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Abstract
Temporal-difference (TD) learning is an attractive,
computationally efficient framework for model-
free reinforcement learning. Q-learning is one of
the most widely used TD learning technique that
enables an agent to learn the optimal action-value
function, i.e. Q-value function. Contrary to its
widespread use, Q-learning has only been proven
to converge on Markov Decision Processes (MDPs)
and Q-uniform abstractions of finite-state MDPs.
On the other hand, most real-world problems are
inherently non-Markovian: the full true state of
the environment is not revealed by recent obser-
vations. In this paper, we investigate the behav-
ior of Q-learning when applied to non-MDP and
non-ergodic domains which may have infinitely
many underlying states. We prove that the con-
vergence guarantee of Q-learning can be extended
to a class of such non-MDP problems, in particu-
lar, to some non-stationary domains. We show that
state-uniformity of the optimal Q-value function is
a necessary and sufficient condition for Q-learning
to converge even in the case of infinitely many in-
ternal states.

1 Introduction
Temporal-difference learning [Sutton, 1988] is a well-
celebrated model-free learning framework in machine learn-
ing. In TD, an agent learns the optimal action-value function
(also known as the Q-value function) of the underlying prob-
lem without explicitly building or learning a model of the en-
vironment. The agent can learn the optimal behavior from the
learned Q-value function: the optimal action maximizes the
Q-value function. It is generally assumed that the environ-
ment is Markovian and ergodic for a TD agent to converge
[Tsitsiklis, 1994; Bertsekas and Tsitsiklis, 1995].

The TD agents, apart from a few restrictive cases1, are not
proven to learn2 non-Markovian environments, whereas most

1See Section 5 for exceptions.
2In this work we use the term “learn a domain” in the context of

learning to act optimally and not to learn a model/dynamics of the
domain.

real-world problems are inherently non-Markovian: the full
true state of the environment is not revealed by the last obser-
vation, and the set of true states can be infinite, e.g. as effec-
tively in non-stationary domains. Therefore, it is important
to know if the agent performs well in such non-Markovian
domains to work with a broad range of real-world problems.

In this work, we investigate convergence of one of the most
widely used TD learning algorithms, Q-learning [Watkins
and Dayan, 1992]. Q-learning has been shown to converge
in MDP domains [Tsitsiklis, 1994; Bertsekas and Tsitsik-
lis, 1995], whereas there are empirical observations that Q-
learning sometimes also work in some non-MDP domains
[Sutton and Barto, 1984]. First non-MDP convergence of
Q-learning has been reported by Li et al. [2006] for the
environments that are Q-uniform abstractions of finite-state
MDPs. The recent results in Extreme State Aggregation
(ESA) [Hutter, 2016] indicate that under some conditions
there exists a deterministic, near-optimal policy for non-MDP
environments which are not required to be abstractions of any
finite-state MDP. These positive results motivated this work
to extend the non-MDP convergence proof of Q-learning to a
larger class of infinite internal state non-MDPs.

The most popular extension of MDP is a finite-state par-
tially observable Markov decision process (POMDP). In a
POMDP the environment has a hidden true state, and the ob-
servations from the environment, generally, do not reveal the
true state. Therefore, the agent either has to keep a full in-
teraction history, estimate the true state or maintain a belief
over the possible true states. In our formulation, we use an
even more general class of processes, history-based decision
process (HDP): the history-based process is equivalent to an
infinite-state POMDP [Leike, 2016]. We provide a simple
proof of Q-learning convergence to a class of domains that
encompasses significantly more domains than MDP and in-
tersects with POMDP and HDP classes. We name this class
Q-value uniform Decision Process (QDP) and show that Q-
learning converges in QDPs. Moreover, we show that QDP
is the largest class where Q-learning can converge, i.e. QDP
provides the necessary and sufficient conditions for Q-leaning
convergence.

Apart from a few toy problems, it is always a leap of faith
to treat real-world problems as MDPs. An MDP model of the
underlying true environment is implicitly assumed even for
model-free algorithms. Our result helps to relax this assump-
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tion: rather assuming the domain being a finite-state MDP,
we can suppose it to be a QDP, which is a much weaker im-
plicit assumption. The positive result of this paper can be
interpreted in a couple of ways; a) as discussed above, it
provides theoretical grounds for Q-learning to be applicable
in a much broader class of environments or b) if the agent
has access to a QDP aggregation map as a potential model
of the true environment or the agent has a companion map
learning/estimation algorithm to build such a model, then this
combination of the aggregation map with Q-learning con-
verges. It is an interesting topic to learn such maps, but is
beyond the scope this work.

