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Abstract
We introduce the problem of learning SMT(LRA)
constraints from data. SMT(LRA) extends propo-
sitional logic with (in)equalities between numeri-
cal variables. Many relevant formal verification
problems can be cast as SMT(LRA) instances and
SMT(LRA) has supported recent developments
in optimization and counting for hybrid Boolean
and numerical domains. We introduce SMT(LRA)
learning, the task of learning SMT(LRA) formulas
from examples of feasible and infeasible instances,
and we contribute INCAL, an exact non-greedy al-
gorithm for this setting. Our approach encodes the
learning task itself as an SMT(LRA) satisfiability
problem that can be solved directly by SMT solvers.
INCAL is an incremental algorithm that achieves
exact learning by looking only at a small subset of
the data, leading to significant speed-ups. We em-
pirically evaluate our approach on both synthetic
instances and benchmark problems taken from the
SMT-LIB benchmarks repository.

1 Introduction
Many modelling problems involve dealing with Boolean and
numerical variables. In order to reason in these setting, re-
searchers developed Satisfiability Modulo Linear Real Arith-
metic (SMT(LRA)), a formalism that combines propositional
logic with linear arithmetical expressions (inequalities, sums,
products) over continuous variables [Barrett et al., 2009].
Thanks to its flexibility and the availability of very efficient
satisfiability solvers, like Z3 [De Moura and Bjørner, 2008]
and MathSAT [Cimatti et al., 2013], SMT(LRA) has found
application in industrial tasks like hardware and software veri-
fication [Beyer et al., 2009], as well as engineering of chemical
reactions [Fagerberg et al., 2012] and synthetic biology [Yor-
danov et al., 2013]. SMT(LRA) has also contributed to recent
developments in optimization and counting for hybrid Boolean
and numerical domains, cf. Optimisation Modulo Theories
(OMT) [Sebastiani and Tomasi, 2015] and Weighted Model
Integration (WMI) [Belle et al., 2015].

Several approaches to learning logical formulas from exam-
ples such as concept learning [Valiant, 1984], inductive logic
programming [Muggleton and De Raedt, 1994], and constraint

learning [Bessiere et al., 2005] are described in the literature.
However, these approaches have typically focused on discrete
logical variables. The success of SMT(LRA) shows that hy-
brid constraints can be very useful in practice. Yet deriving
such models by hand, certainly those involving the numeric
constraints, can be a daunting task. Applications like mod-
elling problems in operations research [Pawlak and Krawiec,
2017], programming from examples [Gulwani et al., 2011], de-
signing layouts from incomplete specifications [Harada et al.,
1995] and other complex architectures such as cyber-physical
systems [Lee, 2008] all suffer from this issue. In all these
cases, examples of feasible/infeasible configurations can be
readily extracted from existing architectures (viewed as black-
boxes) or obtained by interacting with annotators. That is why
we propose to automate this task through the use of machine
learning techniques. To the best of the authors’ knowledge,
the learning of SMT(LRA) formulas has not been considered
yet.

Our first contribution is the introduction of the novel prob-
lem of SMT(LRA) learning, that is, the problem of inducing
SMT(LRA) formulas from examples of feasible and infeasi-
ble assignments.

Our second contribution is a non-greedy algorithm for
SMT(LRA) learning, called INCAL. The proposed approach
induces formulas in CNF normal form, that is, conjunctions
of clauses (disjunctions) over Boolean literals and linear in-
equalities. This requires to jointly identify the logical struc-
ture of the formula and the parameters of the inequalities
appearing in it. Being non-greedy, INCAL does not need the
candidate inequalities to be enumerated beforehand. Further,
post-processing of the learned formula is not necessary: the
learned CNF formula can be fed directly to any SMT solver.

