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Abstract

Hashing has been widely deployed to large-scale
image retrieval due to its low storage cost and fast
query speed. Almost all deep hashing methods
do not sufficiently discover semantic correlation
from label information, which results in the learned
hash codes less discriminative. In this paper, we
propose a novel Deep Joint Semantic-Embedding
Hashing (DSEH) approach that consists of Lab-
Net and ImgNet. Specifically, LabNet is explored
to capture abundant semantic correlation between
sample pairs and supervise ImgNet from both se-
mantic level and hash codes level, which is con-
ductive to the generated hash codes being more
discriminative and similarity-preserving. Extensive
experiments on three benchmark datasets show that
the proposed model outperforms current state-of-
the-art methods.

1 Introduction

Due to the explosive increase of high-dimensional media data
in search engines and social networks, approximate nearest
neighbor (ANN) search for large-scale datasets has attracted
more and more attention. Among existing ANN techniques,
hashing has become the most popular and effective one due to
its fast query speed and low memory cost [Deng et al., 2015a;
2015b], which aims to map high-dimensional data into com-
pact binary codes and preserve their original similarities.

Recently, deep hashing methods [Xia et al., 2014; Lai
et al., 2015; Cao et al., 2017; Yang et al., 2017; 2018;
Li et al., 2018] have gained state-of-the-art performance due
to their powerful ability of feature learning by using deep net-
work architecture, with which we can build more accurate
similarity relationship and then generate more discriminative
hash codes. Compared with unsupervised deep hashing meth-
ods, supervised ones can achieve better performance with the
aid of label information. Even so, how to sufficiently discover
the semantic correlation from label information is still a cru-
cial issue to be addressed. In this paper, we mainly focus on
extracting abundant semantic correlation from label informa-
tion with deep neural network.
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Figure 1: Single-label dataset vs. multi-label dataset.

Actually, existing supervised hashing methods do not ra-
tionally exploit label information of samples, almost all of
which only simply construct the similarity affinity matrix of
sample pairs [Xia et al., 2014; Li et al., 2015; Liu et al.,
2016al. As shown in Fig. la, for the ImageNet dataset, each
sample is annotated by single label, where the similarity re-
lationship between samples is very sparse, i.e., the number of
similar pairs is much smaller than the number of dissimilar
pairs, which will result in that the learned hash codes can-
not preserve the original similarity relationship effectively.
To tackle this problem, HashNet [Cao et al., 2017] allevi-
ates such data imbalance by adjusting the weights of sim-
ilar pairs. However, the optimal weights cannot be easily
obtained, which limits its feasibility to real-world retrieval
system. For NUS-WIDE dataset, as shown in Fig. 1b, each
sample is annotated with multiple labels, which can provide
high level semantic information and complex similarity rela-
tionship. Unfortunately, multiple labels in current methods
are oversimplified to single-label case, which removes many
useful semantic information and cannot maintain the origi-
nal similarity relationship of sample pairs. Therefore, either
single-label or multi-label dataset, we should capture more
abundant semantic correlation to indicate the accurate sim-
ilarity relationship between samples and produce more dis-
criminative hash codes.

In this paper, we propose a novel Deep Joint Semantic-
Embedding Hashing method, namely DSEH, in which both
LabNet and ImgNet are end-to-end networks containing se-
mantic layers and hash layers. In LabNet, label informa-
tion are projected into common semantic space and common
Hamming space for exploring abundant semantic features and
discriminative hash codes, respectively. In ImgNet, an image
is embedded into the common semantic space and common
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Figure 2: The framework of our proposed DSEH.

Hamming space. By exploiting the learned semantic correla-
tion and hash codes in LabNet as supervised information and
transferring them to ImgNet with the form of two constraints,
more accurate semantic correlation can be discovered and
thus discriminative hash codes can be generated. Extensive
experiments, conducted on three popular datasets including
single-label and multi-label ones, demonstrate the proposed
DSEH outperforms state-of-the-art hashing approaches.