The rest of the paper is structured as follows. In Section
2 we set up the framework. Section 3 drafts the QDP class.
Section 4 gives a preview of our main convergence result.
Section 5 provides a context of our work in the literature.
Section 6 contains the proof of the main results. In Section
7 we numerically evaluate Q-learning on a few non-MDP toy
domains. Section 8 concludes the paper.

2 Setup
We use the general history-based agent-environment rein-
forcement learning framework [Hutter, 2005; Hutter, 2016].
The agent and the environment interact in cycles. At the be-
ginning of a cycle t ∈ N the agent takes an action at from
a finite action-space A. The environment dispenses a real-
valued reward rt+1 from a set R ⊂ R and an observation
ot+1 from a finite set of observations O. However, in our
setup, we assume that the agent does not directly use this ob-
servation, e.g. because O maybe too huge to learn from. The
agent has access to a map/model φ of the environment that
takes in the observation, reward and previous interaction his-
tory and provides the same reward rt+1 and a mapped state
st+1 from a finite set of states S; and the cycle repeats. For-
mally, this agent-environment interaction generates a grow-
ing history ht+1 := htatot+1rt+1 from a set of histories
Ht := (A×O×R)t. The set of all finite histories is denoted
by H∗ :=

⋃
tHt. The map φ is assumed to be a surjective

mapping from H∗ to S . We use ht := ε to denote the empty
history and := to express an equality by definition. In general
(non-MDPs), at any time-instant t the transition probability
to the next observation o′ := ot+1 and reward r′ := rt+1 is a
function of the history-action (h, a) := (ht, at)-pair and not
of the state-action (s, a) := (st, at)-pair. The true environ-
ment as is a history-based (decision) process.

Definition 1 (History-based Decision Process (HDP)) A
history-based decision process P is a stochastic mapping
from a history-action pair to observation-reward pairs.
Formally, P : H∗ × A  O × R, where  denotes a
stochastic mapping.

We useQ to denote an action-value function of a HDP, and
Q∗ denotes the optimal Q-value function.

Q∗(h, a) :=
∑
o′r′

P (o′r′|ha)
(
r′ + γmax

ã
Q∗(hao′r′, ã)

)
(1)

where γ ∈ [0, 1) is a discount factor. In our setup, the agent
does not maintain a complete history and effectively expe-

riences the agent-environment interaction as an action-state-
reward sequence (at, st, rt)t∈N. We call it a state-process 3

induced by the map φ.

Definition 2 (State-process) For a history h that is mapped
to a state s, a state-process ph is a stochastic mapping from a
state-action pair with the fixed state s to state-reward pairs.
Formally, ph : {s} × A S ×R.

The relationship between the underlying HDP and the in-
duced state-process for an s = φ(h) is formally defined as:

ph(s′r′|sa) :=
∑

o′:φ(hao′r′)=s′

P (o′r′|ha). (2)

We denote the action-value function of the state-process by
q, and the optimal Q-value function is given by q∗:

q∗(s, a;h) :=
∑
s′r′

ph(s′r′|sa)
(
r′ + γmax

ã
q∗(s′, ã;h)

)
(3)

It is clear that ph(s′r′|sa) may not be same as pḣ(s′r′|sa)
for any two histories h and ḣ mapped to a same state s. If the
state-process is an MDP, then ph is independent of history
and so is q∗, and convergence of Q-learning follows from this
MDP condition [Bertsekas and Tsitsiklis, 1995]. However,
we do not assume such a condition and go beyond MDP map-
pings. We later show — by constructing examples — that q∗
can be made independent of history while the state-process is
still history dependent, i.e. non-MDP.

Now we formally define Q-learning: At each time-step t
the agent maintains an action-value function estimate qt. The
agent in a state s := st takes an action a := at and receives
a reward r′ := rt+1 and the next state s′ := st+1. Then the
agent performs an action-value update to the (s, a)-estimate
with the following Q-learning update rule:

qt+1(s, a) :=

qt(s, a) + αt(s, a) (r′ + γmaxã qt(s
′, ã)− qt(s, a)) (4)

where (αt)t∈N is a learning rate sequence.