In INCAL, the SMT(LRA) learning problem is encoded
into an equivalent SMT(LRA) satisfaction problem. Given
parameters specifying the maximum complexity (the num-
ber of terms and hyperplanes) of the candidate formula, the
INCAL encoding is always guaranteed to find a solution if
one exists. Despite being NP-complete in general, SMT sat-
isfiability can be solved in practice very efficiently for many
real-world problems using off-the-shelf solvers. Rather than
fitting the formula on the entire dataset, INCAL employs a
much faster incremental learning strategy. An initial candidate
is learned from a handful of “active” examples. New examples
inconsistent with the current candidate are added to the active
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set until a formula consistent with all the data is found. The ac-
tive set is usually small. This speeds up learning considerably,
as shown by our experiments. Finally, since the complexity
of the target formula may be difficult to estimate beforehand,
especially if the user is not a domain expert, INCAL includes
a simple search loop to automatically detect large enough val-
ues. The strategy gradually increases the formula complexity,
exploiting the fact that too simple formulas can be identified
and discarded very quickly.

We implemented INCAL and evaluated it empirically on
both synthetic instances of increasing complexity and in-
stances taken from the SMT-LIB benchmark repository [Bar-
rett et al., 2010]. Our results show that our method is able
to quickly find accurate theories and that the incremental ap-
proach substantially reduces the number of examples used.

2 Background
We will now briefly review concepts from logic and satisfiabil-
ity used in our work. Propositional logic formulas consist of
literals, i.e., Boolean variables and their negations, and logical
connectives, e.g., a ∧ (b ∨ ¬c). Any logical formula can be
rewritten such that it adheres to a normal form, such as the
conjunctive (CNF) or disjunctive normal form (DNF). CNF
formulas consist of a conjunction of disjunctions of literals,
while DNF formulas consist of a disjunction of conjunctions of
literals. We use k-clause-CNF to denote the class of CNF for-
mulas that have k clauses, i.e., a formula that is a conjunction
of k disjunctions. Analogously, k-term-DNF is used to refer
to formulas which consist of a disjunction of k conjunctions.
Example 1. Consider the two formulas:

φ1 = (a ∨ ¬b) ∧ (∨a ∨ b ∨ ¬c)
φ2 = (¬a ∧ b) ∨ (c) ∨ (a ∧ ¬c)

then φ1 is a 2-clause-CNF formula, and φ2 is a 3-term-DNF
formula.

Satisfiability (SAT) is the problem of deciding whether there
exists an assignments of truth values to variables such that
a propositional logical formula φ is satisfied. Such an as-
signment is also called a model of φ. Satisfiability Modulo
Theories (SMT) generalizes SAT to deciding satisfiability for
formulas with respect to a decidable background theory [Bar-
rett et al., 2009]. In this work we consider the background
theory of Linear Real Arithmetic (LRA), which restricts inter-
pretations of numbers and operators (inequalities, sum, prod-
uct) to their semantics in linear arithmetic. Slighlty abusing
terminology, in this work we refer to SMT(LRA) formulas
simply as SMT formulas.
Example 2. Consider an autonomous vacuum cleaner charac-
terized by a Boolean variable extended (i.e., is it in extended
mode?) and real variable battery (i.e., the remaining battery
percentage) and distance (i.e., distance towards base station
in m). Consider two constraints: 1) the vacuum cleaner is
range limited to 15m if not in extended mode; and 2) the
battery level discounted by the weighted distance of the vac-
uum cleaner must remain above 10%. The conjunction of
these constraints can be expressed as an SMT formula φ∗ =
(extended∨distance ≤ 15)∧battery−0.01·distance ≥ 0.1.

Although SMT, just like SAT, is NP-complete, large in-
stances can be solved efficiently in practice by state-of-the-art
SMT solvers like Z3 [De Moura and Bjørner, 2008] and Math-
SAT [Cimatti et al., 2013].

SMT also forms the basis for different types of inference
besides satisfiability: Optimization Modulo Theories (OMT)
and Weighted Model Integration (WMI). OMT [Sebastiani
and Tomasi, 2015] refers to the problem of finding a model
for an SMT formula φ that is optimal w.r.t. an objective
function f . WMI [Belle et al., 2015] generalizes Weighted
Model Counting [Chavira and Darwiche, 2008] by integrating
over the (possibly infinite) models of an SMT formula.

