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Abstract

Pairwise learning refers to learning tasks with the
associated loss functions depending on pairs of ex-
amples. Recently, pairwise learning has received
increasing attention since it covers many machine
learning schemes, e.g., metric learning, ranking and
AUC maximization, in a unified framework. In
this paper, we establish a unified generalization er-
ror bound for regularized pairwise learning with-
out either Bernstein conditions or capacity assump-
tions. We apply this general result to typical learn-
ing tasks including distance metric learning and
ranking, for each of which our discussion is able
to improve the state-of-the-art results.

1 Introduction

Recently, there is a growing interest in studying a large fam-
ily of machine learning problems called pairwise learning
problems. Unlike traditional learning problems whose loss
functions depend only on a single example (e.g., classifica-
tion and regression), pairwise learning refers to learning tasks
for which the associated loss function involves a pair of ex-
amples. Specifically, for any two examples (x,y), (Z,9) €
R? x R, the loss function for pairwise learning often takes the
form V'(h, (z,y), (&, 7)) for a hypothesis function h : R% x
R? — R. Many learning tasks can be cast into the frame-
work of pairwise learning, including ranking [Rejchel, 2012;
Kriukova et al., 2016], metric learning [Xing et al., 2003;
Cao et al., 2016], AUC maximization [Cortes and Mobhri,
2004; Gao and Zhou, 2015; Gao et al., 2013; Zhao et al.,
2011], gradient learning [Mukherjee and Zhou, 2006] and
learning under minimum error entropy criterion [Hu et al.,
2015], etc. For example, supervised metric learning aims to
find a Mahalanobis metric dy (z,%) = (z — %) 'w(z — Z)
encoded by a semi-positive matrix w € S%*¢ to bring ex-
amples with similar labels together while keeping examples
with different labels apart [Xing et al., 2003], where S¥*¢ is
the class of all positive semi-definite matrices in R**?. In
this case, a common loss function V (dw, (x,y), (Z,9)) =
9(y9(1 — dw(z,Z))) involves two examples (z,y), (Z,7),
where ¢ : R — R, is convex for which a typical choice
is the hinge loss ¢(t) = max(1 — ¢,0) [Cao et al., 2016].
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Motivated by growing interests in pairwise learning, gen-
eralization analysis of different pairwise learning machines
has been conducted to better understand their practical be-
havior [Kar ef al., 2013; Ying and Zhou, 2016; Christmann
and Zhou, 2016; Clémencon et al., 2008; Rejchel, 2012]. A
difficulty in learning theory analysis of pairwise learning con-
sists in the fact that the empirical error can not be written as a
summation of independent and identically distributed (i.i.d.)
random variables, rendering standard techniques in the i.i.d.
case not applicable in this context [Sridharan et al., 2009;
Bartlett et al., 2005]. For these learning problems with
coupled examples, existing studies use either techniques in
U-process to derive uniform convergence bounds [Rejchel,
2012; Clémencon et al., 2008; Cao et al., 2016; Zhao et al.,
2017; Lei and Ying, 2016] or algorithm stability/robustness
to establish algorithm-specific bounds [Bellet and Habrard,
2015; Jin et al., 2009; Agarwal and Niyogi, 2009]. How-
ever, existing studies on pairwise learning problems are not
quite satisfactory in the following three aspects. Firstly, these
generalization bounds are mostly derived for different spe-
cific instantiations of pairwise learning problems, and a uni-
fied framework to study generalization errors for regularized
pairwise learning is still lacking. Secondly, most of these
discussions only consider estimation errors. Thirdly, these
estimation error bounds either are slow [Jin et al., 2009;
Bellet and Habrard, 2015; Agarwal and Niyogi, 2009; Cao
et al., 2016] or require capacity assumptions on hypothesis
spaces and Bernstein conditions for an application of Tala-
grand’s inequality [Rejchel, 2012; Clémengon et al., 2008].

In this paper, we provide a unified analysis for regularized
pairwise learning by showing that the regularized general-
ization error of the estimator would converge to the optimal
value at a rate of the order O(1/n), where n is the number of
training examples. Our discussion requires neither Bernstein
conditions on the bias and variance nor capacity assumptions
on the hypothesis spaces. The property that the empirical er-
ror is a U-statistic makes the argument in the i.i.d. case not
applicable to our context, and we bypass this obstacle by re-
sorting to established techniques in the U-process. Based on
this, we develop generalization error bounds for regularized
pairwise learning which also take approximation errors into
consideration. We apply our general results to metric learn-
ing and ranking, for each of which our general analysis can
imply generalization bounds tighter than the state of the art.
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2 Related Work

Here, we review related work on generalization analysis of
pairwise learning algorithms based on different approaches.