The main contributions of our DSEH are summarized as
follows. 1) We exploit a novel architecture for deep hashing,
consisting of LabNet and ImgNet, where common semantic
space and common Hamming space are built across the net-
works. 2) We utilize a couple of constrains to build a relation-
ship between LabNet and ImgNet from semantic feature level
and hash code level. 3) We adopt an alternative training strat-
egy to jointly optimize the parameters of these two networks,
and produce the optimal hash codes.

2 Related Work

Existing hashing methods can be roughly categorized into
unsupervised [Gionis et al., 1999; Weiss et al., 2009; Gong
et al., 2013; Liu er al., 2016b] and supervised hashing [Liu
et al., 2012; Shen et al., 2015; Deng et al., 2014; 2016;
Liu ef al., 2016a; 2016a; Deng et al., 2018]. Unsupervised
hashing methods learn hash functions from unlabeled data.
Locality Sensitive Hashing (LSH) [Gionis et al., 1999] uses
random projections as hash function. Graph-based hash-
ing [Liu et al., 2011] learns appropriate hash codes by discov-
ering inherent neighborhood structure. Supervised hashing
methods incorporate semantic label or relevance information
to improve the quality of hash codes. Binary Reconstruction
Embedding (BRE) [Kulis and Darrell, 2009] designs hash
functions by minimizing the squared errors between the orig-
inal distances and the reconstructed distances in Hamming
space. Supervised Hashing with Kernels (KSH) [Liu et al.,
2012] learns to build compact binary codes by minimizing the
Hamming distances on similar pairs and maximizing those on
dissimilar pairs.

Deep hashing methods have been presented recently, which
achieve promising performance due to the powerful arbitrary
nonlinear representation of deep neural network. With the
help of this structure, CNNH [Xia er al., 2014] learns approx-

imate hash codes from the pairwise similarity regularization
first, then tries to learn feature representation and hash func-
tion based on the hash codes in the first stage. DNNH [Lai et
al., 2015] and DPSH [Li ez al., 2015] integrate feature learn-
ing and hashing learning into a unified end-to-end network to
improve the discrimination of hash codes. DSH [Liu et al.,
2016a] groups training data into similar pairs and dissimilar
pairs to generate similarity correlation and controls the quan-
tization error. One further study, HashNet [Cao er al., 2017]
uncovers the inherent problem caused by data imbalance of
some single-label dataset and alleviates this drawback by ad-
justing the weights of semantic correlation matrix. However,
the data imbalance remains a challenge and almost all of these
methods do not or little exploits semantic information to gen-
erate semantic correlation from label information directly.

3 Proposed DSEH

Fig. 2 shows the flowchart of the proposed method, which
mainly consists of two parts: LabNet and ImgNet. LabNet is
an end-to-end fully connected deep neural network, where a
semantic layer and a hash layer are built to generate semantic
features and hash codes from label information. Meanwhile,
ImgNet consists of a convolution neural network with a se-
mantic layer and a hash layer, which is used to learn hash
codes of the input images.

3.1 Problem Formulation

In similarity retrieval scenario, given a dataset O = {o;}?_;,
0; = (v;,1;), where v; € R'*% is a feature vector of the ith
sample, which could be hand-crafted feature, deep feature,
or raw pixels of an image. I; = [l;1, - ,l;| is the label
annotations assigned to o;, where c is the number of classes.
o, and o; are associated with similarity label s;;, where s;; =
1 implies o; and o; are similar, or otherwise s;; = 0. In
our setting, we define s;; = 1 if o; and o; share at least
one label, and s;; = 0 if 0; and o; have no common label.
The goal of deep hashing is to learn nonlinear hash function,
ie, f:0— h € {-1,1}X to encode each sample o into
compact K-bit hash code h, such that the original similarity
between sample pairs can be well preserved.

For two binary hash codes h; and h;, their Hamming dis-
tance disg (h;, h;) and inner product (h;, h;) can be formu-
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lated as:

. 1
If the inner product of two binary codes is small, their Ham-
ming distance should be large, and vice versa. Given the hash
codes h; and h;, the similarity probability between o; and o;
is defined as a likelihood function:

h'h;), ig =1
p(sijlhi,hj) = {T(_ - (;?Thj) jtj —o @

where o (z) = 1-%% is the sigmoid function. Similar to
logistic regression, we can see that the smaller hamming dis-
tance distg (h;, h;) is, the larger their inner product (h;, h;)
is. A smaller condition probability P(1|h;, h;) implies h;
and h; should be similar; otherwise, a larger condition prob-
ability P(0|h;, h;) means h; and h; should be dissimilar.
Thus, quantifying the similarity relationship between hash
codes in Hamming space can be transformed into calculating
the inner product of original hash codes.