3 Problem Statement
Given a set of examples labeled each as positive (feasible)
or negative (infeasible) according to an unknown SMT for-
mula φ∗, our goal is to learn φ∗ from the examples and their
labels. Every example e = (xe, ye) consists of a total assign-
ment xe of values to variables in the problem domain and a
label ye = Jxe |= φ∗K, i.e., it is true (>) if the assignment
satisfies the formula φ∗ and false (⊥) otherwise. Given an
assignment xe = {v1 = value1, ..., vn = valuen}, the value
assigned to variable vj is denoted as xe[vj ].
Example 3. Consider the SMT formula φ∗ of Example 2. A
learning algorithm can now learn φ∗ from examples of feasi-
ble and infeasible instances, such as:
({extended = >, battery = 0.8, distance = 40.2},>),
({extended = >, battery = 0.2, distance = 12},⊥) and
({extended = ⊥, battery = 0.7, distance = 20.3},⊥).

In order to define the search space of potential constraints,
we fix the form that a learned theory must adhere to using
a bias. The bias imposes a hypothesis space Φ of candidate
formulas. As SMT(LRA) is typically formalized in terms
of CNF formulas, and solvers also employ this format, we
focus on the learning of such formulas. Every clause in the
formula then constitutes a constraint. More specifically, our
bias is k-clause-CNF, i.e., CNF formulas that contain at most
k clauses.
Definition 1. A k-clause-CNF SMT(LRA) formula φ is of
the form

∧
k Ck, where Ck = L1∨ ...∨Lnk

and literals Li are
either a Boolean variable b, a linear inequality

∑
j aj · xj ≤ b,

or the negation of a Boolean variable or inequality.
Note that the feasible area of a linear program (i.e. Ax ≤ b)

is a special case of k-clause-CNF with k = rows(A), no
Boolean variables and clauses of length 1.

We, additionally, impose an upper limit on the number of
inequalities (halfspaces) h that may be used in the formula
and require the real variables to be bounded (by arbitrary
constants). Subsequently, we will denote the class of k-clause-
CNF formulas with at most h inequalities as CNF(k, h). For-
mally, our goal can now be formulated as follows:

SMT(LRA) Learning. Given a set V of Boolean and
bounded real variables, a set of examples E over V labeled
according to an unknown SMT formula φ∗, and a bias-induced
hypothesis space Φ, find an SMT formula φ ∈ Φ such that all
positive examples are satisfied and none of the negatives is.
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Following the framework of concept learning, we assume
that labels are noiseless and that there exists a solution to
the learning problem. This setup is relevant for practical ap-
plications where label noise is unlikely, e.g., monitoring of
manifacturing processes [Monostori et al., 1996]. Neverthe-
less, this setting can be extended to take into account other
criteria (such as allowing for exceptions or for the best solu-
tion w.r.t. a loss function). As SMT(LRA) learning is viewed
here as a classification problem, all standard evaluation crite-
ria and techniques apply. For the purpose of evaluating the
learning method on synthetic data where the target formula φ∗
is known, one can define the misclassification error of the
learned formula φ w.r.t. φ∗ as the probability that an arbitrary
example is incorrectly classified1.

4 SMT(LRA) Learning with INCAL
We start by discussing the case where the maximal number
of clauses k and halfspaces h are given and fixed. In this
setting, the problem we aim to solve is to find a formula φ ∈
CNF(k, h)that is satisfied by all positive and none of the
negative examples. Such a formula is guaranteed to exist so
long as h and k are large enough and the labels are noiseless.
Appropriate values of k and h can be either provided by the
user or computed automatically using the strategy discussed in
Section 4.3. By encoding this search problem itself as an SMT
problem we can use any off-the-shelf SMT(LRA) solver (e.g.,
MathSAT [Cimatti et al., 2013], Z3 [De Moura and Bjørner,
2008]) to find a satisfying assignment from which we can read
off φ. The exact encoding of this problem is described in the
next section.

We stress that in contrast to most rule learning approaches,
this approach is non-greedy, i.e., the formula is learned in one
step rather than piece-by-piece. However, contrary to other
non-greedy learners, the no-noise assumption enables us to
cast learning as satisfiability rather than optimization (as done,
for example, in OCT [Bertsimas and Dunn, 2017]). Searching
for a satisfying formula is usually faster than searching for an
optimal one in practice.