Generalization error bounds were established for regular-
ized metric learning [Jin et al., 2009] and ranking [Agarwal
and Niyogi, 2009] based on algorithmic stability. The basic
idea is to use strong convexity of the objective function in reg-
ularized pairwise learning problems to show that the learned
model would change slightly if a single training example is
replaced by another one. Based on this, McDiarmid’s in-
equality is applied to establish generalization bounds. How-
ever, this approach can only yield a suboptimal estimation
bound O(1/(Ay/n)), where X is the regularization parameter.

The tool of U-process was also used in generalization anal-
ysis of regularized metric learning [Cao et al., 2016] and
ranking [Clémencon erf al., 2008; Rejchel, 2012]. The basic
idea is to use symmetry of U-statistics to control supremum
of a U-process in generalization analysis by the supremum of
a Rademacher process, the latter of which can be bounded by
standard techniques in the i.i.d. setting. However, existing
studies with this approach either imply a suboptimal estima-
tion bound O(1/(v/An)) or require both Bernstein conditions
and capacity assumptions for a fast learning rate.

Integral operator was used to establish learning rates for
regularized least squares ranking [Zhao et al., 2017]. The ba-
sic idea is to show that the involved optimization problem has
a closed-form solution in terms of integral operators, which,
however, applies only to the least squares loss.

Recently, regret bounds for online pairwise learning al-
gorithms were established based on online-to-batch conver-
sion together with covering numbers [Wang er al., 2012] and
Rademacher complexities [Kar er al., 2013]. The conver-
gence rates of the last iterate for online pairwise learning al-
gorithms were studied based on convex analysis [Ying and
Zhou, 2016; Guo et al., 2016; Lin et al., 2017], which, how-
ever, as we will show below, are suboptimal.

3 Problem Setup and Main Results

3.1 Regularized Pairwise Learning

Let p be a probability measure defined over the sample space
Z=XxY C R%x R, where X and ) are the input and
output space, respectively. Let z = {z; = (z;,v;)}", be a
sequence of examples independently drawn from p. Let W
be a Hilbert space with the associated inner product (-, -) and
[I- Il 1] - ||| be two norms defined in W. Let ¢ : X x X — W
be a feature map and 7 : Y x Y — R. The definition of
7(y, §) depends on the specific application domain (See Ex-
amples 1, 2 below). From the feature map ¢, one can de-
fine a Mercer kernel K : (X x X) x (X x X) — R satis-
fying K ((z1, %1), (z2,Z2)) = (H(x1,Z1), ¢(x2, T2)) for the
reproducing Kernel Hilbert space W [Clémencon ez al., 2008;
Rejchel, 2012]. For any two examples z = (z,y), 2 = (%, 9)
and a prediction rule h : X x X — R, we use the loss func-
tion of the form V' (h, z, 2) = £(7(y,§), h(z, %)) to measure
the quality of 1 on z and Z, where £ : R x R — R, is convex
with respect to (w.r.t.) the second argument. We assume V'
is symmetric in the sense that V' (h, z,2) = V(h, %, z). The
generalization error of any h : X x X — R is defined as
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E(h) :=E, ;[V(h,z, 2)], where E, ; denotes the conditional
expectation w.r.t. z and Z. We omit the subscript z, 2 if the ex-
pectation is taken over all random variables. We consider pre-
diction rules of the form hy (2, Z) := (w, d(z, Z)),w € W,
and we search the estimator w,, 5 by minimizing the empiri-
cal error plus a regularization term to avoid overfitting

W = arg min [ Fy(w) = Alflwl|[*+

1
nin—1) Z

,J €Ny i)

K(T(yi7yj)><wa¢(miaxj)>)a (D

where A > 0 is a regularization parameter and we use the
notation N,, = {1,...,n}. The regularized generalization
error of the prediction rule h, is defined as

Fy(w) = E. :[0(7(y,9), (W, 6(z,2)))] + All[w][%. (@)

We denote by w the model minimizing F)(w) over W and
by h, the model minimizing the generalization error over
measurable functions defined on X' x X, respectively

W) = argv{,réi)r/lv Fix(w) and h,:= argmhiné'(h). 3)

The framework of pairwise learning covers many machine
learning problems as specific examples. Here we clarify
how the distance metric learning and ranking can be recov-
ered with specific instantiations of ¢, ¢ and 7. We denote
(t)4+ := max(¢,0) and 2 " the transpose of z € R.

