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Abstract
Graph kernels are applied heavily for the classifica-
tion of structured data. However, their expressivity is
assessed almost exclusively from experimental stud-
ies and there is no theoretical justification why one
kernel is in general preferable over another. We in-
troduce a theoretical framework for investigating the
expressive power of graph kernels, which is inspired
by concepts from the area of property testing. We
introduce the notion of distinguishability of a graph
property by a graph kernel. For several established
graph kernels we show that they cannot distinguish
essential graph properties. In order to overcome this,
we consider a kernel based on k-disc frequencies. We
show that this efficiently computable kernel can distin-
guish fundamental graph properties. Finally, we obtain
learning guarantees for nearest neighbor classifiers in
our framework.

1 Introduction
Linked data arises in various domains such as chem- and bioin-
formatics, social network analysis and pattern recognition. Such
data can naturally be represented by graphs. Therefore, machine
learning on graphs has become an active research area of increas-
ing importance. The prevalent approach to classify graphs is
to design kernels on graphs in order to employ standard kernel
methods such as support vector machines. Consequently, in the
past two decades a large number of graph kernels have been pro-
posed, see, e.g., [Vishwanathan et al., 2010]. Most graph kernels
decompose graphs and add up the pairwise similarities between
their substructures following the seminal concept of convolution
kernels [Haussler, 1999]. Here, substructures may be walks [Gärt-
ner et al., 2003] or certain subgraphs [Ramon and Gärtner, 2003;
Shervashidze et al., 2009]. Considering the large number of
available graph kernels and the wealth of available benchmark
data sets [Kersting et al., 2016], it becomes increasingly difficult
to perform a fair experimental comparison of kernels and to
assess their advantages and disadvantages for specific data sets.
Indeed, current experimental comparisons cannot give a complete
picture and are of limited help to a practitioner who has to choose
a kernel for a particular application.

Graph kernels are developed with the (possibly conflicting)
goals of being efficiently computable and capturing the topologi-

cal information of the input graphs adequately. Newly proposed
graph kernels are often justified by their ability to take structural
graph properties into account that were ignored by previous
kernels. Yet, to the best of our knowledge, this argument has not
been formalized. Moreover, there is no theoretical justification
why certain kernels perform better than others, but merely exper-
imental evaluations. We address this by introducing a theoretical
framework for the analysis of the expressivity of graph kernels
motivated by concepts from property testing, see, e.g., [Gol-
dreich, 2017]. We consider normalized kernels, which measure
similarity in terms of angles in a feature space. We say that a
graph kernel identifies a property if no two graphs are mapped to
the same normalized feature vector unless they both have or both
do not have the property. A positive angle between two such
feature vectors can be helpful to classify the property. As the
graph size increases, on the one hand, this angle can become very
small (dependent on the graph size), which is hindering when
applying this knowledge to a learning setting. On the other hand,
we observe that a constant angle between any two feature vectors
of two graphs with complementing properties can only rarely be
the case, since only a marginal change in a graph’s features can
change its property. If a graph can be edited slightly to obtain
a property, it can, however, be viewed as close enough to the
property to be ignored. Thus, in the sense of property testing, it
is desirable to differentiate between the graph set far away from
a property and the property itself, which motivates the following
concept. We say that a graph kernel distinguishes a property if
it guarantees a constant angle (independent of the graph size)
between the feature vectors of any two graphs, one of which
has the property and the other is far away from doing so. We
study well-known graph kernels and their ability to identify and
distinguish fundamental properties such as connectivity.

The significance of our framework is demonstrated by ad-
dressing several current research questions. In the graph kernels
literature it has been argued that many kernels take either local
or global graph properties into account, but not both [Kondor
and Pan, 2016; Morris et al., 2017]. Recent property testing
results, however, suggest that under mild assumptions local graph
features are sufficient to derive global properties [Newman and
Sohler, 2013]. We consider a graph kernel based on local k-discs
which can, in contrast to previous kernels, distinguish global
properties such as planarity in bounded-degree graphs. For a con-
stant dimensional feature space, we obtain learning guarantees
for kernels that distinguish the class label property.
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1.1 Related Work
We summarize related work on graph kernels, graph isomorphism,
and property testing.