Note that, even though the learned formula φ fits all ex-
amples, the latter might still have non-zero misclassification
loss w.r.t φ∗. We evaluate this potential discrepancy in our
empirical analysis.

4.1 Encoding
The candidate formula φ ∈ CNF(k, h) has k clauses and h
halfspaces over bounded real variables. Clauses have variable
length, i.e., each Boolean and halfspace literal (and its nega-
tion) can appear in any clause, meaning that the maximum
clause length is 2(|B| + h). The assignment of literals to
clauses is determined by two sets of decision variables. We
employ 2(|B| × k) variables lcv and l̂cv to encode whether
Boolean variable v or its negation appear in clause c, respec-
tively. Similarly, we use 2(h × k) variables zcj and ẑcj for
assigning the halfspace literals. The coefficients ajv ∈ R and
offsets bj ∈ R of all halfspaces are not fixed beforehand: they
are determined by the SMT solver along with all the other

1Note that Weighted Model Integration [Belle et al., 2015] could
be used to calculate this probability exactly.

Name Meaning
Constants (given)

R The set of real variables
B The set of Boolean variables

k ∈ N The number of clauses
h ∈ N The number of inequalities (halfspaces)
xe[v] The value assigned to variable v in example e

ye ∈ B The Boolean label of example e
Decision variables (determined by the solver)

ajv ∈ R Coefficient of (real) variable v in inequality j
bj ∈ R Offset of inequality j
zcj ∈ B Clause c includes inequality j
ẑcj ∈ B Clause c includes negated inequality j
lcv ∈ B Clause c includes (Boolean) variable v

l̂cv ∈ B Clause c includes negated (Boolean) variable v
Auxiliary variables (determined by the solver)

sej ∈ B Example e satisfies inequality j
tec ∈ B Example e satisfies clause c

Table 1: Symbols used in the SMT(LRA) learning encoding

decision variables. Table 1 summarizes the symbols used in
the SMT encoding.

The examples are encoded individually using three con-
straints 2. The first constraint defines sej , i.e., whether ex-
ample e satisfies inequality j, which is characterized by its
coefficients (ajv) and offset (bj):∧

j=1..h sej ⇔
∑

v∈R ajv · xe[v] ≤ bj (1)

The second constraint defines tec, i.e., whether example e
satisfies clause c. Since CNF clauses are disjunctions, an
example satisfies c iff it satisfies at least one of the (negated)
inequalities or (negated) Boolean variables included in c:

∧
c=1..k

[
tec ⇔

 ∨
j∈1..h

((zcj ∧ sej) ∨ (ẑcj ∧ ¬sej)) (2)

∨
∨
v∈B

((lcv ∧ xe[v]) ∨ (l̂cv ∧ ¬xe[v]))

)]
Finally, since a CNF formula consists of a conjunction

of clauses, the third constraint dictates that positive examples
must satisfy every clause while negative examples must violate
at least one of the clauses:

ye ⇔
∧

c∈1..k tec (3)

Given a set of examples E and the example-wise encoding
(summarized in Fig. 1) we can encode the full SMT(LRA)
learning problem as follows:∧

e∈E encoding(e) (4)

This encoding enables a straightforward algorithm for solv-
ing the SMT(LRA) learning problem that constructs the en-
coding from a set of examples and passes the encoding to an
SMT solver and reads off the solution, i.e., a valid assignment
to all decision- and auxiliary variables (see Table 1), if it exists.

2The auxiliary constraints specifying the range of the real vari-
ables are left implicit, due to space limitations.
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encoding(e) =∧
j=1..h sej ⇔

∑
v∈R ajv · xe[v] ≤ bj (1)

∧

∧
c=1..k

(tec ⇔ (
∨

j∈1..h

((zcj ∧ sej) ∨ (ẑcj ∧ ¬sej))

∨
∨
v∈B

((lcv ∧ xe[v]) ∨ (l̂cv ∧ ¬xe[v]))))
(2)

∧ ye ⇔
∧

c∈1..k tec (3)

