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Abstract

Multinomial logit bandit is a sequential subset se-
lection problem which arises in many applications.
In each round, the player selects a K-cardinality
subset from N candidate items, and receives a re-
ward which is governed by a multinomial logit
(MNL) choice model considering both item util-
ity and substitution property among items. The
player’s objective is to dynamically learn the pa-
rameters of MNL model and maximize cumulative
reward over a finite horizon T . This problem faces
the exploration-exploitation dilemma, and the in-
volved combinatorial nature makes it non-trivial. In
recent years, there have developed some algorithms
by exploiting specific characteristics of the MNL
model, but all of them estimate the parameters of
MNL model separately and incur a regret no bet-
ter than Õ

(√
NT

)
which is not preferred for large

candidate set size N . In this paper, we consider
the linear utility MNL choice model whose item
utilities are represented as linear functions of d-
dimension item features, and propose an algorithm,
titled LUMB, to exploit the underlying structure.
It is proven that the proposed algorithm achieves
Õ
(
dK
√
T
)

regret which is free of candidate set
size. Experiments show the superiority of the pro-
posed algorithm.

1 Introduction
In traditional stochastic multi-armed bandit (MAB) [Bubeck
and Cesa-Bianchi, 2012], the player selects one fromN items
and receives a reward corresponding to that item in each
round. The objective is to maximize cumulative reward over
a finite horizon of length T , or alternatively, minimize the
regret relative to an oracle. Typically, algorithms are de-
signed based on appropriate exploration-exploitation trade-
off which allows the player to identify the best item through
exploration whilst not spending too much on sub-optimal
ones, and the family of upper confidence bound (UCB) al-
gorithms [Auer, 2002; Chu et al., 2011] and Thompson sam-
pling (TS) [Thompson, 1933; Agrawal and Goyal, 2012] are
representative examples. This paper studies a combinato-

rial variant of MAB, where in each round, the player of-
fers a subset of cardinality K to a user, and receives the re-
ward associated with one of the items in the selected subset1.
The player faces the problem of determining which subset
of items to present to users who arrive sequentially, whilst
not knowing user preference. Similar to MAB, we need
to solve the exploration-exploitation tradeoff in this prob-
lem. However, a naive translation of this problem to MAB
is prohibitive, since the number of possible K-cardinality
subsets is exponentially large and cannot be efficiently ex-
plored within a reasonable sized time horizon. To tackle
this issue, different strategies have been proposed in the
literature, e.g., [Kveton et al., 2015; Lagrée et al., 2016;
Agrawal et al., 2017a].

In recent literature, the multinomial logit (MNL) choice
model [Luce, 2005; Plackett, 1975] which is widely used in
economics is utilized to model user choice behavior by spec-
ifying the probability that a user selects an item given the
offered set, and above exploration-exploitation problem is re-
ferred as the MNL-Bandit problem [Rusmevichientong et al.,
2010; Agrawal et al., 2017a; 2017b; Cheung and Simchi-
Levi, 2017]. Unlike other combinatorial bandit problems,
MNL-Bandit problem considers the substitution property
among items and leads to non-monotonic reward function. By
exploiting specific characteristics of the MNL model, UCB-
style [Agrawal et al., 2017a] and TS-style [Agrawal et al.,
2017b] algorithms have been developed to dynamically learn
the parameters of the MNL model which are a priori un-
known, achieving a regret of Õ

(√
NT

)
under a mild assump-

tion. Also, a lower regret bound is established in [Agrawal et
al., 2017a], by showing that any algorithm based on the MNL
choice model must incur a regret of Ω

(√
NT/K

)
. It is easy

to find that the regret depends on the number of candidate
items N , making them less preferred in many large scale ap-
plications such as online advertising.