Example 1 (Supervised metric learning). Assume ) =
{£1}. Supervised metric learning aims to find a Mahalanobis
metric dw (z;,7;) = (W, (z; — z;)(2; — x;) "), w € S
such that two examples with the same label are close to each
other, while two examples with different labels are apart from
each other. A common loss function used in metric learn-
ing takes the form V,, (dw, 2, 2) = g(y7(1 — dw(z,7))) Jin
et al., 2009], where g : R — R, is a convex function for
which a typical choice is g(t) = (1 — t)+. This scheme falls
into the pairwise learning framework if we define 7(y,§) =
yj ¢z, @) = (z — 7)(x — )7, (a,b) = g(a(l — b)) and
hw(x,Z) = (w,é(x,7)),w € SS9 That is, we have
Vin(dws 2, 2) = €(7(y, §), (W, (, 7))

Example 2 (Ranking). In ranking problems, we use the out-
put y; to indicate the ordering between instances, i.e., the in-
stance x; is considered to be better than x; if y; > ;. The
task is to predict the ordering between the objects based on
observations by constructing ranking rules A : X x X —
R, and predict y > ¢ if h(x,Z) > 0 [Rejchel, 2012;
Clémencon et al., 2008]. A common pairwise loss func-
tion used in ranking problems takes the form V,.(h, z, 2) =
g(sign(y — §)h(x,Z)), where g : R — R, is a convex
function which can be either the exponential cost function
g(t) = e, the “logit” function g(t) = log(1 + ¢t) or the
“hinge loss” g(t) = (1 — t)4 [Clémencon et al., 2008]. Here
sign(t) denotes the sign of ¢ € R. The above formulation of
ranking problems falls into our framework of pairwise learn-
ing by taking 7(y,§) = sign(y — ), {(a,b) = g(ab) and
ranking rules of the form hy (z,Z) = (w, ¢(z,Z)), w € W.
That is, we have V. (hw, 2, 2) = £(7(y,7), (W, ¢(z, Z))).
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3.2 Main Results

We now present our main result, showing that the uniform
deviation of the population sub-optimality F (w) — F)(w))
from the empirical sub-optimality F, x(w) — F, x(w)) de-
cays with the rate O(1/n), provided that F) is strongly con-
vex w.r.t. the norm || - ||, the dual norm of which is denoted by
[| ||« Introduce the notation X, = sup,, ;¢ x [|¢(z, T)]|«. For
any w € W, we refer to F\(w) — F(w) as the excess reg-
ularized generalization error (ERGE) of w. Let e = exp(1).

Definition 1 (Strong Convexity). A function f : W — Ris
said to be B-strongly convex (5 > 0) w.r.t. ||-|| if Vw, W € W
and Yo € (0,1), we have f(aw + (1—a)W) < af(w) +
(1-a)f(W) = Fa(l—a)|w — w|?.

Theorem 1 (Main theorem). Let L > 0 and $ > 0. Assume
the loss function { is L-Lipschitz continuous in the sense

|‘€(T(y7g)7a)_‘€(7—(yvg)vb” < L‘a_b|7 vy7g € JAa,b eR.

4)
Assume that F\(w) defined in Eq. (2) is B-strongly convex
w.rt. the norm || - ||. Let wy be defined as Eq.(3) and any

po > 0. Then, for any 0 < 69 < 1/e, with probability at least
1 — 20q the following inequality holds for all w € W

F\(w) = Fx(wx) < Fy (W) — Fy A (wa)+

(1+ V1og 65 * + log max(1, 2p, * (F(w) — F(w)))

« ALX., \/fﬂ max(po, 2(Fx(w) — Fy(wy))). (5)

In particular, for w_ in Eq.(1), we have the following in-
equality with probability at least 1 — 26 for all 0 < a < 1

1282 X2 1
nB(l —a) o8 ady’

Note the norm |||-||| in the definition of regularization algo-
rithm (1) is not necessarily equal to the norm || - || w.r.t. which
F) is strongly convex. In learning theory, we often refer to the
term D(\) := E(wy) —E(h,) +Al||[wal[|? as the approxima-
tion error. It is a standard assumption that the approximation
error admits a polynomial decay rate [Smale and Zhou, 2003;
Ying and Zhou, 2016; Zhao ef al., 2017]. In particular, if
h, € W then D(X) < A|||h,|||* [Guo et al., 2016]. Through-
out the paper we use the abbreviation £(w) := & (hw).