3 Q-Value Uniform Decision Process (QDP)
In this section we formulate a class of environments called
Q-value uniform decision processes, i.e. QDP class. This
class is substantially larger than MDP and has a non-empty
intersection with POMDP and HDP (Figure 1). In a state-
aggregation context, a model is a QDP if it satisfies the fol-
lowing state-uniformity condition.

Definition 3 (State-uniformity condition) For any action
a, if any two histories h and ḣ map to the same state s, then
the optimal Q-values of the underlying HDP of these histo-
ries are the same, i.e. state-uniform; Q∗(h, a) = Q∗(ḣ, a).
It is easy to see that in this case q∗(s, a) = Q∗(h, a) [Hutter,
2016].

3It is technically a state and reward process, but since rewards
are not affected by the mapping φ, we suppress the reward part to
put more emphasis on the contrast between history and state depen-
dence.
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Figure 1: QDP in the perspective of other decision problem classes.

The state-uniformity condition is weaker than the MDP
condition: the latter implies the former but not the
other way around [Hutter, 2016]. Therefore, trivially
MDP ⊆ QDP

POMDP ⊆ HDP. The example in Figure 2 shows that
QDP ∩ POMDP\MDP 6= ∅. The example in Figure 5 proves
that QDP \POMDP 6= ∅. Moreover, it is easy to find exam-
ples in POMDP\QDP and HDP\QDP.

It is easy to see that QDP is a much larger class than
MDP since the former allows non-stationary domains: it is
possible to have pht(·|sa) 6= phτ (·|sa) for some histories
φ(ht) = φ(hτ ) = s at two different time-steps but still
maintaining Q∗(ht, a) = Q∗(hτ , a) (Figure 5). Moreover,
the definition of QDP enables us to approximate most if not
all problems as a QDP model: any number of similar Q∗-
value histories can be merged into a single QDP state [Hut-
ter, 2016]. In particular, a QDP model of the environment
can provide more compression in terms of state space size as
compared to an MDP model: multiple MDP states with the
same/similar Q-value can be merged into a single QDP state
but not necessarily the other way around. Thus, QDP allows
for more compact models for an environment than its MDP
counterparts.

In general, we can say that a POMDP has both the dynam-
ics and Q-values as functions of history. Whereas, the defi-
nition of QDP provides models where only the dynamics can
be history-dependent. Therefore, QDP captures a subset of
POMDP models that have history-independent Q-values.

4 Main Result
We assume that the state-process is ergodic — i.e. all states
are reachable under any policy from the current state after
sufficiently many steps.

Assumption 4 (Ergodicity) The state-process is ergodic.

Because of the ergodicity assumption we can suppose
the following standard stochastic approximation conditions
on each state-action (s, a)-pair’s learning rate sequence
(αt)t∈N

4.
∞∑
t=0

αt(s, a) =∞,
∞∑
t=0

α2
t (s, a) <∞. (5)

The above conditions on the learning rate ensure that the
agent asymptotically decreases the learning rate to converge

4Note that αt(s, a) := 0, ∀(s, a) 6= (st, at).

to a fixed point but never stops learning to avoid local maxima
[Bertsekas and Tsitsiklis, 1995]. It is critical to note that we
assume ergodicity of the state-process but not of the underly-
ing HDP: a state can be reached multiple times from different
histories but any history is only reached once. We assume
that the state-process is a QDP.

Assumption 5 (QDP) The state-process is a QDP.

It is important to consider that we only assume the opti-
mal action-value to be a function of states. We do not sup-
pose any structure on the intermediate action-value estimates
cf. qt(s, a) 6= Qt(h, a). We also assume that rewards are
bounded. This is a standard condition for Q-learning conver-
gence.

Assumption 6 (Bounded rewards) The rewards are
bounded, i.e. r ∈ [rmin, rmax].

We have all the components in place to extend Q-learning
convergence in QDP.

Theorem 7 (Q-learning Convergence in QDP) Under As-
sumptions 4, 5 and 6, and with a learning rate sequence
(αt)t∈N satisfying (5), the sequence (qt)t∈N generated by the
iteration (4) converges to q∗ = Q∗.