Figure 1: Encoding the CNF(k, h) SMT(LRA) learning problem
for one example

a1,x1 = 0.2 a1,x2 = 0.4 b1 = 1.0
a2,x1 = 0.3 a2,x2 = 0.0 b2 = 0.5
z1,1 = > z1,2 = ⊥ z2,1 = > z2,2 = ⊥
ẑ1,1 = ⊥ ẑ1,2 = ⊥ ẑ2,1 = ⊥ ẑ2,2 = >
l1,b1 = ⊥ l2,b1 = > l̂1,b1 = > l̂1,b1 = ⊥

Table 2: Example assignment A

Example 4. Consider k = 2, h = 2, R = {x1, x2}, B =
{b1} and an assignment to the decision variables A (Table 2),
thenA encodes the formula φ = (0.2x1+0.4x2 ≤ 1∨0.3x1 ≤
0.5 ∨ ¬b1) ∧ (0.2x1 + 0.4x2 ≤ 1 ∨ 0.3x1 > 0.5 ∨ b1).

We note in passing that our encoding can be extended to
dealing with bounded integer variables and linear equalities.
Integers simply require to use integer arithmetic in place of
real arithmetic, at the cost of a potentially harder satisfiability
problem. Linear equalities can in principle be learned by alter-
ing Eq. 1 to include equality symbols along with inequalities.

4.2 Incremental Learning

Algorithm 1 Incremental SMT Constraint Learner (INCAL)
1: procedure LEARN(E: examples)
2: i← 0
3: Ei ← initial(E)
4: while |Ei| > 0 do
5: solver .add(

∧
e∈Ei

encoding(e))
6: φi ← solver .solve()
7: if φi exists then . solver does not return unsat
8: Vi ← {e ∈ E | ye 6= Jxe |= φiK}
9: Ei+1 = selection(Vi)

10: i← i+ 1
11: else
12: return unsat
13: return φi

The number of variables and constraints in the SMT encod-
ing of the learning problem depend directly on the number
of examples. Using fewer examples simplifies the learning
task, although the learned constraints might be inaccurate.
Adding many examples leads to better constraints, however,
it can come at a steep computational cost, as solving SMT
problems is NP-complete. Therefore, we have designed and

implemented a learning algorithm that tries to prune useless
examples by exploiting incremental SMT solving: the incre-
mental SMT constraint learner (INCAL).

The idea is that INCAL is given a large set of examples E,
however, instead of building one large encoding for all of them,
it selects a small subset of examples, learns an SMT formula
for this subset and repeatedly extends that subset with some of
the examples violated by the last learned formula (Alg. 1). Ev-
ery time examples are added, their encoded SMT constraints
are added (pushed) to the SMT solver such that the solver will
always return a solution (formula) that violates none of the
added examples. Solvers that support incremental solving will
retain information between runs, such that they can solve the
next iteration faster. Typically, INCAL will find a solution
that is satisfied by all examples E after having added but a
small subset of E to the solver, as shown by our empirical
evaluation.

Different strategies can be used for the initial selection
(initial, line 3) and the selection of violated examples
(selection, line 9). A simple but effective strategy is to, given
a set of examples to select from, return a fixed-size random
subset of those examples. This approach works well in prac-
tice, however, heuristic strategies could be used to identify
points that are more likely to influence the learned formula.

Theorem 1. Given examples E, k and h, Alg. 1 will find a
formula φ ∈ CNF(k, h) that satisfies all positive examples
and none of the negatives, iff such a formula exists.

Proof. Sketch. At all steps i, either no φ ∈ CNF(k, h) can
correctly classify all examples in E1:i := E1 ∪ . . . ∪ Ei,
in which case the algorithm returns “unsat” (line 12) or φi
classifies them all correctly (line 6). Now, if there are examples
in E \E1:i that are inconsistent with φi (i.e. |Vi| > 0), then at
least one is added to Ei+1 and the algorithm continues (line 4).
Otherwise, φi is consistent with both E1:i and E \E1:i, whose
union is E, and terminates (line 4).