In this paper, we use the linear utility MNL choice model
(formulated in Section 3) to model user choice behavior given
a set of items, rather than traditional MNL model. Specif-
ically, it is assumed that each item in candidate set is de-
scribed by a d-dimension feature vector, and item utilities

1This problem is known as dynamic assortment selection in the
literature [Caro and Gallien, 2007; Rusmevichientong et al., 2010],
where the selected subset of items forms an assortment.
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of the MNL model can be formulated as linear functions of
item features. Based on this, the problem of estimating item
utilities (i.e., parameters of the MNL model) is changed to
estimating underlying model parameters of linear functions.
Since the number of parameters is irrelevant with the number
of items, it is possible to achieve more efficient solution when
the number of items is large. By taking the UCB approach,
we propose an algorithm, titled LUMB (which is short for
Linear Utility MNL-Bandit), to dynamically learn the param-
eters and narrow the regret. The main contributions of this
work include:

• To the best of our knowledge, this is the first to use linear
utility MNL choice model in sequential subset selection
problem. Also, an UCB-style algorithm LUMB is pro-
posed to learn the model parameters dynamically.

• An upper regret bound O
(
dK
√
T (log T )

2 ) is estab-
lished for the proposed LUMB algorithm. This regret
bound is free of candidate item set size, which means
that LUMB can be applied to large item set.

• Empirical studies demonstrate the superiority of the pro-
posed LUMB algorithm over existing algorithms.

The rest of this paper is organized as follows. Section 2
briefly introduces related work. Section 3 and 4 present prob-
lem formulation and the LUMB algorithm. Section 5 estab-
lishes regret analysis. Section 6 summarizes the experiments,
and Section 7 concludes this work with future directions.

2 Related Work
Classical bandit algorithms aim to find the best arm with
exploration-exploitation strategy. Auer [2002] first proposes
a UCB approach in linear payoff setting. Dani et al. [2008]
and Abbasi-Yadkori et al. [2011] propose improved algo-
rithms which bound the linear parameters directly. Agrawal
and Goyal [2013] propose a Thompson sampling approach.
However, because the reward of a subset is not a linear func-
tion of item features in the subset, these works cannot be di-
rectly applied to our problem.

Another class of bandit works related to our work is com-
binatorial bandit where the player selects a subset of arms and
receive a collective reward in each round. Researchers study
the problem mainly on two settings, stochastic setting [Gai et
al., 2012; Russo and Van Roy, 2014; Kveton et al., 2015]
and adversarial setting [Cesa-Bianchi and Lugosi, 2012;
Audibert et al., 2013]. Gai et al. [2012] first learn the prob-
lem in linear reward setting and Kveton et al. [2015] prove
a tight regret bound. It is generalized to non-linear rewards
in [Chen et al., 2016; 2013]. Wen et al. [2015] and Wang
et al. [2017] propose contextual algorithms which can handle
large item sets. However, these works imply that the reward is
monotonic which is not satisfied in MNL-Bandit (Section 3).
In practice, as clarified in [Cheung and Simchi-Levi, 2017],
the low-reward item may divert the attention of user and lead
to lower subset reward.

Rusmevichientong et al. [2010] solve the MNL-Bandit
problem and achieve instance-dependent upper regret bound
O (logT ), and Sauré and Zeevi [2013] extend to a wider
class of choice models. Agrawal et al. [2017a] propose a

UCB approach and achieve instance-independent upper re-
gret bound O

(√
NT

)
. Agrawal et al. [2017a] propose a

Thompson sampling approach with better empirical perfor-
mance. Recently, some works begin to study variants of
classic MNL-Bandit problem. Some works learn the per-
sonalized MNL-Bandit problem [Kallus and Udell, 2016;
Bernstein et al., 2017; Golrezaei et al., 2014]. Cheung and
Simchi-Levi [2017] learn the problem with resource con-
straints. However, as clarified in Section 1, these works
model item utility separately which is not feasible for large
item sets.