Similar to hash learning, replacing two features f; and f;
in Eq. (2), the similarity between two features can also be
calculated. The larger (f;, f;) is, the greater the similarity of
them is, and vice versa. The similarity probability of f; and
f; can be expressed as likelihood function:

o (£71) sij =1

3
1—o(fi"f;), si;=0 ©)

p(siilfir f3) = {

3.2 LabNet Learning

For discovering the abundant semantic correlation from la-
bel information, our LabNet is constrained in both semantic
space and Hamming space. Pairwise correlation loss in these
two spaces should be concerned. Let f(I;; 6') denote embed-
ding labels for point 7, and #' is the parameter of LabNet.

Different from generating supervised information only in
the Hamming space in most exiting methods, a new semantic
space is constructed in our method, with which similarity re-
lationship can be well preserved at semantic level. For all the
instances in semantic space, given features F! = {f/}"
and pairwise similarity labels S = {s;;}, the logarithm
Maximum a Posterior (MAP) estimation of semantic features
F'=[fi,--, f\] can be expressed as:

log p(F'|S) o< log p(S|F')p(F')
=" logp(sylfl (el fl) @

Sij €S

where p(S|F') is the likelihood function, and p(F') is the
prior distribution. By taking the negative log-likelihood of
the observed pairwise labels in S, we can frame the follow-
ing optimization problem as:

gliel} Ji = —logp(S|F)
== 2 (suflTfj ~log(1 +exp(£i" 1))

5i;ES

&)
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It is easy to find that the above optimization problem can
make semantic features F' to preserve the original similar-
ity relationship in semantic space.

Then, semantic features are embedded into Hamming
space to produce compact binary codes which also need to
keep the original similarities. The MAP estimation of hash
codes H! = [hll, sy hé\,] can be represented as:

log p(H'|S) o log p(S|H")p(H")

= 3" logp(si; I, hl)p(RL,RY).  (©
SijGS

When substituting Eq. (2) into MAP estimation in Eq. (6), the
problem can be formulated as:

min J, = —logp (S| H')
HL 0!

- Z (sijhi"h! —log(1 + exp(hi"h)))

5i; €S
@)
Furthermore, in order to promote the hash value discretiza-
tion, binary regularization should be considered additionally,
which can be formulated as follow:

g}}g} Js = Z (|||hé|_1||1+|||hé'|_1||1) (8)

5i;ES

where 1 € R¥ is the vector of ones, and || - ||; denotes the
f1-norm of a vector.

Finally, to maintain the semantic information during the
training of LabNet, the achieved hash codes from Hamming
space is mapped to original label. Therefore, the output of
LabNet can be written as:

Yi—=WTH +b ©)

where Y'! is the predicted label of output, and W is the map-
ping weight. To minimize the distance between the predict
label g! and ground truth y!, the least squares loss is adopted
as follows:

N N
min 7 =3 [y~ g3 = 3 gt — w R~ b3
=1 =1

Y 6!
(10)
where || - |2 is Iz norm of a vector.
The overall objective function for LabNet can be written as
follows:

min  Ly.p =N +ade + BT +vTs (11)
FUHL 6!

where «, 3, are the hyper-parameters corresponding to the
loss function, respectively.

3.3 ImgNet Learning

ImgNet is supervised by LabNet from semantic features as
well as hash codes. Let g(v;; 0¥) be the learned image feature
for the ith samples, where 6V is the network parameter of
ImgNet.
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In the common semantic space between LabNet and
ImgNet, if the sample pairs v; and v; are similar, their cor-
responding features f; and f7 should also be similar. Super-
vised by the semantic feature of LabNet, the semantic feature
F" of ImgNet can be depicted as:

min Ji = —logp (S| F’)

== 3" (s £ T fL —log(1 + exp(£7 £1)))
sij €S
12)
where f} is the semantic feature generated by ImgNet, and
f}is semantic feature from LabNet.