Gärtner et al. [2003] and Kashima et al. [2003] simultane-
ously proposed graph kernels based on random walks, which
count the number of walks two graphs have in common. Since
then, random walk kernels have been studied intensively, see,
e.g., [Sugiyama and Borgwardt, 2015; Vishwanathan et al., 2010;
Kriege et al., 2014]. Borgwardt and Kriegel [2005] have intro-
duced kernels based on shortest paths; Costa and De Grave [2010]
based on neighborhood subgraphs. Recently, graph kernels using
matchings [Kriege et al., 2016] and geometric embeddings [Jo-
hansson and Dubhashi, 2015] have been proposed. Furthermore,
spectral approaches were explored [Kondor and Pan, 2016].
A different line in the development of graph kernels focused
on scalable graph kernels, see, e.g., [Shervashidze et al., 2011;
Morris et al., 2016; Hido and Kashima, 2009].

There are few works which investigate graph kernels from a
theoretical viewpoint. Gärtner et al. [2003] introduced the con-
cept of a complete graph kernel as a graph kernel with an injective
feature map. The concept of completeness is too strict for the com-
parison of graph kernels and none of the numerous graph kernels
proposed for practical applications actually is complete. Two mea-
sures of expressivity of kernels from statistical learning theory
where proposed and applied to graph kernels [Oneto et al., 2017]
. However, these measures are not specific to graph structured
data and cannot be interpreted in terms of distinguishable graph
properties. The ability of the Weisfeiler–Lehman test to recognize
non-isomorphic graphs has been studied extensively and the class
of identifiable graphs characterized recently [Kiefer et al., 2015;
Arvind et al., 2015].

Goldreich et al. [1998] formally established the study of
property testing, where a central aim is to decide with high
probability in sublinear time whether a property is satisfied
or whether it is far from doing so. Goldreich and Ron [2002]
initiated a growing line of research of property testers in the
bounded degree graph model. For a recent overview, see, e.g.,
the textbook by Goldreich [2017].

1.2 Our Contribution
We propose a theoretical framework for comparing the expressive-
ness of kernels on bounded-degree graphs. Within this framework
we obtain the following results:
• The shortest path kernel cannot guarantee a constant angle

between connected and disconnected graphs of arbitrary
size (see Proposition 3.2), but distinguishes connectivity in
the considered framework (see Theorem 4.4).
• The random walk kernel and the Weisfeiler–Lehman subtree

kernel both fail to identify connectivity, planarity, bipartite-
ness and triangle-freeness (see Theorems 4.1, 4.2).
• The graphlet kernel can identify triangle-freeness, but fails

to distinguish any graph property (see Theorem 4.5).
• We define the k-disc kernel and show that it is able to

distinguish connectivity, planarity, and triangle-freeness
(see Theorem 5.4).
• We show that the prediction error of the 1-nearest neighbor

classifier based on a kernel that distinguishes the class label
property can be bounded (see Section 6).

2 Preliminaries
An (undirected) graph G is a pair (V,E) with a finite set of
vertices V and a set of edges E ⊆ {{u, v} ⊆ V | u 6= v}. We
denote the set of vertices and the set of edges of G by V (G)
and E(G), respectively. A walk in a graph G is a sequence of
vertices such that for each pair of consecutive vertices there
exists an edge in E(G). A path is a walk that contains each
vertex at most once; a cycle is a walk that ends in the starting
vertex. Moreover,N(v) denotes the neighborhood of v in V (G),
i.e., N(v) = {u ∈ V (G) | {u, v} ∈ E(G)}. The k-disc of a
vertex v in V (G) is the subgraph induced by all vertices u such
that there exists a path of length at most k between u and v. We
say that two graphs G and H are isomorphic if there exists an
edge preserving bijection ϕ : V (G) → V (H), i.e., {u, v} in
E(G) if and only if (ϕ(u), ϕ(v)) in E(H). The equivalence
classes of the isomorphism relation are called isomorphism types.
We denote the set of graphs on n vertices by Gn.

Let χ be a non-empty set and let κ : χ×χ→ R be a function.
Then, κ is a kernel on χ if there is a Hilbert space Hκ and a
mapping φ : χ→ Hκ such that κ(x, y) = 〈φ(x), φ(y)〉 for all
x and y in χ, where 〈·, ·〉 denotes the inner product ofHκ. We
call φ a feature map, and Hκ a feature space of the kernel κ.
Let κ̂ be the cosine normalized version of a kernel κ and denote
its normalized feature map by φ̂, i.e.,

κ̂(x, y) =
〈
φ̂(x), φ̂(y)

〉
=

〈
φ(x)

‖φ(x)‖2
,
φ(y)

‖φ(y)‖2

〉
=

κ(x, y)√
κ(x, x) · κ(y, y)

∈ [−1, 1].
(1)

The normalized kernel κ̂(x, y) is equal to the cosine of the angle
between φ(x) and φ(y) in the feature space. Let G be the set of
all graphs, then a kernel κ : G × G → R is called graph kernel.