4.3 Parameter-free SMT(LRA) Learning
Until now it was assumed that the values of the parameters k
and hwere known. This assumption might not always be valid,
especially if the user of the learning system does not have any
knowledge about the domain. Too small values of k and h lead
to unsatisfiable encodings, while too large values may induce
formulas that are overly complex and more prone to overfitting.
Our goal, therefore, is to automatically choose minimal values
for k and h to allow learning formulas φ consistent with the
examples while avoiding both issues. To this end, we define a
complexity function C(k, h) on both k and h. Treating both
parameters as equal is achieved by using C(k, h) = k + h,
alternatively different weights can be used or one of the pa-
rameters can be constant. For INCAL we employ a bottom-up
search strategy that initializes (k, h) to their minimum values
(reasonable default values or (1, 0)) and explores configura-
tions (k, h) in order of increasing complexity C(k, h) until a
consistent model φ ∈ CNF(k, h) is found. Discarding infeasi-
ble configurations proves to be very fast in practice, especially
with our incremental approach.
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4.4 Learning Rules instead of Constraints
So far we have focused on learning constraints, i.e., learning
CNF formulas. CNF formulas allow for compact representa-
tions and are widely used in SMT solving [Barrett et al., 2009].
However, the algorithms and ideas described above can also
be used to learn rules, i.e., learning DNF formulas. Changing
our bias to DNF(k, h) (i.e., k-term-DNF with h inequalities),
only requires adapting constraints 2 and 3 of encoding(e).

Since for DNF problems every term is a conjunction, an
example is covered by a term c only if it satisfies all (negated)
inequalities and (negated) Boolean variables included in c and
the updated version of constraint 2 becomes:

∧
c=1..k

[
tec ⇔

 ∧
j∈1..h

((zcj ⇒ sej) ∧ (ẑcj ⇒ ¬sej)) (5)

∧
∧
v∈B

((lcv ⇒ xe[v]) ∧ (l̂cv ⇒ ¬xe[v]))

)]
Additionally, since DNF problems consist of a top level dis-

junction, positive examples must only satisfy at least one term,
while negative examples must not satisfy any term, which is
reflected in the updated version of constraint 3:

ye ⇔
∨

c∈1..k tec (6)

Using the updated encoding, INCAL can now be used to
learn DNF formulas incrementally. In fact, any bias that can be
expressed by encoding examples individually, can be plugged
into INCAL.

5 Evaluation
We experimentally evaluate the accuracy and performance
of our approach to investigate its sensitivity w.r.t. different
inputs, parameters and strategies using synthetic and real-
world problems. For this evaluation we use, for every prob-
lem, random examples for learning and (different) random
examples for computing the accuracy. To obtain an exam-
ple, we sample assignments uniformly from the domains of
a problems variables and obtain the label by computing if
the assignment satisfies the target theory. Our experimental
setup uses MathSAT as SMT solver, and can be found at:
https://smtlearning.github.io.

Every synthetic problem Pr,b,k,l,h consists of a randomly
generated CNF(k, h) formula where the number of real (r)
and Boolean variables (b), clauses (k), literals per terms (l),
and distinct inequalities (h) are fixed. The domains of the
real variables are set to [0, 1]. The synthetic problems are
generated by incrementally adding random literals and terms.
Only literals/terms whose addition changes the label of at least
p% of the assignments (with p = 5) are added, to guarantee
that the decision surface is non-trivial.

Real-world problems are obtained from the SMT-LIB bench-
mark repository. We selected a subset of problems that is both
interesting and feasible to learn. Interesting problems should
contain both conjunctions and disjunctions, and their support
w.r.t. to a random set of examples E should be at least 20%,
where the support is the ratio of the minority label within E.

Since the benchmark problems do not specify domains for
the variables, we search over various assignments of domains
to problems to find the one that brings the support closest to
50%.We identified instances as feasible if they have between
1 and 9 variables and a file size smaller than 1MB (in order
to discard very long formulas). 13 problem instances were
identified as both interesting and feasible, unfortunately many
benchmark instances are either non-interesting or non-feasible.

The research questions we want to answer are:
Q1 How accurate is our method?
Q2 How fast is our method?
Q3 Does incremental learning reduce the learning time?
Q4 How do the number of terms, literals, and inequalities

in φ∗ influence the learning algorithm?
Q5 How efficient is the parameter-free search?