Hence, the agent learns the optimal action-value function
of a QDP state-process.

5 Related Work
A similar result was first reported by Li et al. [2006] in a fi-
nite state MDP setting. We confirm and extend the findings by
considering a more general class of environments, i.e. HDP.
Also, we do not assume a weighting function to define the
state-process cf. [Li et al., 2006, Definition 1], and our proof
is based on time-dependent contraction mappings (see Sec-
tion 6 for the details).

A finite-state POMDP is the most commonly used exten-
sion of an MDP. It is well-known that the class of finite-
state POMDPs is a subset of HDP class [Leike, 2016]. One
prevalent approach to handle the non-Markovian nature of a
POMDP is to estimate a Markovian model with a state esti-
mation method [Whitehead and Lin, 1995; Lin and Mitchell,
1992; Cassandra et al., 1994; Cassandra, 1994] or use a finite
subset of the recent history as a state [McCallum, 1995] to
form a k-order MDP (k-MDP). Then Q-learning is applied to
learn this resultant state-based MDP. This is a different ap-
proach to ours. We do not try to estimate an MDP or k-MDP
representation of the underlying HDP.

Singh et. al. [Singh et al., 1994] investigate a direct
application of model-free algorithms to POMDPs without a
state estimation step akin to our setup but limited to finite
state POMDPs only. They show that an optimal policy in
a POMDP may be non-stationary and stochastic. But the
learned policy in direct model-free algorithms, such as Q-
learning, is generally stationary and deterministic by design.
Moreover, they also show that the optimal policy of POMDP
can be arbitrarily better than the optimal stationary, determin-
istic policy of the corresponding MDP. These negative re-
sults of [Singh et al., 1994] are based on counter-examples
that violate the state-uniformity assumption of the optimal
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Q-value function. Similar negative findings are reported by
Littman [1994]. Our positive convergence result holds for a
subset of POMDPs that respects the state-uniformity condi-
tion.

Pendrith and McGarity [1998] show that a direct appli-
cation of standard reinforcement learning methods, such as
Q-learning, to non-Markovian domains can have a station-
ary optimal policy, if undiscounted return is used as a perfor-
mance measure. Perkins and Pendrith [2002] prove existence
of a fixed point in POMDPs for continuous behavior policies.
However, this fixed point could be significantly worse than
the average reward achieved by an oscillating discontinuous
behavior policy. It signifies the effect of behavior policy on
the learning outcome. On the other hand, our convergence
result is valid as long as all the state-action pairs are visited
infinitely often. The nature of the behavior policy does not
directly affect our convergence result. A comprehensive sur-
vey of solution methods for POMDPs is provided by Mur-
phy [2000] and more recently by Thrun et al. [2005].

6 Convergence Proof
We provide a proof of Theorem 7 in this section. Superfi-
cially, the proof looks similar to a standard MDP proof [Bert-
sekas and Tsitsiklis, 1995], however, a subtlety is involved in
the definition of the contraction map: the contraction map is
a function of history. This history-dependence lets the proof
scale to non-MDP domains, especially to non-stationary do-
mains.

Proof of Theorem 7. At a time-instant t with a history ht we
rewrite (4) in terms of an operator and a noise term.

qt+1(s, a) =

(1− αt(s, a)) qt(s, a) + αt(s, a) (Fhtqt(s, a) + wht(s, a))(6)

where, the noise term is defined as follows,

wht(s, a) := r′ + γmax
ã

qt(s
′, ã)− Fhtqt(s, a). (7)

Since the agent samples from the underlying HDP, the op-
erator Fht is a history-based operator.

Fhtqt(s, a) := Epht
[
r′ + γmax

ã
qt(s

′, ã)|Ft
]

(8)

where Ft is a complete history of the algorithm up to time-
step t that signifies all information including ht, (αk)k≤t and
the state sequence (sk)k≤t. We use Epht as an expectation
operator with respect to pht .

Noise is bounded. Now we show that the noise term is not a
significant factor that affects the convergence of Q-learning.
By construction it has a zero mean value:

Epht [wht(s, a)|Ft] =

Epht [r′ + γmaxã qt(s
′, ã)− Fhtqt(s, a)|Ft] = 0. (9)

Due to the bounded reward assumption the variance of the
noise term is also bounded.