2.1 Definitions from Property Testing
In this paper we assume the bounded-degree graph model. A
graph is of d-bounded degree if its maximum degree is at most
d. In the following d is always independent of the number of
vertices n.

Let G and H be two d-bounded degree graphs in Gn. The edit
distance ∆(G,H) between G and H is the minimum number
of edge modifications, i.e., adding or deleting edges, that has
to be performed on G in order to obtain an isomorphic copy
of H . A graph property is a set P of graphs that is closed under
isomorphism. We denote the set of graphs in P on n vertices
by Pn. Let Pn be a non-empty graph property. A d-bounded
degree graph G with n vertices is ε-far from Pn in the bounded
degree model if for all d-bounded degree graphs H in Pn we
have ∆(G,H) > εdn for ε > 0. Otherwise, it is ε-close.

In this paper we study the following graph properties. A
graph G = (V,E) is called connected if for every two vertices
u, v ∈ V (G) there exists a path from u to v. A graph G is
planar if there exists an embedding of G in the plane such that
no edges cross, it is bipartite if V (G) can be partitioned into two
sets V1 and V2 ⊂ V (G) such that for each edge {u, v}, u ∈ V1
and v ∈ V2 or vice versa. A graph is triangle-free if it does not
contain a cycle with three vertices.
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2.2 Graph Kernels
In the following we review four popular graph kernels. First, we
describe the Weisfeiler–Lehman subtree kernel which is based
on the well-known color refinement algorithm for isomorphism
testing [Babai and Kucera, 1979; Cai et al., 1992], which can
be described as follows: Let G and H be graphs, and let l be a
label function V (G) ∪ V (H)→ Σ, e.g., l(v) = |N(v)| for v
in V (G) ∪ V (H). In each iteration i ≥ 0, the color refinement
algorithm computes a new label function li : V (G) ∪ V (H)→
Σ. In iteration 0 we set l0 = l. Now in iteration i > 0, we set
li(v) = relabel((li−1(v), sort({{li−1(u) | u ∈ N(v)}}))), for
v in V (G) ∪ V (H), where sort(S) returns a sorted sequence of
the labels in the multiset S and relabel is a bijection that maps a
sequence of labels to a new unique label in Σ, which has not
been used in previous iterations. If G and H have an unequal
number of vertices labeled σ in Σ, they are not isomorphic. The
idea of the Weisfeiler–Lehman subtree kernel [Shervashidze et
al., 2011] is to compute the above algorithm for h ≥ 0 iterations
and after each iteration i compute a feature map φi(G) in R|Σi|
for each graph G, where Σi ⊆ Σ denotes the image of li.
Each component φi(G)σj counts the number of occurrences of
vertices labeled with σj in Σi. The overall feature map φ(G)
is defined as the concatenation of the feature maps of all h
iterations, i.e.,(
φ0(G)σ1

1
, . . . , φ0(G)σ1

|Σ0|
, . . . , φh(G)σh1 , . . . , φ

h(G)σh|Σh|

)
.

Then, the Weisfeiler–Lehman subtree kernel for h iterations is
κhWL(G,H) = 〈φ(G), φ(H)〉.

Secondly, we describe the shortest path kernel [Borgwardt
and Kriegel, 2005]. Let G be a graph with label function
l : V (G) → Σ and let d : V (G) × V (G) → N denote the
shortest path distance function. Then, the feature map φ of the
shortest path kernel maps a graph to a feature vector, where each
component is associated with a triple (a, b, p) ∈ Σ ×Σ × N
and counts the number of shortest paths in G with length
p from a vertex with label a to a vertex with label b [Sher-
vashidze et al., 2011]. The shortest path kernel is then defined
as κSP(G,H) = 〈φ(G), φ(H)〉. In our case, φ simply maps a
graph G to a vector that represents G’s frequency of shortest
path lengths, since we consider unlabeled, undirected graphs.

The graphlet kernel counts the induced subgraphs on k ver-
tices, for k ∈ {3, 4, 5} [Shervashidze et al., 2009]. Note that
these subgraphs can be disconnected. Let σ1, . . . , σN denote the
isomorphism types of graphs on k vertices. For a graph G the
kernel computes φ(G) = (φ(G)σ1

, . . . , φ(G)σN ), where the
component φ(G)σi counts the subgraphs of G of type σi. The
kernel is computed by κkGR(G,H) = 〈φ(G), φ(H)〉 for two
graphs G and H and graphlet size k.