In common Hamming space, different from the traditional
methods that employ pairwise similarity and iterative search
hash codes, we guide the hash codes learning in ImgNet by
utilizing the learned hash codes in LabNet. The hash layer
of ImgNet is constrained to approach precise binary code
{0,1}¥ by utilizing sigmoid function with cross-entropy
loss. Since the activation function of hash layer in LabNet
is tanh(-), the hash codes of LabNet need to adjust from
hl e {-1,1}¥ to bl € {0,1}* to match the sigmiod|-)
activation function in ImgNet. The loss of hash codes in com-
mon Hamming space is defined as:

N

min o = — Y |hf logo(§}) + (1 - hl) log(1 — o(3)

Hv v ¢
=1
(13)
where ¢} is the output of ImgNet.
Therefore, the whole objective function of ImgNet is de-
noted as follow:
FUIEI%’I}OU ‘CImg - jl + 77;72 (14)
where 7 is the hyper-parameter to balance the two loss func-
tion terms.

3.4 Training Strategy

LabNet takes advantage of all label information to generate
semantic features and hash codes. However, the learned se-
mantic features and hash codes in LabNet may not match well
with the corresponding semantic features and hash codes to
be learned in ImgNet at the beginning. Therefore, we should
exploit the strategy of alternative training to reconstruct the
optimal semantic features and hash codes in semantic space
and Hamming space, respectively.

Specifically, we first randomly initialize LabNet and train it
until £}, reaches convergence. Then, utilizing the obtained
semantic features and hash codes in LabNet, we supervise the
ImgNet training in semantic space and Hamming space, re-
spectively. Next, we initialize the semantic features and hash
codes of LabNet with the resulting semantic feature and hash
codes in ImgNet generated from the second step. Finally, re-
peating such training procedure for LabNet and ImgNet until
convergence.

Algorithm 1 outlines the whole leaning algorithm in detail.
It is noted that we learn all network parameters by utilizing
stochastic gradient descent (SGD) with a back-propagation
(BP) algorithm, which is also widely used in existing deep
learning methods.
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Algorithm 1 The learning algorithm for our DSEH

Input: Image set X , Label set L
Output: Parameters 0" of ImgNet, Optimal code matrix B
Initialization
Initialize network parameters o', 0v.
hyper-parameters: «, 3, 7y, and 7.
learning rate: f.
mini-batch size: N' = 32, NV = 128.
maximum iteration number: ¢',%.
repeat
for ¢! iteration do
Update 6 by BP algorithm:
01' < Hl V2 Vel % (Elab)
end for
Update the parameter hg by h,li = sign(h,li)
Update the parameter hé/ by adjusting hé e {-1,1} o e {0,1}%
for ¢ iteration do
Update 0¥ by BP algorithm:
0% « 0¥ — - Vovl (Limg)
end for
Update the parameter h?, h! by h? = sign(g?), h! = sign(g?)
Update the parameter B by B = H"
until convergence

4 Experiments

4.1 Datasets and Settings

The experiments are conducted on three benchmark image
retrieval datasets: NUS-WIDE [Chua et al., 20091, ImageNet
[Russakovsky et al., 2015], and MS-COCO [Lin et al., 2014].

e NUS-WIDE dataset is a multi-label image dataset,
which contains 269, 648 images with 81 ground truth
concepts. We follow similar experimental protocols as
DPSH [Li et al., 2015] and use the subset of 195, 834 im-
ages that are associated with the 21 most frequent con-
cepts, where each concept contains at least 5,000 im-
ages. We randomly select 100 images per class as the
query set, and 500 images per class as the training set.

o ImageNet dataset is a benchmark image dataset for
Large Scale Visual Recognition Challenge (ILSVRC
2015), containing over 1.2M images. It is a single-label
dataset, where each image is labeled by one of 1,000
categories. We randomly select 100 categories, and ran-
domly select 50 images per class as the query set, 100
images per class as the training set.

e MS-COCO dataset is an image recognition, segmenta-
tion and caption dataset which contains 82,783 train-
ing images and 40, 504 validation images. It is a multi-
label dataset labeled by 80 categories. After pruning im-
ages without category information, we obtain 122,218
images and randomly sample 5,000 images as queries,
10, 000 images as training points.