Fyx(wy ) — Ex(wy) < (6)

Assumption 1. We assume the approximation error D (\) en-
joys a polynomial decay rate with exponent 0 < @ < 1 in the
sense D(A) < co A%, VA > 0, where ¢, > 0 is a constant.

Theorem 2. Suppose that the assumptions in Theorem 1 and

Assumption 1 hold. Then, for any 0 < &g < 1/e, with proba-
bility 1 — 26 there holds

256L°X2 | 2
——*log —.
npB &5
Proof. Plugging a = % in Eq. (6) and recalling F\(w) =
E(w) + Al||w|||?, with probability at least 1 — 25, we can

E(wan) = E(hp) + Al[[Wanll[* < caX +

upper bound the term £(w x) — E(h,) + A|[|wz ||| by
256L% X2 2
E(wa) = E(hp) + N[[Will]* + =" log =
np do
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The stated bound can be derived by plugging Assumption 1
into the above inequality. [

Remark 1. The regularization parameter A should be cho-
sen according to S and n to achieve optimal generalization
bounds. Convergence rates O(log(n)/(nf3?)) were estab-
lished for the n-th iteration of online regularized pairwise
learning algorithms [Guo et al., 2016], which are suboptimal
to (6) if 8 < 1. For example, under conditions of Theorem 2
with 8 < A, Theorem 2 with A < n~ implies the learning
rate O(n~a+1) with high probability, while the discussions
in [Guo et al., 2016] and [Lin et al., 2017] can only imply
the rate O(n~ 2@+D log(n)) and the rate O(n~ T2 log(n))
in expectation, respectively. Here, A < B means there are
universal constants Cq,Cy > 0 with C1A < B < (C5A. In
Section 4, we will apply Theorem 2 to improve the existing
bounds for metric learning and ranking.

Remark 2. Another term of interest in the literature of reg-
ularized pairwise learning is £(w, ) — £,(w ). We now
relate this to £(w, 1) —E(h,)+A|[|wy a|[|?. On the one hand,
by Theorem 8.3 in [Cucker and Zhou, 2007] and |||w,]|| <

D(X)/A, we have E(w, ) — E(h,) + M|[waall]? =
O T n~2)+&(Wyp) — Ex(War) +D()) with high prob-
ability, where &,(w) = F, \(w) — A|||w]|||? is empirical er-
ror (without regularizer). On the other hand, we can take
W = Wy in (5) to get E(Wz ) — Ex(Wgn) < E(Wi) —
E.(wy) + E with high probability, where E is last term in
(5) with w = w, 5. Taking po in (5) as the right-hand side
of (6) and using (6) we get E = O(1/(n8)). This, together
with E(wy) — E(wy) = O(A%n’%), allows us to de-
rive (W, ) — Ea(Wgn) = O(A*7 0% 4 1/(nf)), which
improves the bound O(1/v/n)\) based on the U-process ap-
proach [Cao et al., 2016] and the bound O(1/(A/n)) based
on the stability approach since we often have 1/n <« 8 <

A < 1 (for example, Theorem 2 suggests A\ < nfﬁ).

4 Applications

We now apply Theorem 2 to distance metric learning and
ranking. We always assume g : R — R is convex.