Finally, the random walk kernel counts the number of common
walks of two graphs. The kernel is defined via the direct product
graph G×H of two graphs G and H as

κkRW(G,H) =
∑|V×|
i,j

[∑k
l=0 λlA

l
×

]
ij
, (2)

with vertex set V× and adjacency matrix A× of G×H , k > 0,
λ0, . . . , λk > 0, and A0

× = I. For k =∞ and λi = γi, i ∈ N,
and γ sufficiently small such that (2) converges, the kernel can
be computed by a closed form expression and is referred to as
geometric random walk kernel [Gärtner et al., 2003].

3 Distinguishable Graph Properties
Let n ∈ N be an arbitrary number of vertices. We say that a
feature map φ can identify a graph G ∈ Gn (up to isomorphism)
if for each other graph H ∈ Gn that is not isomorphic to G it
holds that φ̂(G) 6= φ̂(H).
Definition 3.1. Let P be a graph property. If a graph kernel κ :
G×G → R≥0 and for each n ∈ N, every G ∈ Pn andH /∈ Pn
satisfy κ̂(G,H) < 1, we say that P can be identified by κ.

In order for a graph kernel to be able to distinguish a graph
property and to use this knowledge in a learning context, a
desirable goal is to have a constant angle independent of n. In
the strict sense this is, however, rarely the case. In fact, in the
following instance a constant difference cannot be achieved.
Proposition 3.2. For the shortest path kernel, it holds that for
each constant c, 0 < c < 1, there exist some n ∈ N and two
graphs G,H ∈ Gn with G connected, and H not connected
such that κ̂SP(G,H) > 1− c.

Proof. Let, for each n ∈ N, G be a path with n vertices, and let
H consist of a path with n− 1 vertices and one isolated vertex.
Note that H is not connected, whereas adding one edge to H is
enough to transform it into a connected graph which is isomorphic
to G. The feature vectors for G and H counting the number
of vertex pairs with distances 1 to n− 1 are φ = (n− 1, n−
2, . . . , 1) ∈ Rn−1 and ψ = (n− 2, n− 3, . . . , 1, 0) ∈ Rn−1,
respectively. Additionally, in H there are n − 1 vertex pairs
that are not connected. It can be computed that 〈φ̂, ψ̂〉2 =
1− 3

4n2−8n+3 . Assume there is a constant c, 0 < c < 1, such
that, for each n ∈ N, it holds that 〈φ̂, ψ̂〉 ≤ 1 − c, then there
would be a constant c′ = (1 − c)2, 0 < c′ < 1 such that
c′ ≥ 1− 3

4n2−8n+3 which does not hold for a large choice of n.
Thus, for each constant c there exists an n ∈ N such that, for the
graphs G and H as chosen above, κ̂(G,H) > 1− c holds.

Note that both graphs in the proof of Proposition 3.2 have a
maximum degree of 2. Therefore, the statements holds if any
degree bound d ≥ 2 is required.

In order to be able to achieve an angle independent of the
graph size, we suggest to employ the notion of a graph being
ε-far from a property as used in property testing. We aim to
obtain a constant1 angle between the feature vectors of two
graphs whenever one graph has a certain property and the other
is ε-far from having that property. In this context we define
distinguishability of a graph property by a graph kernel as follows.
Note that distinguishablity implies identifiability.
Definition 3.3. In the bounded-degree graph model, a graph
property P is called distinguishable by a graph kernel κ : G ×
G → R≥0, if for every ε > 0, d ∈ N, there exists some
δ = δ(ε, d) > 0 such that for every n ∈ N, every G ∈ Pn, and
every graph H that is ε-far from Pn, we have κ̂(G,H) ≤ 1− δ.

Note that this notion does not guarantee an accurate learning
algorithm in general. Consider the isomorphism kernel that is 1
for two isomorphic graphs and 0 otherwise. It distinguishes every
property, but as a classifier will not generalize to unseen data.
Nevertheless, we obtain some learning guarantees, see Section 6.

1By constant we refer to a value independent of the input size n,
which, however, can depend on ε or d.
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(a) Graph G (b) Graph H = K3,3

Figure 1: Counterexample for the proof of Theorems 4.1, 4.2, and 4.4

4 Properties Distinguishable by Popular
Graph Kernels

In this section we study the identifiability and distinguishability
of the random walk, the Weisfeiler–Lehman subtree, the shortest
path, and the graphlet kernel. Table 1 sums up these results in
comparison to the k-disc kernel studied in Section 5.