We evaluate the retrieval quality using three evaluation
metrics: Mean Average Precision (MAP), Precision-Recall
curves, and Precision curves with respect to the number of top
returned results. With the same training and test set, all meth-
ods were tested under the same conditions. Given a query,
the ground truth is defined as: if a result shares at least one
common concept with the query, it is relevant; otherwise it is
irrelevant.

We compare our method with ten classical or state-
of-art hashing methods, including unsupervised methods
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Method NUS-WIDE ImageNet MS-COCO
16bits 32bits 48bits 64 bits | 16bits 32bits 48bits 64 bits | 16bits 32bits 48bits 64 bits
DSEH 0.7119 0.7312 0.7372 0.7422 | 0.5278 0.6137 0.6397 0.6548 | 0.5897 0.6048 0.6133 0.6188
HashNet | 0.7007 0.7275 0.7301 0.7374 | 0.3260 0.4563 0.5018 0.5270 | 0.5600 0.5850 0.5989 0.6056
DHN 0.6512 0.6611 0.6675 0.6741 | 0.1838 0.2344 0.2375 0.2564 | 0.5353 0.5456 0.5486 0.5555
DPSH 0.6902 0.7049 0.7130 0.7158 | 0.2730 0.2841 0.3111 0.3242 | 0.5618 0.5774 0.5857 0.5901
CNNH 0.6573 0.6601 0.6716 0.6781 | 0.2488 0.3047 0.3263 0.3387 | 0.5115 0.5232 0.5283 0.5328
SDH 0.6488 0.6703 0.6811 0.6857 | 0.3687 0.4292 0.4446 0.4600 | 0.5312 0.5632 0.5634 0.5741
ITQ-CCA | 0.6125 0.6472 0.6655 0.6766 | 0.2312 0.4061 0.4316 0.4568 | 0.5418 0.5658 0.5704 0.5715
KSH 0.6404 0.6636 0.6689 0.6731 | 0.3064 0.3874 0.4006 0.4168 | 0.5496 0.5574 0.5628 0.5688
ITQ 0.5715 0.5876 0.5910 0.5985 | 0.1668 0.2452 0.2929 0.3184 | 0.4834 0.4993 0.5111 0.5153
SH 0.4459 0.4504 0.4342 0.4244 | 0.1194 0.1776 0.2143 0.2335 | 0.4494 0.4400 0.4397 0.4316
LSH 0.4624 0.4431 0.4433 0.4816 | 0.0278 0.0526 0.0720 0.0966 | 0.3718 0.3807 0.3945 0.4119
Table 1: Mean Average Precision(MAP) of Hamming Ranking on three benchmark datasets.
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Figure 4: Precision w.r.t. top returned samples curves @ 32bits of our method and comparison methods on three benchmark datasets.

LSH [Gionis et al., 1999], SH [Weiss et al., 2009],
ITQ [Gong er al, 2013], supervised shallow methods
KSH [Liu et al., 2012], ITQ-CCA [Gong et al., 2013],
SDH ([Shen et al., 2015], and deep supervised methods
CNNH [Xia et al., 2014], DPSH [Li et al., 2015], DHN [Zhu
et al., 2016], HashNet [Cao et al., 20171.

For fair comparison, we extract 4, 096-dimensional deep
features by CNN-F [Chatfield e al., 2014] model which is re-
trained on ImageNet dataset. We construct ImgNet to reserve
first seven layers same with those in CNN-F followed fc8
with 512 nodes for semantic layer and K nodes for hash layer,
ie,(I > CNNF — 512 — K). LabNet is initialized ran-
domly and constructed as (L — 4096 — 512 — K — ¢),
which contains ¢ nodes for total class labels.