3 Problem Formulation
Suppose there is a candidate item set, S = {1, · · · , N}, to
offer to users. Each item i corresponds to a reward ri ≥ 0
and a feature vector xi ∈ Rd. Let X = [x1, · · · ,xN ] be the
feature matrix. In MNL-Bandit, at each time step t, the player
selects a subset St ∈ C (S) = {S|S ⊆ S, |S| ≤ K} and ob-
serves the user choice ct ∈ St∪{0}, where ct = 0 represents
that the user chooses nothing from St. The objective is to de-
sign a bandit policy to approximately maximize the expected
cumulative reward of chosen items, i.e., E (

∑
t rct).

According to above setting, in each time step t, a ban-
dit policy is only allowed to exploit the item features
{x1, · · · ,xN}, historical selected subsets, {Sτ |τ < t} and
the user choice feedbacks, {cτ |τ < t}.

The user choice follows the MNL model [Luce, 2005;
Plackett, 1975]. MNL assumes substitution property among
items in a selected subset. Specifically, for item i, the larger
the utilities of the other items, the smaller the chosen proba-
bility of item i is. The choice probability follows a multino-
mial distribution,

pi
(
St,v

)
=



vi
1 +

∑
j∈St vj

, i ∈ St
1

1 +
∑
j∈St vj

, i = 0

0, otherwise ,

(1)

where vi ≥ 0 is item utility which is a priori unknown to the
player. The choice probability of item i in selected subset, St,
is linear with its utility, vi. Besides, it is possible that nothing
is chosen which is realized by adding a virtual item 0 with
utility 1. With the MNL model, we have the expected reward
under given utility vector, v = [v1, · · · , vN ],

R
(
St,v

)
=
∑

i∈St
pi
(
St,v

)
ri =

∑
i∈St viri

1 +
∑
i∈St vi

. (2)

Note that the expected reward is non-monotonic, that is, both
the addition of low-reward item to selected subset and incre-
ment on utility of low-reward item may lead to lower reward.
The expected cumulative reward is

E
(∑

t
rct

)
=
∑

t
E (rct) =

∑
t
E
(
R
(
St,v

))
. (3)

Since direct analysis of (3) is not tractable when v is un-
known, we analyze the regret instead,

Reg (T,v) =
∑T

t=1

(
R (S∗,v)− E

(
R
(
St,v

)))
, (4)
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where T is the length of time horizon and S∗ is the optimal
subset,

S∗ = arg max
S∈C(S)

R (S,v) .

Naturally, the objective is to approximately minimize the ex-
pected cumulative regret,Reg (T,v), with appropriate bandit
policy. Especially, after enough time steps, an appropriate so-
lution should almost achieve the subsets with highest reward,
which implies that the cumulative regret, Reg (T,v), should
be sub-linear with T . As each item corresponds to an utility
which needs to be estimated separately, this makes the lower
cumulative regret bound relevant with item number and will
be not feasible for large item sets.

Therefore, linear item utility is introduced where item util-
ity is a linear function of item feature,

vi = θ∗>xi , (5)

where θ∗ is a linear parameter vector unknown to the player.
Thus, estimating item utilities will be changed to estimating
utility function parameters which can exploit the correlation
between items on features, then it is potential to achieve regret
bound free of item number, N .

4 Algorithm
We propose an algorithm, called Linear Utility MNL-Bandit
(LUMB), which proposes a UCB approach to sequentially
estimate linear utility function and approach highest reward.
LUMB first estimates the linear parameters of utility function,
then constructs the UCB of item utility and subset reward, fi-
nally offers the subset with highest reward UCB. Algorithm
1 clarifies the detail of LUMB.

4.1 Estimation of Linear Utility Function
As the choice probability of an item is non-linear with the
parameters of utility function, it is difficult to estimate the
parameters directly with user choice feedback. Instead, we
split the time horizon into epochs like [Agrawal et al., 2017a].
Let L be the number of epochs. In each epoch l, the selected
subset, Sl ∈ C (S), is offered repeatedly until that the user
chooses nothing from the offered subset. Then, we can obtain
the chosen times of each item i ∈ Sl,

v̂i,l =
∑

t∈El
I (ct = i) , (6)

s.t. I (ct = i) =

{
1, ct = i

0, ct 6= i ,

where El is the set of time steps in epoch l, ct is the chosen
item in time step t.