Both, the feature maps of a random walk kernel and the
Weisfeiler–Lehman subtree kernel cannot identify a regular
graph. In fact, each regular graph in Gn for some n ∈ N, maps
to the same feature vector. In particular, for the random walk
kernel, the number of walks of length ` starting in a vertex of a
regular graph with degree d is d`. Hence, for two regular graphs
with degrees d and d′, respectively, it holds that κkRW(G,H) =

|V×|
∑k
`=0 λ`(d ·d′)`, independently from the adjacency matrix

of the product graph. For the Weisfeiler–Lehman subtree kernel,
two regular graphs with the same degree obtain the same feature
vector due to [Arvind et al., 2015]. Therefore, as soon as for
some graph property P and n ∈ N there exists one regular graph
in Pn and another regular graph in GnrPn, both kernels cannot
identify and, thus, not distinguish the graph property.

Theorem 4.1. The random walk kernel cannot identify connec-
tivity, planarity, bipartiteness, or triangle freeness.

Proof. A cycle with six vertices and two triangles with three
vertices, both regular graphs, are a counterexample to the distin-
guishability of connectivity. Furthermore, consider the graphs G
and H as illustrated in Figure 1. Note that G is planar, but not
bipartite, and contains triangles, whereas H is not planar, but
bipartite, and triangle-free.

By the same arguments we obtain the following.

Theorem 4.2. The Weisfeiler–Lehman subtree kernel cannot
identify connectivity, planarity, bipartiteness, or triangle freeness.

Next, we attend to a positive result regarding connectivity
and the shortest path kernel. We will make use of the following
technical lemma throughout proofs in this paper.

Lemma 4.3. Let n, r ∈ N, x ∈ Rr≥0, and ε > 0. For a non-
empty subset of indices S ⊆ {1, . . . , r} such that

∑
i∈S |xi| =

η > 0 the following holds for every y ∈ Rr≥0 with yi = 0 for
each i ∈ S: 〈x,y〉/‖x‖2‖y‖2 ≤

√
1− η2/|S|·‖x‖22.

Proof. Without loss of generality, let S = {1, . . . , s}. For each
y ∈ Rr≥0 with yi = 0, 1 ≤ i ≤ s, it holds that

〈x, y〉
‖x‖2 ‖y‖2

=

〈(
xs+1

‖x‖2
, . . . ,

xr
‖x‖2

)
,

(
ys+1

‖y‖2
, . . . ,

yr
‖y‖2

)〉
,

which, by the Cauchy–Schwarz inequality is at most√∑r
i=s+1 x

2
i

‖x‖2
·
‖(ys+1, . . . , yr)‖2

‖y‖2
=

√
1−

∑s
i=1 x

2
i

‖x‖22
.

Moreover, since
∑s
i=1 x

2
i ≥ 1

s · (
∑s
i=1 xi)

2
= 1

sη
2, this is at

most
√
1− η2/s‖x‖22.

Theorem 4.4. The shortest path kernel

1. cannot identify planarity, bipartiteness, or triangle freeness;
2. can distinguish connectivity.

Proof. 1. While in general two regular graphs may have
different feature vectors, the graphs in Figure 1 also serve
as a counterexample here. In both cases the shortest path
feature vector are equal, as there are nine shortest paths of
length 1 and six of length 2, each.

2. Let n, d ∈ N, ε > 0, and H ∈ Gn be ε-far from
being connected. For the shortest path feature vector
ψ = (ψ1, . . . , ψn−1) and each connected graph G ∈ Gn
with shortest path feature vector φ = (φ1, . . . , φn−1),
it holds that 〈(ψ1, . . . , ψn−1), (φ1, . . . , φn−1)〉 =
〈(ψ1, . . . , ψn−1, η), (φ1, . . . , φn−1, 0)〉, where η denotes
the number of disconnected vertex pairs in H . By
Lemma 4.3 it holds that

〈φ̂, ψ̂〉 ≤
√

1− η2/‖ψ‖22. (3)

Assume that n > 4/εd. Otherwise with η ≥ 1 and ‖ψ‖2 ≤
n2 ≤ (4/εd)2, it holds that (3) is at most 1 minus a constant.
Now, it is known that there are more than εdn/2 connected
components of which at least εdn/4 have a size smaller than
4/εd [Goldreich and Ron, 2002]. At least one vertex in such
a small component is disconnected from each vertex outside
the component, that is, η is at least 1/2 · εdn/4 · (n− 4/εd) =
εn2d/8− n/2. Moreover, with 〈ψ,ψ〉 ≤ (n(n−1)/2− η)2 +
η2 we obtain that 1 − η2/‖ψ‖22 ≤ 1/2+ζ, for some ζ > 0
independent of n, which implies that (3) is smaller than 1
by a constant strictly between 0 and 1.