Since the semantic layer and hash layer are trained from
scratch, we set its learning rate 10 times of the ones for the
other layers. The learning rate is chosen from 102 to 1076
with a validation set. The batch size of LabNet and ImgNet
are set to 32 and 128 respectively. Since the semantic corre-
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lation of ImageNet is sparse, we set the values in similarity
matrix as S € {0,5}. For the hyper-parameters in LabNet,
we conduct cross-validation to search o and v from 1072 to
102, and search 3 from 10~ to 10~. We find that the opti-
mal result can be obtained when o = v = 1, and 8 = 0.005.
Then we search from 1073 to 102 and discover n = 1 is the
best for ImgNet. It is noted that the parameter searching op-
erations are performed with the searching step set to 5. Our
model is implemented on TensorFlow [Abadi et al., 2016] on
a server with two NVIDIA TITAN X GPUs.

4.2 Results and Discussions

Table 1 shows the results of different hashing methods on
three benchmark datasets when the code length is 16, 32, 48,
and 64 bits respectively. Fig. 3 and Fig. 4 show the Precision-
Recall curves and Precision curves respectively for different
methods on the code length of 32 bits.

On two multi-label datasets NUS-WIDE and MS-COCO,
DSEH substantially outperforms all the compared baseline
methods. Besides, almost all deep hashing methods outper-
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Method NUS-WIDE ImageNet MS-COCO
nn mapy map; np mapy map; np mapy map;
DSEH 2008 0.9664 0.7312 100 1.0000 0.6137 1907 0.8276 0.6048
DSEH-S 1959 0.9633 0.7208 100 1.0000 0.5988 1933 0.8260 0.5907
DSEH-SS 1164 0.9322 0.7013 98 0.9825 0.5681 1220 0.7452 0.5237
DSEH-L 1036 0.9607 0.7251 100 1.0000 0.6070 802 0.8199 0.5915
DSEH-A 1684 0.9558 0.7234 100 1.0000 0.5576 1574 0.8134 0.5850

Table 2: The results of ablation study @ 32bits of our DSEH.

form the traditional hashing baselines, which highlights the
benefit of feature learning by deep networks that more dis-
criminative representation can be obtained. Compared with
other deep methods which utilize similarity pairs, DSEH
achieves a substantial increase in average MAP at different
code lengths. All the results shown in Table 1, Fig. 3 and
Fig. 4 illustrate the superiority of our method. One reason
may be that instead of utilizing similarity pairs information
roughly, DESH exploring label information to generate se-
mantic feature is very effective to generate more sufficient
semantic information and thus produce more discriminative
hash codes. Another reason is that sufficient semantic infor-
mation obtained from LabNet can be retained completely and
thus supervise ImgNet effectively when training ImgNet with
the supervised information on the semantic level and hash
codes level.

On ImageNet dataset which is annotated with single label.
DHN, DPSH, and CNNH achieve under-performing results
compared with the shallow baseline SDH, which demon-
strates that network learning capacity can be dropped on
single-label dataset because of the imbalance of pairs sim-
ilarity. CNNH generates undiscriminating hash codes only
under the supervision of pairwise similarity matrix. By ad-
justing the weight of similarity correlation, HashNet outper-
forms other baselines, which shows that adjusting weight can
only alleviate influence of the data imbalance. The proposed
DSEH significantly outperforms all other baselines. Com-
pared with the state-of-the-art HashNet, we achieve about
34.50% increase in average MAP at different code lengths
on this imbalanced dataset. It means that the proposed se-
mantic feature learning and supervision to hashing learning
can solve the issue of data imbalance in single-label dataset
and thus hash codes can be generated more discriminative.

4.3 Empirical Analysis

Two different experiment settings are designed additionally
to analyse the proposed method.

Visualization of Semantic Features: We visualize the se-
mantic features generated by LabNet and ImgNet on NUS-
WIDE at 32 bits in Fig. 5 (for convenience, 100 points are
sampled and encapsulated by PCA [Wold et al., 1987]). We
observe that the semantic features of LabNet are abundant, in-
dicating that the semantic information of labels is effectively
exploited. Furthermore, the semantic features of ImgNet are
similar to those in LabNet, inferring that ImgNet is well su-
pervised in the common semantic space.

Ablation Study: We investigate the variants of DSEH on
the three datasets. DSEH-S denotes that ImgNet without su-
pervision on semantic layer from LabNet. DSEH-SS refers to
that both LabNet and ImgNet without semantic supervision.

(b) ImgNet
Figure 5: The visualization of semantic features.