Epht
[
w2
ht(s, a)|Ft

]
= Epht

[(
r′ + γmax

ã
qt(s

′, ã)
)2

|Ft
]

−Epht
[
r′ + γmax

ã
qt(s

′, ã)|Ft
]2

(a)

≤ 1

4

(
max
s′r′

(
r′ + γmax

ã
qt(s

′, ã)
)

− min
s′r′

(
r′ + γmax

ã
qt(s

′, ã)
))2

(b)

≤ 1

4

(
rmax − rmin

1− γ
+ γ||qt||∞

)2

(c)

≤ A+B||qt||2∞ (10)

(a) follows from Popoviciu’s inequality, Var(X) ≤
1/4(maxX − minX)2, (b) is due to the bounded rewards
assumption; and (c) results from some algebra with con-
stants A := ∆/4

(
2γ/1−γ + ∆

)
and B := γ2

/4, where ∆ :=
(rmax − rmin) /(1− γ). We denote a sup-norm by || · ||∞.

Fh is a contraction. For a fixed history h, we show that an
operator Fh is a contraction mapping.

||Fhq − Fhq′||∞
= max

s,a

∣∣∣Epht [r′ + γmax
ã

q(s′, ã)|Ft
]

− Epht
[
r′ + γmax

ã
q′(s′, ã)|Ft

]∣∣∣
(a)
= max

s,a

∣∣∣Epht [r′ + γmax
ã

q(s′, ã)|sa
]

− Epht
[
r′ + γmax

ã
q′(s′, ã)|sa

]∣∣∣
≤ max

s,a
max
s′

γ
∣∣∣max
ã

q(s′, ã)−max
ã

q′(s′, ã)
∣∣∣

≤ γmax
s,a
|q(s, a)− q′(s, a)| = γ||q − q′||∞ (11)

(a) for a fixed history, the expectation only depends on the
(s, a)-pair rather than the complete history Ft.
Same fixed point. We show that for any history h, the con-
traction operator Fh has a fixed point q∗. Let h be mapped to
state s:

q∗(s, a)
(a)
= Q∗(h, a)

≡
∑
o′r′

P (o′r′|ha)
(
r′ + γmax

ã
Q∗(h′, ã)

)
(b)
=

∑
s′r′

ph(s′r′|sa)
(
r′ + γmax

ã
q∗(s′, ã)

)
≡ Fhq

∗(s, a) (12)

(a) is the QDP assumption; and (b) follows from (2) and
again using the QDP assumption. We also show that for any
history h the operator Fh has a same contraction factor γ.

||Fhq − q∗||∞
(a)
= ||Fhq − Fhq∗||∞

(b)

≤ γ||q − q∗||∞ (13)

(a) follows from (12); and (b) is due to (11). Therefore, for
any history h the operator Fh has the same fixed point q∗ with
the same contraction factor γ.
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We have all the conditions to invoke a convergence result
from Bertsekas and Tsitsiklis [1995]. We adopt5 and state
Proposition 4.5 from Bertsekas and Tsitsiklis [1995] without
reproducing the complete proof.

Proposition 8 (Prop. 4.5 [Bertsekas and Tsitsiklis, 1995])
Let (qt)t∈N be the sequence generated by the iteration (4).
We assume the following.

(a) The learning rates αt(s, a) are nonnegative and satisfy,

∞∑
t=0

αt(s, a) =∞,
∞∑
t=0

α2
t (s, a) <∞.

(b) The noise term wt(s, a) satisfies,

Ept [wt(s, a)|Ft] = 0,

Ept
[
w2
t (s, a)|Ft

]
≤ A+B||qt||2∞, ∀s, a, t

where, A and B are constants.

(c) There exists a vector q∗, and a scalar γ ∈ [0, 1), such
that,

||Ftqt − q∗||∞ ≤ γ||qt − q∗||∞, ∀t.

Then, qt converges to q∗ with probability 1.

Proof Sketch. We have a sequence of maps (Ft)t∈N. At
any time-step t, the map Ft is a contraction and every map
moves the iterates toward the same fixed point q∗. Since,
the contraction factor is the same, the rate of convergence is
not affected by the order of the maps. Every map contracts
the iterates by a factor γ with respect to the fixed point that
asymptotically converges to q∗.

