.

[Zhao and Schmidt, 2016] Y. Zhao and R. A. Schmidt. Forgetting
concept and role symbols in ALCOIHµ+(O,u) ontologies. In
Proc. IJCAI’16, pages 1345–1352. IJCAI/AAAI Press, 2016.

[Zhao and Schmidt, 2017] Y. Zhao and R. A. Schmidt. Role forget-
ting for ALCOQH(O)-ontologies using an Ackermann-based
approach. In Proc. IJCAI’17, pages 1354–1361. IJCAI/AAAI
Press, 2017.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1990