(a) LabNet

DSEH-L denotes that LabNet drops direct label supervision.
DSEH-A refers to that LabNet and ImgNet are trained only
once without alternating manner.

Tabel 2 shows the average results of 10 runs of DSEH vari-
ants, where ny, is the total number of hash codes generated
from LabNet, map; is the MAP of retrieving labels with hash
codes generated by LabNet, and map; is the MAP of retriev-
ing images with the hash codes generated by ImgNet. DSEH
outperforms all of its variants, which shows the effectiveness
of each module. DSEH-SS achieves the worst performance,
the main reason of which is that semantic supervision plays a
very important role in the proposed framework. It is noted
that the higher nj, is, the more diverse hash codes can be
generated. DSEH-L reduces n;, dramatically, illustrating that
more semantic information can be maintained by adding label
supervision to the proposed method.

5 Conclusion

In this paper, we proposed a novel deep hashing method,
namely DSEH, for image retrieval, which consists of Lab-
Net and ImgNet. The LabNet is explored to discover abun-
dant semantic correlation and generate accurate hash codes.
Meanwhile, the ImgNet is jointly constrained with the super-
vision information from common semantic space and com-
mon Hamming space for generating similarity-preserving yet
discriminative hash codes. Extensive experiments conducted
on three widely-used datasets demonstrate that our proposed
method significantly outperforms many state-of-the-art hash-
ing approaches, including both traditional and deep learning-
based ones.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China under Grant 61572388 and
Grant 61703327, and in part by the Key R&D Program-
The Key Industry Innovation Chain of Shaanxi under Grant
2017ZDCXL-GY-05-04-02 and Grant 2017ZDCXL-GY-05-
04-02.

2402



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

References

[Abadi et al., 2016] Martin Abadi, Paul Barham, Jianmin
Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. Tensorflow: A system for large-scale machine learn-
ing. In OSDI, volume 16, pages 265-283, 2016.

[Cao er al., 2017] Zhangjie Cao, Mingsheng Long, Jianmin
Wang, and Philip S Yu. Hashnet: Deep learning to hash by
continuation. arXiv preprint arXiv:1702.00758, 2017.

[Chatfield et al., 2014] Ken Chatfield, Karen Simonyan, An-
drea Vedaldi, and Andrew Zisserman. Return of the devil
in the details: Delving deep into convolutional nets. arXiv
preprint arXiv:1405.3531, 2014.

[Chua et al., 2009] Tat-Seng Chua, Jinhui Tang, Richang
Hong, Haojie Li, Zhiping Luo, and Yantao Zheng. Nus-
wide: a real-world web image database from national uni-
versity of singapore. In Proceedings of the ACM interna-

tional conference on image and video retrieval, page 48.
ACM, 2009.

[Deng et al., 2014] Cheng Deng, Rongrong Ji, Dacheng Tao,
Xinbo Gao, and Xuelong Li. Weakly supervised multi-
graph learning for robust image reranking. IEEE transac-
tions on multimedia, 16(3):785-795, 2014.

[Deng et al., 2015a] Cheng Deng, Huiru Deng, Xianglong
Liu, and Yuan Yuan. Adaptive multi-bit quantization for
hashing. Neurocomputing, 151:319-326, 2015.

[Deng et al., 2015b] Cheng Deng, Xianglong Liu, Yadong
Mu, and Jie Li. Large-scale multi-task image labeling with
adaptive relevance discovery and feature hashing. Signal
Processing, 112:137-145, 2015.

[Deng et al., 2016] Cheng Deng, Xu Tang, Junchi Yan, Wei
Liu, and Xinbo Gao. Discriminative dictionary learning
with common label alignment for cross-modal retrieval.
IEEE Transactions on Multimedia, 18(2):208-218, 2016.

[Deng et al., 2018] Cheng Deng, Zhaojia Chen, Xianglong
Liu, Xinbo Gao, and Dacheng Tao. Triplet-based deep
hashing network for cross-modal retrieval. IEEE TIP,
2018.

[Gionis ef al., 1999] Aristides Gionis, Piotr Indyk, Rajeev
Motwani, et al. Similarity search in high dimensions via
hashing. In VLDB, volume 99, pages 518-529, 1999.