It can be proven that E (v̂i,l) = vi (Lemma 1), which
means the empirical average of v̂i,l is almost equal to real
item utility and irrelevant to other items in the subset. Thus,
the estimation of utility function can be simply formulated as
a linear regression which directly approaches empirical sam-
ples of v̂i,l. Specifically,

θl = arg min
θ

∑
τ≤l

∑
i∈Sτ

‖θ>xi − v̂i,l‖22 + λ‖θ‖22 ,

Algorithm 1 Linear Utility MNL-Bandit

1: Inputs:
S = {1, · · · , N}, X = [x1, · · · ,xN ],
r = [r1, · · · , rN ]

2: Initialize:
θ0 ← [0]d, A0 ← Id, b0 ← [0]d,

vUCB
i,0 ←

√
2 + α

λ
‖xi‖, ∀i ≤ N

t← 1, l← 1, E1 ← ∅, c0 ← 0
3: repeat
4: if ct−1 = 0 then
5: Compute Sl ← arg max

S∈S
R
(
S,vUCB

l−1
)

6: end if
7: Offer subset Sl, observe the user choice ct.
8: if ct = 0 then
9: for i ∈ Sl do

10: compute v̂i,l ←
∑
t∈El I (ct = i)

11: end for
12: update bl ← bl−1 +

∑
i∈Sl v̂i,lxi

13: update Al ← Al−1 +
∑
i∈Sl xix

>
i

14: update θl ← A−1l bl
15: for i ∈ S do
16: vUCB

i,l ← θ>l xi +
(√

2 + α
)√

x>i A
−1
l xi

17: end for
18: l← l + 1
19: El ← ∅
20: else
21: El ← El ∪ t
22: end if
23: t← t+ 1
24: until t < T

where λ is a constant regularization coefficient. Then, we can
obtain close-form solution

Al = λId +
∑

τ≤l

∑
i∈Sτ

xix
>
i , (7)

bl =
∑

τ≤l

∑
i∈Sτ

v̂i,τxi , (8)

θl = A−1l bl , (9)

where Id is a d-by-d identity matrix.

4.2 Construction of Upper Confidence Bound
We construct the UCB of item utility, which is proven in
Lemma 2, as

vUCB
i,l = θ>l xi +

(√
2 + α

)
σi,l , (10)

s.t. σi,l =
√
x>i A

−1
l xi

where α is constant. Let vUCB
l = [vUCB

1,l , · · · , vUCB
N,l ]. Then,

the UCB of the highest reward, R (S∗,v), is constructed as
the highest reward with vUCB

l (Lemma 5). The corresponding
subset is

Sl+1 = arg max
S∈C(S)

R
(
S,vUCB

l

)
, (11)
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and we offer the subset Sl+1 in epoch l + 1.
It is hard to get Sl+1 by directly solving the above op-

timization problem. According to [Davis et al., 2013], the
above optimization problem can be translated to a linear pro-
gram problem,

max
∑N

i=1
riwi , (12)

s.t. w0 +
∑N

i=1
wi = 1,

∑N

i=1

wi
vUCB
i

≤ Kw0 ,

∀i ∈ S, 0 ≤ wi
vUCB
i

≤ w0 .

Then, Sl+1 = {i|wi > 0, i > 0}.

5 Regret Analysis
In this section, we analyze the upper regret bound of Algo-
rithm 1 to theoretically identify the convergence performance.
Without loss of generality, we first declare the assumption in
the following analysis.
Assumption 1. ∀i ∈ S, ri ≤ 1, ‖xi‖ ≤ 1, ‖θ∗‖ ≤ 1.