5.1 Results
For learning a set of 1000 randomly sampled examples is used
and another set of 1000 random examples is used for mea-
suring accuracy. The speed is measured by summing up the
time taken by the incremental steps for the right parameters k
and h. For every setting evaluated using synthetic problems,
100 instances are generated and average results are shown. We
use a timeout of 200s per individual learning task.

Q1. How accurate is our method? On the SMT-LIB
benchmark problems we selected, our method obtained an
average accuracy of 0.997± 0.003, which shows that it is able
to accurately recover SMT formulas from data.

Q2. How fast is our method? On average, parameter free-
learning with equal weights for k and h took 1.05± 1.06s per
benchmark problem.

Q3. Does incremental learning reduce the learning time?
Our experiments on synthetic problems (P2,6,2,3,6) show
that INCAL is able to learn theories much faster (Fig. 2 top
left) than its non-incremental counterpart without losing any
accuracy (Fig. 2 bottom left). Learning from 1000 examples,
our incremental approach is already 5.6 times faster and it can
learn from 10000 examples without experiencing time-outs.
Meanwhile, the non-incremental version times times out on 23
problems for 2500 examples. The relative number of examples
included in the incremental encoding drops significantly as
more examples are provided to the learning algorithm (Fig. 3),
for 10000 examples INCAL uses on average 120 of them.

Q4. How do the number of terms, literals, and inequalities
in φ∗ influence the learning algorithm? The evaluation on
synthetic problems (P2,6,k,3,6, k = 1..5) shows that the num-
ber of terms k have little impact on the accuracy (it stays close
to 1) but significantly influences the running time. For values
of k above 4, the majority of learning problems time out (200s)
and would require more time to solve. Scaling the number of
literals per term (l) on a set of problems (P2,0,3,l,10, l = 1..5)
is shown not to have a significant impact on the accuracy
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Figure 2: The plots show accuracies (top row) and running times (bottom row) for increasing number of learning samples (left column), literals
per term (middle column) and inequalities (right column).

Figure 3: As more examples are provided for learning, the ratio of
examples that are actually encoded by INCAL drops.

of the learned theories (Fig. 2 top middle). The size of the
SMT encoding of the learning task is constant w.r.t. to l and
the influence on the running time is limited (Fig. 2 bottom
middle). Evaluation of the sensitivity w.r.t. the number of
inequalities (h) on synthetic problems (P2,0,2,3,h, h = 3..10)
shows that h has a negligible impact on the accuracy (Fig. 2
top right) and demonstrates that there is controlled increase in
running time (Fig. 2 bottom right).

Q5. How efficient is the parameter-free search? For this
evaluation on synthetic problems P2,6,3,3,6 we compare the
total time spent (total time) learning using the parameter-free
approach to the time spend on learning with the final config-
uration (k, h) (final time). Given the results of the previous
section, we chose a complexity function C(k, h) = 3 · k + h
that favors increasing h over k. Our results show that the aver-

age ratio final time
total time is 0.53±0.18, i.e., in the majority of cases the

learning time is dominated by learning the final configuration.

6 Related Work
Learning of Boolean concepts is one of the most well stud-
ied problems in machine learning [Valiant, 1984]. Here we
tackle the more general problem of learning SMT(LRA) CNF
concepts, which extends the Boolean CNF case to mixtures
of Boolean literals and linear inequalities. Weight learning
of OMT(LRA) formulas (which subsume SMT(LRA)) was
tackled in [Teso et al., 2015] by reduction to parameter learn-
ing of structured-output SVMs. Sparse weight learning has
been employed for structure learning of the Boolean part of
SMT formulas in [Campigotto et al., 2011], i.e., assuming
that the target halfspaces are known and fixed. The approach
of [Pawlak and Krawiec, 2017] for learning constraints over
the integers leverages the same strategy. Non-greedy ap-
proaches to program synthesis employ SMT for inducing a
program consistent with the input specification [Gulwani et al.,
2017]. Several active learning strategies for SMT programs
have been analyzed in [Alur et al., 2013], but no working
encoding is given for the LRA case. To the best of our knowl-
edge INCAL is the first working approach for jointly learning
the logical structure and linear constraints of SMT(LRA)
formulas.