[Gong et al., 2013] Yunchao Gong, Svetlana Lazebnik, Al-
bert Gordo, and Florent Perronnin. Iterative quantization:
A procrustean approach to learning binary codes for large-
scale image retrieval. IEEE TPAMI, 35(12):2916-2929,
2013.

[Kulis and Darrell, 2009] Brian Kulis and Trevor Darrell.
Learning to hash with binary reconstructive embeddings.
In Advances in neural information processing systems,
pages 1042-1050, 2009.

[Lai ef al., 2015] Hanjiang Lai, Yan Pan, Ye Liu, and
Shuicheng Yan. Simultaneous feature learning and hash
coding with deep neural networks. In CVPR, pages 3270—
3278, 2015.

2403

[Li et al., 2015] Wu-Jun Li, Sheng Wang, and Wang-Cheng
Kang. Feature learning based deep supervised hashing
with pairwise labels. arXiv preprint arXiv:1511.03855,
2015.

[Li et al., 2018] Chao Li, Cheng Deng, Ning Li, Wei Liu,
Xinbo Gao, and Dacheng Tao. Self-supervised adversarial
hashing networks for cross-modal retrieval. arXiv preprint
arXiv:1804.01223, 2018.

[Lin et al., 2014] Tsung-Yi Lin, Michael Maire, Serge Be-
longie, James Hays, Pietro Perona, Deva Ramanan, Pi-
otr Dollar, and C Lawrence Zitnick. Microsoft coco:
Common objects in context. In ECCV, pages 740-755.
Springer, 2014.

[Liu er al., 2011] Wei Liu, Jun Wang, Sanjiv Kumar, and
Shih-Fu Chang. Hashing with graphs. In ICML, pages
1-8. Citeseer, 2011.

[Liu et al., 2012] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang
Jiang, and Shih-Fu Chang. Supervised hashing with ker-
nels. In CVPR, pages 2074-2081. IEEE, 2012.

[Liu ef al., 2016a] Haomiao Liu, Ruiping Wang, Shiguang
Shan, and Xilin Chen. Deep supervised hashing for fast
image retrieval. In CVPR, pages 2064-2072, 2016.

[Liu e al., 2016b] Hong Liu, Rongrong Ji, Yongjian Wu,
and Wei Liu. Towards optimal binary code learning via
ordinal embedding. In AAAI, pages 1258-1265, 2016.

[Russakovsky et al., 2015] Olga Russakovsky, Jia Deng,
Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael
Bernstein, et al. Imagenet large scale visual recognition
challenge. IJCV, 115(3):211-252, 2015.

[Shen et al., 2015] Fumin Shen, Chunhua Shen, Wei Liu,
and Heng Tao Shen. Supervised discrete hashing. In
CVPR, pages 37-45, 2015.

[Weiss et al., 2009] Yair Weiss, Antonio Torralba, and Rob
Fergus. Spectral hashing. In Advances in neural informa-
tion processing systems, pages 1753—-1760, 2009.

[Wold et al., 1987] Svante Wold, Kim Esbensen, and Paul
Geladi. Principal component analysis. Chemometrics and
intelligent laboratory systems, 2(1-3):37-52, 1987.

[Xia et al., 2014] Rongkai Xia, Yan Pan, Hanjiang Lai, Cong
Liu, and Shuicheng Yan. Supervised hashing for image
retrieval via image representation learning. In AAAI, vol-
ume 1, pages 2156-2162, 2014.

[Yang ez al., 2017] Erkun Yang, Cheng Deng, Wei Liu, Xi-
anglong Liu, Dacheng Tao, and Xinbo Gao. Pairwise rela-
tionship guided deep hashing for cross-modal retrieval. In
AAAI, pages 1618-1625, 2017.

[Yang ez al., 2018] Erkun Yang, Cheng Deng, Chao Li, Wei
Liu, Jie Li, and Dacheng Tao. Shared predictive cross-
modal deep quantization. /[EEE TNNLS, 2018.

[Zhu et al., 2016] Han Zhu, Mingsheng Long, Jianmin
Wang, and Yue Cao. Deep hashing network for efficient
similarity retrieval. In AAAI, pages 2415-2421, 2016.