According to the assumption, we have that ∀i ∈ S, vi ≤ 1.
Moreover, we let λ = 1. Then, we give the upper bound of
regret in Theorem 1 in advance which is proven in Section
5.3. We can achieve result similar to Theorem 1 when the
parameters in Assumption 1 are bounded by finite constants.
Theorem 1. Following the process in Algorithm 1, let

β = 2 log2 T,

α = β

√√√√2 log

(
2
√
T

(
1 +

T

d

)d/2)
,

then the upper bound of Reg (T,v) is

O
(
dK
√
T (log T )

2
)
. (13)

The proof is separated into three steps. We first prove the
correctness of the constructed UCB of utility and the cumu-
lative deviation between UCB of utility and real utility which
is sublinear with respect to T . Then we prove that the devia-
tion between UCB of reward and real reward can be bounded
by deviation of utility, finally the upper bound of cumulative
regret can be proved by combining the above two results.

5.1 Analysis of Utility
We first prove the distribution of v̂i,l.
Lemma 1. With the definition in Eq. (6), ∀l ≤ L, i ∈ Sl, v̂i,l
follows geometric distribution, that is

P (v̂i,l = β) =
1

1 + vi

(
vi

1 + vi

)β
, ∀β ≥ 0 , (14)

E (v̂i,l) = vi . (15)
Because of the space limitation, proof will be attached in

a longer version. According to above Lemma, the devia-
tion between v̂i,l and real utility is unbounded. This makes
the prove of utility UCB difficult. Fortunately, the probabil-
ity P (v̂i,l > β) decays exponentially when β increases. We
bound v̂i,l in a relative small interval with high probability.
Then, we can prove the utility UCB as below.

Lemma 2. With definition of vUCB
i,l in Eq. (10) and definition

of v̂i,l in Eq. (6), if β ≥ 2 log2 T, ∀τ ≤ l, j ∈ Sl, v̂j,τ ≤ β,
then ∀i ∈ S, l ≤ L,

0 ≤ vUCB
i,l − vi ≤ 2

(√
2 + α

)
σi,l , (16)

with probability at least

1−
(

1 +
T

d

)d/2
exp

(
− α2

2β2

)
.

Proof. Let ∆i,l = |θ>l xi − vi|, we just need to prove

∆i,l ≤
(√

2 + α
)
σi,l .

According to Lemma 1, when v̂i,l ≤ β,

E (v̂i,l − vi) = − (1 + β)
pβ+1
i

1− pβ+1
i

,

s.t. pi =
vi

1 + vi
.

Note that the result of E (v̂i,l − vi) is irrelevant with l. Let
εi = E (v̂i,l − vi).

∆i,l ≤ |x>i A−1l
∑
τ≤l

∑
j∈Sτ

xj (v̂j,τ − vj − εj)|

+ |x>i A−1l
∑
τ≤l

∑
j∈Sτ

xjεj − x>i A
−1
l θ∗| .

We prove the bound of two parts respectively. Let ui = v̂i,τ−
vi − εi, sl =

∑
τ≤l
∑
i∈Sτ xiui, it is easy to prove that

E (exp (γui)) ≤ exp(
γ2β2

2
) ,

then, with Lemma 9 in [Abbasi-Yadkori et al., 2011], we can
prove that with probability

1−
(

1 +
T

d

)d/2
exp

(
− α2

2β2

)
,

we have that
|x>i A−1l

∑
τ≤l

∑
i∈Sτ

xi (v̂i,τ − vi − εi)| ≤ ασi,l . (17)

Moreover, with Cauchy–Schwarz inequality, the other part is
bounded as
|x>i A−1l

∑
τ≤l

∑
j∈Sτ

xjεj − x>i A
−1
l θ∗| ≤

√
2σi,l . (18)

The lemma can be proven by combining Eq. (17) and
Eq. (18).

Moreover, we prove the bound of cumulative utility devia-
tion.
Lemma 3. Following the process in Algorithm 1, the cumu-
lative deviation between utility UCB and real utility can be
bounded as∑L

l=1

∑
i∈Sl

σi,l ≤ K
√

70dL logL . (19)

Proof is similar to the proof of Lemma 3 in [Chu et al.,
2011]. Because of the space limitation, the proof will be at-
tached in a longer version. Lemma 3 shows that the bound
of cumulative deviation is sub-linear with epoch number, and
the average deviation in each epoch will vanish after enough
epochs.
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5.2 Analysis of Reward
We first estimate the deviation between estimated reward and
real reward of Sl with the result of Lemma 3.