4.1 Regularized Distance Metric Learning

As clarified in Example 1, an established regularization
framework to learn the Mahalanobis distance metric can be
reformulated as a regularized pairwise learning problem (1)
with some specific instantiations of W, 7, ¢ and ¢. Some in-
teresting regularizers in metric learning include the ¢;-norm
regularizer favoring the element-wise sparsity [Cao ef al.,
2016], the mixed (2,1)-norm regularizer encouraging the
column-wise sparsity [Ying et al., 2009] and the trace-norm
regularizer encouraging low-rank [Cao er al., 2016], etc. For
any w € R?™? we define the Schatten-p norm [|w/|s(,) as
the ¢,,-norm of o(w),p > 1, where o(w) is the vector of all
singular values of w and the ¢,-norm of a = (a1, ...,aq) €

R? is defined as ||a]|, = [2?21 |aj\p}1/p. For any w =

(wl,w? ...,wm) € R"™™, the mixed (p,q)-norm of w
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is ||W||(p,q) = H(”WIHP’ e me”p)Hq,V]Lq > 1. Itis
known that the dual norm of || - ||, 4 is || - [|(p*,q), and the
dual norm of || - || () is || - || s(p+), Where p* is the conjugate

exponent of p satisfying p~! + (p*)~! = 1. For brevity, we
introduce some notations X, o) = sup, zcy [[(z — Z)(x —
f)—r”(p,q)a XS(p) = Supx,i€X~||(x - f)(x - E)T”S(p)v Xp =
Sup, zex [ — Z||p- Denote d = lolg_’iil.

We now apply Theorem 2 to study regularized metric learn-
ing with the regularizer involving various norms, including
the mixed (p,q)-norm, the mixed (p,d)-norm, the S(d)-
norm, and the S(p)-norm. Since || - ||%p71), Il - ”23(1) are
not strongly convex, we use the strongly convex regulariz-
ers || - ||( & and | - ||S(d) [Kakade et al., 2012] to mimic

the effects of the mixed (p, 1)-norm based regularizer and the
Schatten-1 norm based regularlzer respectively. We hide the
linear dependency on log 6 in the big O notation.

Corollary 3. Consider the regularized metric learning (1)
with W = SdXdaT(y7g) = ygad’(xaf) = (I’ - j’)(I’ - i)T
and £(a,b) = g(a(l —b)). Let p,q € (1,2] and 0 <
dp < 1/ e Assume (4) and Assumption 1 hold. If we choose

A= X““n =1, then with probability 1 — 20g we have

E(Wz) — E(hy) + M[[wanl? =
O((Xp: Xgo) o1~ 597, =1 gy Ta)
0<<X2 X2 log d)= =), if |||[|=ll .4y (D)
O(XZn~wH), F =15, To)
O((XZ ooy log )T n557),if ||| [|=l"llg(q- (D)
Proof. It was shown in [Kakade er al., 2012] that »(M) :=

2
AIMIZ,

is QAW-strongly convex w.r.t. the norm
Il (p,q)- Therefore Theorem 2 shows that, with probability

1 — 25y, the term E(w, ) — E(h,) + A||wy, ,\|| (p.q) can be
upper bounded by
128L%2X p+q—2 9
(p A )( )log—+ca/\a.
An(p —1)(q —1) do

Eq. (7a) then follows by taking A =< (Xp*Xq*)a%ln_a%l
and noticing X, o) = Xp Xg+.
Egs. (7b), (7c) and (7d) can be derived in a similar way.

We omit the deduction for brevity. O

Remark 3 (Comparison with the state of the art). We now
compare our learning rates to the state-of-the-art bounds for
regularized metric learning. We complement the existing es-
timation error bounds with approximation error bounds under
Assumption 1. Jin ez al. [2009] studied regularized distance
metric learning (1) with 7(y, §) = 7, ¢(z, Z) = (r—Z)(x —
#)" and ||| - ||| being the Frobenius norm, and derived the

error bound £(wy ) — E(h,) + Al|[waa|]|> = ((XTé +

_4
Ve /\@). Taking A = X 'n @D, this

a g _ 2a+1 L.
boundbecomesO(X;“n 2D ++/dn 4("+1>),Whlch is
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worse than the bound O (X3n ™) ST in (7a) withp = g = 2.
For regularized metric learning (1) with a general regular-
izer, with probability 1 — Jy the term E(w, x) — E(h,) +
Al[|wz|||* was upper bounded in [Cao ef al., 2016] by

E, - sup Z?:l Ui<vaix—LrgJ+i>

l[wl|<1 —~ > ®)

where {0;};en, is a sequence of independent Rademacher

variables taking the value +1 or —1 with equal probability.