Finally, we consider the graphlet kernel κkGR. Although
graphlet kernels appear to be rather expressive, from the consid-
ered properties they can only identify triangle-freeness. We can
find counterexamples for connectivity, bipartiteness and planarity.
For distinguishability there is one general obstacle, namely the
fact that graphlets do not have to be connected. Each graph with
n vertices and bounded degree d has at least 1− d(k−1)k/2(n−1)
k-graphlets with k independent vertices. Thus, for each constant
δ > 0 and each G,H ∈ Gn it holds that κ̂kGR(G,H) > 1− δ.
Therefore, we obtain the following.

Theorem 4.5. The graphlet kernel can identify triangle-freeness
for k ≥ 3, but unless the graphlet size k depends on the graph
size, it cannot identify connectivity, bipartiteness, or planarity.
Moreover, the graphlet kernel cannot distinguish any graph
property.
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Property
Graph Kernel

WEISFEILER–LEHMAN RANDOM WALK SHORTEST PATH GRAPHLET k-DISC

Connectivity 7 7 3 7 3
Planarity 7 7 7 7 3
Bipartitness 7 7 7 7
Triangle-freeness 7 7 7 • 3

Table 1: Distinguishability of graph properties for the random walk, shortest path, graphlet, k-disc and Weisfeiler–Lehman subtree kernel. Key: 3
distinguishable, • identifiable (but not distinguishable), and 7 not identifiable.

5 Graph Kernels that Distinguish Graph
Properties

While we have observed that established graph kernels often
cannot distinguish basic properties, we aim to find a graph kernel
that can distinguish fundamental properties and is efficiently
computable. Based on ideas by Costa and De Grave [2010]
and Newman and Sohler [2013], we define a histogram histG(k)
of the numbers of different k-discs, and the frequency vec-
tor freqG(k) = histG(k)/n ofG ∈ Gn. Consider the following
graph kernel.
Definition 5.1. Given two graphs G and H , the k-disc graph
kernel is defined by κKD(G,H) = 〈freqG(k), freqH(k)〉.

A significant difference between the k-disc kernel and the
graphlet kernel is that a k-disc is a connected subgraph, while a
graphlet may be disconnected. For d-bounded-degree graphs, the
k-disc kernel can be computed in time linear in the graph size. It
can even be approximated in constant time, see, e.g., [Newman
and Sohler, 2013].

Theorem 5.4 comprises the main results of this section about
graph properties distinguishable by the k-disc kernel. From
property testing studies, see, e.g., [Newman and Sohler, 2013],
we often obtain information about the 1-norm of the distance
between the frequency vectors of a graph ε-far from a property
and all graphs satisfying the property. In order to translate these
facts to a positive angle between the frequency vectors, we need
the following two lemmas. Firstly, it can be seen that for two
normalized real vectors with at least one index at which the
entries differ by at least a constant positive value, their (standard)
inner product is strictly less than 1.
Lemma 5.2. Let x, y be two vectors in Rn≥0 for some n ∈ N
with ‖x‖2 = ‖y‖2 = 1. Let ζ > 0 be an arbitrarily small real
value. If there exists some i, 1 ≤ i ≤ n such that |xi − yi| ≥ ζ ,
then 〈x, y〉 ≤ 1− ζ2/2.

Proof. It holds that 〈x, y〉 = 1/2(‖x‖22 + ‖y‖
2
2 − ‖x− y‖2)

= 1− 1
2 ((xi − yi)

2︸ ︷︷ ︸
≥ζ2

+
∑n
j=1,j 6=i (xj − yj)

2︸ ︷︷ ︸
≥0

) ≤ 1− ζ2

2 .

Thus, the angle between x and y is positive and constant.

Secondly, we need to take care of the fact that the studied
frequency vectors are normalized with respect to their 1-norm.
However, since the number of different k-discs is independent of
the number of vertices in the bounded-degree model, we can
show the following lemma for two frequency vectors with a
positive distance with respect to their 1-norm.

Lemma 5.3. Let φ and ψ be two vectors in Rn≥0 with ‖φ‖1=
‖ψ‖1=1 and ‖φ− ψ‖1 ≥ η. Then, there exists an index i, 1 ≤
i ≤ n, and a real value ζ > 0 such that |φi/‖φ‖2 − ψi/‖ψ‖2|≥ζ .