Lemma 4. In each epoch l of Algorithm 1, if ∀i ∈ Sl,

0 ≤ vUCB
i − vi ≤ 2

(√
2 + α

)
σi,l ,

then the cumulative deviation between estimated reward and
real reward of Sl is

E

(∑
t∈El

(
R
(
Sl,v

UCB
l

)
− rct

))
≤ 2

(√
2 + α

)∑
i∈Sl

riσi,l .

(20)

Because of the space limitation, proof will be attached in
a longer version. This Lemma means that the deviation of
subset reward is bounded by deviation of item utilities in the
subset.

Lemma 5. (Lemma 4.2 in [Agrawal et al., 2017a])With the
reward defined in Eq. (2), suppose there are two subsets,
S̃UCB and S̃, that

S̃UCB = arg max
S∈C(S)

R
(
S,vUCB

)
,

S̃ = arg max
S∈C(S)

R (S,v) .

If ∀i ∈ S̃, vUCB
i ≥ vi, then the rewards satisfy the inequality

R
(
S̃,v

)
≤ R

(
S̃,vUCB

)
≤ R

(
S̃UCB,vUCB

)
. (21)

Lemma 5 shows that the estimated reward of subset Sl is
an upper bound of real highest reward. Then we can easily
bound the regret in each epoch with Lemma 4 and Lemma 5.

Lemma 6. (Regret bound in a single epoch) In each epoch l
of Algorithm 1, if ∀i ∈ Sl ∪ S∗

0 ≤ vUCB
i − vi ≤ 2

(√
2 + α

)
σi,l , (22)

then the regret of epoch l is

E

(∑
t∈El

(R (S∗,v)− rct)

)
≤ 2

(√
2 + α

)∑
i∈Sl

riσi,l .

(23)

5.3 Upper Bound of Regret
We first prove a more general version of Theorem 1 with pa-
rameters, α and β.

Lemma 7. Following the process in Algorithm 1, if β ≥
2 log2 T , the cumulative regret, defined in Eq. (4), can be
bounded,

Reg (T,v) ≤2TK

(
1 +

T

d

)d/2
exp

(
− α2

2β2

)
+
T 2K

2β+2

+ 2
(√

2 + α
)
K
√

70dT log T . (24)

Proof. We obtain the bound of regret respectively in two sit-
uations: the item utility inequality in Lemma 2 is (or not)
satisfied. We model the event that the item utility inequality
in Lemma 2 is not satisfied as

Al = Ul ∪ Bl, (25)

s.t. Ul = {vUCB
i,l > vi + 2

(√
2 + α

)
σi,l

or vUCB
i,l < vi, ∃i ∈ Sl ∪ S∗},

Bl = {v̂i,τ > β, ∃τ ≤ l, i ∈ Sτ}.

Then, it is easy to bound the probability of Al,

P (Al) ≤ 2K

(
1 +

T

d

)d/2
exp

(
− α2

2β2

)
+
lK

2β
. (26)

Let Ãl be the complement of Al. Then, the regret can be
splited into two parts, that is,

Reg (T,v) = E

(
L∑
l=1

∑
t∈El

I (Al−1) (R (S∗,v)− rct)

)

+ E

(
L∑
l=1

∑
t∈El

I
(
Ãl−1

)
(R (S∗,v)− rct)

)
,

where I (A) is an indicator random variable whose value is 1
when A happens, othewise 0. We first consider the situation
that Al happens,

E
(∑L

l=1

∑
t∈El

I (Al) (R (S∗,v)− rct)
)

≤ 2TK

(
1 +

T

d

)d/2
exp

(
− α2

2β2

)
+
T 2K

2β+2
. (27)

Then, we consider that Al does not happen. According to
Lemma 6 and Lemma 3,

E
(∑L

l=1

∑
t∈El

I
(
Ãl−1

)
(R (S∗,v)− rct)

)
≤ 2

(√
2 + α

)
K
√

70dT log T . (28)

Finally, we can finish the proof by adding Eq. (27) and
Eq. (28).