The term By 5 SUD||jw|jj<1 211 Ti (W, xia:—[rﬂHi) is closely
- 2

Ca\® + O<

related to the Rademacher complexity for metric learning in
[Cao et al., 2016] and can be estimated by the seminal com-
plexity bound of linear prediction with specific instantiations
of strongly convex functions [Kakade et al., 2012]. In Ta-
ble 1, we list the best generalization error bounds derived by
choosing appropriate regularization parameters A to minimize
(8). It is clear from Table 1 that our generalization analy-
sis yields the bounds O(n™ adt ), which significantly improve
the bound O(n~ %a+1) in [Cao et al., 2016].

4.2 Regularized Ranking

As shown in Example 2, a regularized ranking problem is
a specific regularized pairwise learning problem with some
specific instantiations of 7 and ¢. In this subsection, we as-
sume both || - || and ||| - ||| are the norm induced by the inner
product (-,-) in W, i.e., ||w|| = \/(w,w) for any w € W.
The following corollary follows directly from Theorem 2 by
noting the (2))-strong convexity of A|| - ||? w.r.t. || - |. We
omit the proof due to the space constraint.

Corollary 4. Consider the regularized ranking (1) with
{(a, b) = g(ab) and either T(y, §) = sign(y—7g) or 7(y, ) =
Yy — 4. Assume (4) and Assumption 1 hold. If we choose

A= X““n a1, then with probability 1 — 25y we have
E(Wy2) = E(hp) + All[Wall* = O((XZn=1)=5).

Remark 4 (Comparison with the state of the art). Fast learn-
ing rates were established for unregularized ranking in a
compact hypothesis space satisfying a capacity assumption
with the loss function satisfying an assumption on the mod-
ulus of convexity [Rejchel, 2012]. These error bounds are
stated only for the estimation error (ignoring the approxima-
tion error), and can be as slow as O(n‘é) if the capacity
assumption is removed. Agarwal and Niyogi [2009] studied
the generalization performance of regularized ranking algo-
rithms based on a stability approach, and derived the bound
E(wzn) — E(hy) + Allwanlll* = O(5l5 +A%). If we

1 . o
take A < n~ 2@+D, then this bound becomes O (n~ 2@+1)),

which is improved to O(n~5+7) in Corollary 4 without ca-
pacity assumptions on the hypothesis spaces. Zhao et al.
[2017] derived generalization bounds O (n°~ ™= ) for a spe-
cific regularized ranking problem (1) with 7(y,§) = y — ¢
and ¢(a,b) = (a — b)?. Here ¢ is a positive constant. There-
fore, even for this specific regularized ranking problem, our
general error bound for regularized pairwise learning (1) is
able to imply a tighter bound than existing bounds derived
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[ o), P g € (1,2]

H i H(p,d_)?p € (172]

| . ||S(p)7p S (132] ” . ”S(J)

Ours (X} Xg*n_l)aiﬂ

(Xp- X5 (log dyn™ ") a1

(Xg(p*)”_l)% (Xg‘(oo)(logd)n_l)%ﬂ

[Cao et al., 2016] | (X2 XZ2.n~ )7t

(X2 X2 (log d)n ") =51

(Xg(p*)n_l) 2a+1 (Xg(oo) (logd)n™1) ol

Table 1: Comparison of generalization bounds for regularized metric learning. The first row shows different instantiations of the norm ||| - |||
in (1), for which the related generalization bounds established in this paper and [Cao et al., 2016] are presented in the second and third row.

exclusively for a specific regularized ranking algorithm using
the least squares loss. It should be mentioned that the bound
O(n®~ 743 ) in [Zhao et al., 2017] can be improved if a further
capacity assumption on the hypothesis space is imposed.

5 Proof of the Main Theorem

In this section, we present the proof of the main theorem
(Theorem 1). The key idea in our deduction is to partition
the hypothesis space into a sequence of subsets according to
the value of ERGE, using the idea of peeling [Bartlett et al.,
2005]. The strong convexity of the regularized objective then
implies that the infinity-norm of functions in each sub-class
can be bounded by the maximal ERGE associated to that sub-
class, which allows us to conduct the localization analysis to
control the uniform deviation between the ERGE and its em-
pirical counterpart in each sub-class by the local ERGE. For
any w € W, define the excess loss function by

ha(2,2) = U1 (y, 9), (W, 6(, 2)))~U(7(y,5), (W, 6(2, 7))

Let pp > 0and 0 < &y < 1/e be any two fixed number.
We construct two geometric sequences p = 2Fpg, 0, =
2759,k = 1,2,.... For brevity, we set p_; = 0. We group
those w whose ERGEs belong to (px—1, pr] into the class Wy,

Wi = {W EW:pp_1 < F,\(W)—F)\(WA) < pk}, ke NU{O}.