Proof. Let wlog ‖φ‖2 ≥ ‖ψ‖2. Moreover, let s denote the
number of positive entries in both, φ and ψ. ‖φ− ψ‖1 ≥ η
implies the existence of a j: φj − ψj ≥ η

s . Case 1: If ‖φ‖2 −
‖ψ‖2 ≤

η
2s3/2

, then φj
‖φ‖2

− ψj
‖ψ‖2

is at most

≥ ‖ψ‖2︸ ︷︷ ︸
≥ 1√

s

(φj − ψ − j)︸ ︷︷ ︸
≥ ηs

− ψj︸︷︷︸
≤1−η

(‖φ‖2 − ‖ψ‖2)︸ ︷︷ ︸
≤ η

2s3/2

≥ η

2s3/2
.

Case 2: ‖φ‖2−‖ψ‖2 >
η

2s3/2
. LetR denote the subset of indices

i such that φi/‖φ‖2 > ψi/‖ψ‖2. Observe, that 0 ≤ |R| < s. We
split the sum ‖φ̂ − ψ̂‖1 =

∑n
i=1 |φi/‖φ‖2 − ψi/‖ψ‖2| up into

indices i ∈ R and i /∈ R. Since ‖ψ‖1 = ‖φ‖1 = 1, this is equal
to

1

‖ψ‖2
− 1

‖φ‖2
+ 2

∑
i∈R

(φi/‖φ‖2 − ψi/‖ψ‖2)︸ ︷︷ ︸
≥0

>
η

2s3/2
.

Thus, there exists an index i, 1 ≤ i ≤ n, such that
|φi/‖φ‖2 − ψi/‖ψ‖2| > η/2s5/2. With 0 < ζ ≤ η/2s5/2 in both
cases, this completes the proof.

Finally, we can proof the main theorem of this section.
Theorem 5.4. For the k-disc graph kernel, it holds that

1. connectivity is distinguishable for k ≥ 4/εd,
2. triangle-freeness for k ≥ 1, and
3. for each ε > 0, d ∈ N there exists some k ∈ N+ such that

distinguishability is satisfied for planarity.

Proof. 1. Let H ∈ Gn be a graph with bounded degree d that
is ε-far from being connected for some ε > 0. By [Gol-
dreich and Ron, 2002] we know that the number of con-
nected components of a size smaller than 4/εd is at least
εdn/4. For each vertex in such a small component, the full
component is found as a k-disc of size 4/εd in H . For
each connected graph G, the frequency of such a small
component is 0, since each k-disc covers at least 4/εd ver-
tices. Therefore, ‖freqG(k)− freqH(k)‖1 ≥ εd/4. The
conditions of Lemma 4.3 are satisfied for x = freqH(k)
and y = freqG(k) with S indicating the occurrence
of small components. Again, observe that |S| is inde-
pendent of n. By ‖x‖22 ≤ 1 and η ≥ εd

4 we obtain
〈x,y〉/‖x‖2‖y‖2 ≤

√
1− εd/4|S|, which is a positive con-

stant strictly less than 1.
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2. For triangle-freeness, again, we can use similar arguments
to [Goldreich and Ron, 2002]. If a graph is ε-far from
being triangle-free, there are εdn superfluous edges in H
in contrast to any triangle-free graph G. Note that only
edges that are part of a triangle are to be removed. Each
such edge is shared by two vertices, and there can be at
most d edges involved per vertex. That means, that at least
2εn vertices are incident to a superfluous edge. These
vertices hence have k-discs, for each k ≥ 1, that contain
triangles, whereas in G there are no such k-discs. There-
fore, ‖freqG(k)− freqH(k)‖1 ≥ 2ε. Since the frequency
vectors are always normalised with respect to their 1-norm,
the conditions of Lemma 5.3 hold. Thus, there exists an
index i, 1 ≤ i ≤ n, and a constant ζ > 0 such that∣∣∣ freqG(k)i
‖freqG(k)‖2

− freqG(k)i
‖freqH(k)‖2

∣∣∣ ≥ ζ. Then, by Lemma 5.2,〈
freqG(k)i
‖freqG(k)‖2

, freqG(k)i
‖freqH(k)‖2

〉
is smaller than 1 by a constant.

3. Benjamini et al. [2010] show that for each ε > 0 and degree
bound d, there exists a positive integer k independent of
n such that for any two graphs G,H ∈ Gn with bounded
degree d, G planar, H ε-far from being planar, it holds that
‖freqG(k)−freqH(k)‖ ≥ 1/k. Therefore, via Lemmas 5.3
and 5.2, we obtain the claimed result.