Most concept learning algorithms learn a formula by greed-
ily adding or removing terms or literals, guided by some scor-
ing function (e.g. [Quinlan, 1990]). Heuristics, such as look-
ahead, are employed to avoid getting stuck in local optima,
and the learned model is often post-processed (e.g. pruned).
The same holds for decision tree learners. It is not obvious
how to extend such methods to SMT(LRA). Enumerating all
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possible halfspace literals to be potentially added is impossi-
ble, and the score of a single halfspace literal is difficult to
define, given the non-linearity of SMT formulas.

INCAL is a non-greedy learning algorithm. Non-greedy
approaches have been devised for both (oblique) deci-
sion trees [Bennett, 1994; Norouzi et al., 2015; Bertsimas
and Dunn, 2017] and structure learning of Bayesian net-
works [Cussens, 2008; Jaakkola et al., 2010], with positive
results. Non-greedy algorithms tend to learn simpler models
that generalize well without any post-processing [Bertsimas
and Dunn, 2017]. Our approach differs from existing non-
greedy decision tree learners in several key aspects. First,
we target CNF formulas, which for “close CNF” concepts
be exponentially more compact [Mooney, 1995] than their
DNF equivalent and therefore than decision trees3, but also
allow learning DNF, should that be more efficient for the ap-
plication at hand. In addition, contrary to [Bennett, 1994;
Bertsimas and Dunn, 2017], our approach avoids global opti-
mization techniques, which can be harder to solve in practice
than satisfiability. The core of INCAL is a reduction of the
learning problem to a sequence of satisfiability checks over
increasingly larger sets of “active” examples. Our main in-
sight is that it is possible to derive formulas consistent with the
entire dataset by looking only at a small subset of examples,
for improved scalability (as shown in Section 5). This has not
been addressed by previous methods.

Similarly to the global decision tree learner of [Bertsimas
and Dunn, 2017], we provide a strategy for hyperparameter
search. Our bottom-up strategy is able to quickly discard too
small values, thus identifying large enough ones quickly. The
strategy of [Bertsimas and Dunn, 2017] instead solves an ex-
ponential (in the tree depth) number of learning problems and
then picks the best ones. An alternative is to search for the
hyperparameters directly in the SMT encoding, analogously
to [Norouzi et al., 2015]. However, this implies that the effi-
ciency benefits of evaluating the hyperparameters from simple
to complex would be lost.

Finally, while related, polyhedral classifiers [Kantchelian
et al., 2014] and learners for linear programs [Jabbari et al.,
2016] can not be trivially extended to support logical opera-
tors.

7 Conclusion
We introduced the task of SMT(LRA) learning, where the
goal is to induce an SMT(LRA) theory from examples of fea-
sible and infeasible assignments. Our main contribution is IN-
CAL, an exact non-greedy algorithm for learning SMT(LRA)
formulas. INCAL encodes the learning step into a satisfaction
problem, which can be efficiently solved by any off-the-shelf
SMT solver. INCAL learns the formula by fitting a sequence
of (typically small) subsets of the training set. This noticeably
enhances computational efficiency and reduces the number
of examples needed for effective learning. The proposed ap-
proach includes a hyperparameter search procedure to auto-
matically tune the complexity of the formula. INCAL was

3For instance, the CNF formula (x1 ∨ y1) ∧ . . . ∧ (xn ∨ yn)
becomes exponential in n when converted to DNF.

validated on both synthetic instances and benchmark instances
taken from the SMT-LIB benchmark repository.

Future work includes further improving the run-time of IN-
CAL, for instance by incorporating warm starts [Bertsimas
and Dunn, 2017] (e.g., exploiting incremental SMT solving
also in the parameter learning step), using heuristics for ex-
ample selection in the iterative step (e.g., by incorporating
heuristics used in active learning) and learning from partial
assignments [Bessiere et al., 2013]. We also plan to investigate
learning from noisy labels by either tweaking the encoding or
subsampling the dataset and supporting integer variables and
equalities.
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