Define Hy, = {h3, : w € Wi}, k € NU{0}.

We denote by | x| the largest natural number not larger than
x. We begin our deduction with the following lemma control-
ling the infinity-norm of functions in Hy.

Lemma 5. If (4) holds and Fy is 3-strongly convex, then
SuthEHk ||h3\vHoo <2LX, %»

Proof. For any h), € H, ||h}||o can be upper bounded by
SU‘P Ig(T(ya g)) <Wv ¢($, j)>) - E(T(y7 5)7 <W)\a (b(.]?, jJ)>)|

< sup L|(w — w, ¢(z, I))| < LX.[|w — wal|, ©

2,2

where the first inequality follows from the Lipschitz property
of the loss function ¢ and the second inequality is due to the
definition of dual norm together with the definition of X,.
According to the definition of w and the strong convexity of
F\, the following inequality holds for all w € W

< Fx(w)  Fax(wy) Bllw—w,l?
= 2 2 8 ’

which, together with the assumption hJ, € Hj,, implies

HW*W)\H < \/E(F,\(W) 7F)\(W,\)) < ’/4%, Yw € Wy.

W+wW
FA(W,\)SF,\( > /\)
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Putting this inequality into (9) and using the definition of h3,
show [|h3 [leo < (/55 LX... O

We prove Theorem 1 in four steps. For any f defined over
ZxZ, weuseR,f = ﬁ >ijen, izj | (2 2j) to denote
the empirical average of f. In the first and second step, we
conduct localization analysis in each sub-class Hj, and get a
bound with probability 1 — 4y, for sup,x 3, [E[h)]—E,[h]]
in terms of pg. In the third step, we show both 5,:1 and py,
can be bounded by ERGE, which together with union bounds,
implies a probability inequality on ERGE in terms of a square
root of ERGE. In the last step, we solve this probabilistic in-
equality to get the stated bound. The intuitive observation
is that both the reciprocal of confidence and the constant in
the bounded difference property for the application of Mc-
Diarmid’s inequality in each sub-class can be controlled by
ERGE associated to that sub-class, which allows us to get
bounds on ERGE in terms of a square root of ERGE.

Proof of Theorem 1. Our proof consists of four steps.

Step 1. We first apply the McDiarmid’s inequality
(Theorem D.3 in [Mohri et al., 2012]) to control the de-
viation of suppx ey, [Elhg,] — Eg[hy,]] from its expec-
tation. To this aim, we need to show that functions
in H; satisfy the bounded difference property. Indeed,
for any z = {z1,...,2-1,%,2041,..-,2n} and Z =
{Zl, ey ZE—1, 2t Ztdlyeees Zn}, we have

sup (E[hg,] — Eq[h3,
haVGHk
< sup [Eg[hy] — B[y

h{, €My

2
“n(n-1)

- sup (B[R] - Eshd))|
hd, EHy

sup > (1B (26 2) ]+ 1B (2 7))
h€Hr jeN,, j#t

8LX. [pr

4 A

— sup ||higlloo < ,
n 125 | v\ B
where the last inequality follows from Lemma 5. Apply-
ing McDiarmid’s inequality (Theorem D.3 in [Mobhri er al.,

2012]) with increments bounded by 3LX-

n

IA

%’“ implies that

W]

with probability at least 1 — dj, the term supy,x 4, [E[hq
[, [h2]] can be upper bounded by

N R 4 ALX, | 22e108(1/0k)

E sup [E[hQ
h) EHy, np

. (10)

Step 2. We now use techniques in U-process to bound
the expectation in (10).  Specifically, Lemma A.l in
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[Clémengon et al, 2008] with gw(zi,z;) = E[h}] —
hy(zi,2;) and the index set W allows us to derive

E. subpy ero, [ERY] — Exlid] < Eosuppy e, [E[hév] -

%]
samples independent of z and let {o; };cn,, be a sequence of
independent Rademacher variables. According to Jensen’s
inequality and a standard symmetrization technique, the term

E, supy er, [E[h] — [, [h2]] can be upper bounded by

Loybs hf,‘v(zl-,zwﬁi)} Letz = {Z,...,%,} be iid.