With Lemma 7, Theorem 1 can be proven by setting

β = 2 log2 T ,

α = β

√√√√2 log

(
2
√
T

(
1 +

T

d

)d/2)
.

As our method is in the similar framework of MNL-
Bandit [Agrawal et al., 2017a] whose lower bound is
Õ
(√

T
)

, our regret bound matches the lower bound up to
logarithmic terms with respect to T .
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6 Experiments
In this section, we evaluate LUMB on synthetic data and com-
pare it to three existing alternative algorithms. We demon-
strate the superiority of LUMB on cumulative regret. More-
over, we show that the estimated linear parameters of utility
function and utilities will asymptotically converge to the real
value.

6.1 Setting
The synthetic data is generated randomly. N rewards are
sampled from interval (0, 1] uniformly. d-dimension param-
eter vector of utility function, θ∗, is sampled from [0, 1]d

uniformly, then is normalized to 1. N d-dimension feature
vectors are sampled from [0, 1]d uniformly. To follow the ex-
periment setting in [Agrawal et al., 2017b], feature vectors
are normalized so that item utilities distribute uniformly on
[0, 1]. Experiments are all performed on ten randomly gen-
erated data sets and the results show below are all average of
results on these data sets.

Three alternative algorithms are compared:
• UCB-MNL [Agrawal et al., 2017a]: This algorithm pro-

poses a UCB approach with MNL choice model.
• Thompson-Beta [Agrawal et al., 2017b]: This algorithm

proposes a Thompson sampling approach with MNL
choice model.
• Thompson-Corr [Agrawal et al., 2017b]: This algorithm

is a variant of Thompson-Beta which samples item util-
ities with correlated sampling.

6.2 Results
We conduct empirical experiments on synthetic data sets with
N = 1000,d = 10. Subset sizeK is set to 10. Figure 1 shows
the cumulative regret on the synthetic data sets, which is nor-
malized by best reward, i.e., Reg (t,v) /R (S∗,v). Note that
the axis of cumulative regret is plot in a logarithm style for
the convenience of observing the trend of LUMB regret on
time horizon. The cumulative regrets increase slower when
time step increases. Besides, we can see that the cumulative
regret of LUMB is much smaller than the alternative algo-
rithms through the time horizon.

We evaluate the convergence of utility vector on synthetic
data sets with N = 1000,d = 10. Figure 2 shows the devia-
tion between estimated mean utility and real utility, which is
normalized by the norm of real utility, i.e., ‖θ>t X− v‖/‖v‖.
The deviation of LUMB decreases fast in the early stage and
achieve smaller deviation compared to the alternative algo-
rithms.

Moreover, we evaluate the deviation of estimated linear pa-
rameter vector in Figure 2. The deviation is normalized by the
norm of real parameters, i.e., ‖θt − θ∗‖/‖θ∗‖. Note that the
deviation also decreases fast in the early stage and asymptoti-
cally converges to zero finally. This demonstrates that LUMB
can correctly estimate the linear parameters.

7 Conclusion
We study the sequential subset selection problem with
linear utility MNL choice model, and propose a UCB-
style algorithm, LUMB. Also, an upper regret bound,

Figure 1: Cumulative regret along time horizon.

Figure 2: Deviation of item utility vector (upper figure) and lin-
ear utility function parameter vector (lower figure) on different time
steps.

O
(
dK
√
T (log T )

2
)

, is established, which is free of can-
didate item number. Experiments show the performance of
LUMB. In the future work, we are interested in extending the
idea to other choice models such as nested MNL.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2607



References
[Abbasi-Yadkori et al., 2011] Yasin Abbasi-Yadkori, Dávid
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