Proposition 8 uses a sequence of maps (Ft)t∈N with
a same fixed point. In our case, we have this sequence
based on histories, i.e.(Fht)t∈N. Similarly, for wt and pt
we have corresponding history-based instances. Therefore,
Proposition 8 with pt = pht , Ft = Fht and wt = wht
provides the main result. This can be done, since αt, qt, wt
and Ft are allowed to be random variables.

Obviously, state-uniformity is a necessary condition, since
otherwise Q∗(h, a) can not even be represented as q∗(s, a).
Typically, the state-process is assumed to be an MDP. This
makes the state-process ph independent of history, and leads
to a history-independent operator F := Fh for any history
h, which (trivially) all have the same fixed point. We relax
this MDP assumption, and only demand state-uniformity of
the optimal value-function. The proof shows that this condi-
tion is sufficient to provide a unique fix point for the history-
dependent operators. Therefore, the state-uniformity is not
only a necessary but also a sufficient condition for Q-learning
convergence.

5The original proposition is slightly more general than we need
for our proof. It has an extra diminishing noise term which we do
not have/require in our formulation.

00

10

s = 0

01

11

s = 1

1/2

1/2 1/2

11

Figure 2: An example MRP aggregated to a non-MDP (non-MRP).
The square nodes represent the states of the underlying MRP. The
circles are the aggregated states. The solid arrows represent the only
available action x and the transition probabilities are shown at the
transition edges.

Figure 3: The learning curves of Q-learning are averaged over 40
independent runs with the parameters, γ = 0.9, q0(s = 0, x) = 8
and q0(s = 1, x) = 3.

7 Empirical Evaluation
In this section, we empirically evaluate two example non-
MDP domains to show the validity of our result.

Non-Markovian Reward Process. Let us consider our first
example from [Hutter, 2016] to demonstrate Q-learning con-
vergence to a non-Markovian reward processes (non-MRP).
We consider that the underlying HDP is an MDP over the ob-
servation space O (in fact an action-independent MDP, i.e.
an MRP) with a transition matrix T and a deterministic re-
ward function R. The state diagram of the process is shown
in Figure 2.

T =

 0 1/2 1/2 0
1/2 0 0 1/2
0 1 0 0
1 0 0 0

 , R =


γ/2
1+γ

1+γ/2
1+γ

0
1

 . (14)

Due to this structure, the HDP is expressible as,
P (o′r′|ha) = Too′ · Jr′ = R(o)K, such that h has a last obser-
vation o, where J·K denotes an Iverson bracket. The observa-
tion space is O = {00, 01, 10, 11}. Let us consider the state
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Figure 4: The learning curves of Q-learning are averaged over 50
independent runs with the parameters, γ = 0.9, pmin = 0.01 and
q0(s, a) = 0 for all s and a.

space S = {0, 1}, and the agent experiences the state-process
under the following aggregation map:

st := φ(ht) :=

{
0, if ot = 00 or 10,

1, if ot = 01 or 11.

It is easy to see that the resultant state-process is not an
MDP (MRP):

p00(s′ = 0|s = 0) = T00,00 + T00,10 = 0 + 1/2 = 1/2
p10(s′ = 0|s = 0) = T10,00 + T10,10 = 0 + 0 = 0

which implies p00 6= p10, but this state-process satisfies the
optimal Q-value function state-uniformity condition (see be-
low). Hence, the state-process is a QDP ∈ POMDP\MDP:
the underlying HDP has a finite set of hidden states, i.e.
the states of the underlying MDP. Since it is an action-
independent process, the action-value function is the same for
any action a ∈ A. We denote the only available action with
x:

q∗(s = 0, x) := Q∗(00, x) = Q∗(10, x) =
γ

1− γ2

q∗(s = 1, x) := Q∗(01, x) = Q∗(11, x) =
1

1− γ2
.

We apply Q-learning to the induced state-process and the
learning curves plot is shown in Figure 3. The plot shows
that Q-learning is able to converge to the optimal action-value
function of the process, despite the fact that the state-process
is a non-MDP (non-MRP).