6 A Learning Algorithm
In this section we study a kernel nearest neighbor classifier
for graphs and show that its prediction error can be bounded
under the assumption that the employed kernel can distinguish
the class label property and that all considered graphs either
satisfy the property or are ε-far from it. We assume the following
supervised binary classification problem: Let Y = {0, 1} be
the set of possible class labels, which represent if a graph has
a property or not. We aim to learn a concept c : Gn → Y such
that the 0-1 loss is minimized. Thereto we receive a training
set {g1, . . . , gm} ⊂ Gn and a test graph from Gn sampled
i.i.d. according to some unknown distribution, as well as the
set of class labels {c(g1), . . . , c(gn)} for the training set based
on the concept to be learned. We assume in the following that
for the considered graph property, Gn only contains graphs that
either have the property or are ε-far from it.

6.1 Kernel Nearest Neighbor Classification
Based on a training set T of data points in RD with known
class labels, the k-nearest neighbor classifier (k-NN) assigns a
test data point to the class most common among its k nearest
neighbors in T . Here, the nearest neighbors are commonly de-
termined based on the Euclidean distance between data points.
Kernel nearest neighbor classifiers have been realized by sub-
stituting this distance by a kernel metric in Hilbert space, see,
e.g., [Yu et al., 2002]. For a kernel κ with feature map φ, we
consider the 1-NN algorithm using the kernel metric dκ(x, y) =
‖φ(x)− φ(y)‖2 =

√
κ(x, x) + κ(y, y)− 2κ(x, y).

6.2 Learning With Distinguishing Kernels
We again consider the cosine normalized version κ̂ of a kernel
κ and its normalized feature map φ̂. For dimension D of the
feature space, the normalized feature map φ̂ assigns graphs

to points on the unit sphere SD−1. Let us assume that κ̂ dis-
tinguishes the class label property. Then, there is a δ, such
that for all graphs G that have the property and H that are
ε-far from it, we have κ̂(G,H) ≤ 1 − δ and, consequently,
dκ̂(G,H) ≥

√
1 + 1− 2(1− δ) =

√
2δ. We denote this guar-

anteed minimum distance by ∆ =
√
2δ. Consider the spherical

cap C within the open ball centered at φ̂(G) with radius ∆.
According to the assumption, every graph H with φ̂(H) lying
on C, must have the same class label.

Proposition 6.1. Let G be a graph of the training set. Then
every graph H with dκ̂(G,H) < ∆ is correctly classified by
1-NN where the base set contains all graphs that either have the
property or are ε-far from it.

Proof. AssumeH is not correctly classified and dκ̂(G,H) < ∆.
Due to distinguishability, H must belong to the same class as
G. Since H is not correctly classified by 1-NN, there must be
a nearest neighbor N 6= G of H with a different class label.
Since N is a nearest neighbor of G, we have dκ̂(H,N) ≤
dκ̂(G,H) < ∆, contradicting distinguishability.

We say that an algorithm (ε, λ)-learns a property if a test
graph G drawn from the underlying distribution is correctly
classified with probability (1− λ) and the base set consists of
all graphs that either have the property or are ε-far from it.

Theorem 6.2. Let κ be a kernel that distinguishes the class
label property according to Definition 3.3 with some fixed δ
and a feature space of dimension D. Let ∆ =

√
2δ. Let all

graphs either satisfy the property or be ε-far from it. Assume that
the training set has cardinality m ≥ (1+6/∆)D/λ ln((1+6/∆)D/λ)
then the 1-NN algorithm (ε, λ)-learns the property.

Proof (Sketch). We cover the unit sphere with balls of radius
∆/3. It is well-known that such a cover of size B = (1+ 6/∆)D

exists. We observe that if a training example falls into a ball
of the cover then by Proposition 6.1 any other example inside
this ball is correctly classified. We observe that with probability
1− λ every ball with probability mass at least λ/B contains a
training example. The overall probability of the remaining balls
is at most λ. Therefore, with probability 1 − λ the algorithm
(ε, λ)-learns the property.

7 Conclusion
The introduced framework provides a starting point, e.g., for
investigating other properties and evaluating other graph kernels.
We assume promising kernels to be based, e.g., on other prop-
erty testers, on spectral information, or on the 3-dimensional
Weisfeiler–Lehman test. So far we have considered unlabeled,
undirected graphs. Since most popular graph kernels are de-
signed for labeled graphs, e.g., nodes are annotated with chemical
symbols, future work might consider these as well.
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