L5) 3]
ha(Zi, 2,2 4i) — h‘/)\v(ziszgJ+i):|
=1 1=1

1
Esz sup n|:
h,€Hr I.fj

2
< TEZ o Sup Z UiE(T(yi» y[%]—&-z)v <W7 ¢(x17 xL%J+z)>)
LQJ weWr ;4
9 L5)
< TEZ,U sup UiL W7¢ Ty T|2|4i))s (11)
ij WEWk; < ( L5+ )>

where the second inequality uses the fact that w, is a fixed
element and the last inequality follows from a contraction
property of Rademacher averages (Lemma 4.2 in [Mohri
et al., 2012] with the Lipschitz composition operator ¢ —
E(T(yzaylgj+z)aé),l =1,..., I_%J)

The function F)\(w) := Fy(w) — F)(w)) is S-strongly
convex. Note that any w € W, satisfies F\(w) < pj. More-
over, the definition of w) implies that infy,cyy Fi(w) = 0.
Therefore, the conditions of Theorem 7 in [Kakade et al.,
2012] are satisfied and we can apply it here to show

5]

2[3]pk
E, s sup (W, p(x;,xin 1)) < Xy 2 .
weW; z:zl < ( L3I+ )> 6
Plugging it back into Eq. (11) gives
\ A B oTpA 2pk
E, sup [E[hg] — Exlhy]] < 20X | 5. (12)
h&‘,G'Hk |_§JB
Step 3. We now present probabilistic bounds for

supwew Elhy] — Ey[hd]]. For any b, € Hy, k > 1, we
have & = p_1 < Fx(w) — Fx(w). Therefore,

pr < max{pg, 2(F\(w)—Fx(wy))}, Vw € Wy, k € NU{0}.

Moreover, it can be directly checked that

1 po2 < max{po, 2(F (W) — FA(wx))} (13)
Ok dopo dopo

According to the definition of Fy and F,, \ given in (1) and
(2) together with the definition of hJ,, we derive

[N (W)= Fx (W) =[Fop (W)= Fp a (W2)] = B[R] -E, [13,].
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oilha (Ziy 23 44) — Wy (20, 212 14)]

Combining the above identity, (10), (12) and (13) together,
with probability 1 — ¢ the following inequality holds uni-
formly for all h, € Hy,

Fx(w) = Fx(wy) < Fya(w) — Fp A (wy)+

(1 + \/log 50_1 + log max(1, 2p61(F>\(W) - FA(WA)))>

x 4L X, \/7126 max(pg, 2(F\(w) — Fx(wy))).

The stated inequality (5) follows directly if we apply union
bounds over Hg, Hi, ... with confidence dg, d1,... (notice
that >"77 ) 6 = 20p).

Step 4. Finally, we present probabilistic bounds for the
estimator w, 5. According to the definition of w_ y, we have
Fya(Wz,n) < F, x(wy) and therefore (5) implies

Fa(Wa) = Fa(wa) _ \/Qmax@o,z(m(wz,mFA<wA>>>
4L X, - nf

X (1+\/log 5g1+log max(1, 2p51(F>\(Wz,>\) —FA(WA)))> .

Take the assignment py = %. If F(Wzy) —

Fx(wy) > £, the term F)\(w;,x) — F(wy) can be further
upper bounded by

2v2 _
12812 X2 (1 + log 6" + log 2(F\(Wz,») FA(WA))).
np Po

2 2
For the assignment py = % and any 0 < a < 1,

the term "2 (1“;3’ 2%;{? W2)) can be upper bounded by (note

(a+b)? <2(a® +b%),VYa,b € R)

nB(Fx(Wzx) — Fa(wy))
1282 X2

anB(Fx(wWz,x) — Fa(w))
128L2X2

where the last inequality follows from loga < ab + log % —

1,¥a,b > 0. Solving the linear inequality (14) directly yields

the stated bound (6) with probability at least 1 — 24g. If
Fx(wz,n) — Fx(wy) < £, itis clear that (6) holds. O

1 +10g551 + log
(14)

<logdy ' + + log —,
a

6 Conclusions

We develop a unified generalization bound for pairwise learn-
ing, and apply it to improve existing results. It would be in-
teresting to study pairwise learning by exploiting the smooth-
ness of loss functions [Zhang et al., 2017] and consider dis-
tributed pairwise learning algorithms [Lin and Zhou, 2018].
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