Non-Markovian Decision Process. The previous example
demonstrated that Q-learning is able to learn a non-MRP ∈
QDP. Now we provide an example QDP which is a two-action
non-MDP ∈ HDP\POMDP: the state space of the underly-
ing HDP is infinite. The agent is facing a non-stationary
state-process with state space S = {0, 1, 2} and action space
A = {x, y}. The agent has to input a right key-action ks at
a state s = φ(h) but the environment accepts the key action

with a certain history-dependent probability pv(h) by provid-
ing an observation from O = {v, i}, where v and i indicate
acceptance or rejection of an input, respectively.

pv(h) := max{pmin,%(v, h)} (15)

where, %(v, h) is the percentage of accepted keys in h and
pmin is a minimum acceptance probability. Without loss of
generality, we use the key sequence k0 := x, k1 := x, k2 :=
y. The history to state mapping is defined as:

φ(h) =



0 if, h =

{
ε

. . . v

1 if, h =


xi

yi

. . . vxi

. . . vyi

2 if, h = . . . ḣ such that |ḣ| ≥ 2 and v /∈ ḣ
(16)

It is apparent from the mapping function that state-0 is the
start state, and it is also the case when a key is accepted in
the last time-step, state-1 is defined when a key input is re-
jected once, and state-2 is reached when the key input has
been recently rejected at least twice in a row.

The transition probabilities are formally given as follows
(see Figure 5 for a graphical representation):

ph(s′|s, a) =



pv(h) if, s′ = 0, s = 0|1|2, a = ks

1− pv(h) if,


s′ = 1, s = 0, a = ks
s′ = 2, s = 1, a = ks
s′ = 2, s = 2, a = ks

1 if,


s′ = 1, s = 0, a 6= ks
s′ = 2, s = 1, a 6= ks
s′ = 2, s = 2, a 6= ks

0 otherwise.
(17)

The reward is also a function of the complete history.

r′(ha) =


3− γ − 2γpv(h) if, φ(h) = 0, a = k0,

1− 3γpv(h) if, φ(h) = 1, a = k1,

−3γpv(h) if, φ(h) = 2, a = k2,

−3 if, φ(h) = s, a 6= ks

(18)

It is easy to see that Q-values are only a function of state-
action pairs as follows for φ(h) = s:

q∗(s, a) = Q∗(h, a) =



3 if, s = 0, a = x,

−2 if, s = 0, a = y,

1 if, s = 1, a = x,

−3 if, s = 1, a = y,

−3 if, s = 2, a = x,

0 if, s = 2, a = y.

(19)

Despite the history-based dynamics, Figure 4 shows that
Q-learning is able to learn the Q-values of the non-stationary
state-process due to the fact that it is a QDP.
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h =

{
ε

. . . v

s = 0

h =


xi

yi

. . . vxi

. . . vyi

s = 1

h = . . . ḣ
s.t. |ḣ|≥2 and v/∈ḣ

s = 2

pv(h)

1− pv(h)

1

pv(h)

1− pv(h)

1

pv(h)

1− pv(h)

1

Figure 5: A complete history-dependent process is aggregated to a 3-state non-MDP. The circles are states. Inside the states are the corre-
sponding history patterns mapped to the state. For clarity, the rewards are not shown in the history patterns. The action x is denoted by the
solid arrows while the action y is denoted by the dashed arrows. The transition probabilities are indicated at the transition edges.

8 Conclusion
In this paper, we proved that Q-learning convergence can be
extended to a much larger class of decision problems than
finte-state MDP. We call this class of environments QDP. In
QDP, the optimal action-value function of the state-process is
still only a function of states, but the dynamics can be a func-
tion of the complete history (in effect, a function of time).
That enables QDP to allow non-stationary domains in con-
trast to finite-state MDPs that can only model stationary do-
mains. We also showed that this state-uniformity condition
is not only a necessary but also a sufficient condition for Q-
learning convergence. An empirical evaluation of a few non-
MDP domains is also provided. In the state-aggregation con-
text, we only extended the convergence for an exact aggrega-
tion case. A natural next step is to investigate if this proof can
be extended to the approximate aggregation case. Approxi-
mate aggregation is a special case of function approximation,
but there are known counter-examples of Q-learning diverg-
ing with function approximation [Baird, 1995]. Therefore,
it is intriguing to know if there exist some non-trivial con-
ditions that provide convergence guarantee for Q-learning in
the approximate aggregation case and yet avoid these counter-
examples.
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