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Abstract

We propose a robust multivariate density estima-
tor based on the variational autoencoder (VAE).
The VAE is a powerful deep generative model, and
used for multivariate density estimation. With the
original VAE, the distribution of observed contin-
uous variables is assumed to be a Gaussian, where
its mean and variance are modeled by deep neu-
ral networks taking latent variables as their inputs.
This distribution is called the decoder. However,
the training of VAE often becomes unstable. One
reason is that the decoder of VAE is sensitive to
the error between the data point and its estimated
mean when its estimated variance is almost zero.
We solve this instability problem by making the de-
coder robust to the error using a Bayesian approach
to the variance estimation: we set a prior for the
variance of the Gaussian decoder, and marginal-
ize it out analytically, which leads to proposing the
Student-t VAE. Numerical experiments with var-
ious datasets show that training of the Student-¢
VAE is robust, and the Student-¢ VAE achieves high
density estimation performance.

1 Introduction

Multivariate density estimation [Scott, 2015], which esti-
mates the distribution of continuous data, is an important task
for artificial intelligence. This fundamental task is widely
performed from basic analysis such as clustering and data vi-
sualization to applications such as image processing, speech
recognition, natural language processing, and anomaly detec-
tion. For these tasks, conventional density estimation meth-
ods such as the kernel density estimation [Silverman, 1986]
and the Gaussian mixture model [McLachlan and Peel, 2004]
are often used. However, recent developments of networks
and sensors have made data more high-dimensional, compli-
cated, and noisy, and hence multivariate density estimation
has become very difficult.

Meanwhile, the variational autoencoder (VAE) [Kingma
and Welling, 2013; Rezende er al., 2014] was presented as
a powerful generative model for learning high-dimensional
complicated data by using neural networks, and the VAE is
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used for multivariate density estimation. The VAE is com-
posed of two conditional distributions: the encoder and the
decoder, where neural networks are used to model the param-
eters of these conditional distributions. The encoder infers
the posterior distribution of continuous latent variables given
an observation. The decoder infers the posterior distribution
of observation given a latent variable. The encoder and de-
coder neural networks are optimized by minimizing the train-
ing objective function. In the density estimation task, since
the observed variables are continuous, a Gaussian distribu-
tion is used for the decoder. We call this type of VAE the
Gaussian VAE.

However, the training of the Gaussian VAE often becomes
unstable. The reason is as follows: the training objective
function of Gaussian VAE is sensitive to the error between the
data point and its decoded mean when its decoded variance is
almost zero, and hence, the objective function can give an
extremely large value even with a small error. We call this
problem zero-variance problem. This zero-variance problem
often occurs with biased data, i.e. in which some clusters
of data points have small variance. Real-world datasets such
as network, sensor and media datasets often have this bias,
therefore, this problem is serious considering the application
of the VAE for real-world datasets.

Our purpose is to solve this instability by making the de-
coder robust to the error. In this paper, we introduce a
Bayesian approach to the inference of the Gaussian decoder:
we set a Gamma prior for the inverse of the variance of the
decoder and marginalize it out analytically, which leads to in-
troducing a Student-t distribution as the decoder distribution.
We call this proposed method the Student-¢ VAE. Since the
Student-t distribution is a heavy-tailed distribution [Lange et
al., 1989], the Student-t decoder is robust to the error be-
tween the data point and its decoded mean, which makes the
training of the Student-¢ VAE stable.

2 Variational Autoencoder

First, we review the variational autoencoder (VAE) [Kingma
and Welling, 2013; Rezende et al., 2014]. The VAE is a prob-
abilistic latent variable model that relates an observed vari-
able vector x to a continuous latent variable vector z by a
conditional distribution. Since our task is density estimation,
we assume that the observed variables x are continuous. With
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the VAE, the probability of a data point x is given by
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where p(z) is a prior of the latent variable vector, which
is usually modeled by a standard Gaussian distribution
N (2z[0,1), and pg (x|z) = N (x | po (2) , 0% (z)) is a Gaus-
sian distribution with mean 119 (z) and variance o} (z), which
are modeled by neural networks with parameter 6 and input
z. These neural networks are called the decoder. We call this
type of VAE the Gaussian VAE.

Given a dataset X = {X(l), . ,X(N)}, the sum of the
marginal log-likelihoods is given by

N
Inpy (X) = npy (x?), )
=1

where NN is the number of data points. The marginal log-
likelihood is bounded below by the variational lower bound,
which is derived from Jensen’s inequality, as follows:
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where [E[-] represents the expectation, ¢y (z|x) =

N (z | g (%), 03 (X)) is the posterior of z given x, and its
mean 14 (x) and variance o} (x) are modeled by neural net-
works with parameter ¢. These neural networks are called the

encoder.
The variational lower bound (3) can be also written as:
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where Dy, (P||@) is the Kullback Leibler (KL) divergence
between P and (). The parameters of the encoder and decoder
neural networks are optimized by maximizing the variational
lower bound using stochastic gradient descent (SGD) [Duchi
et al., 2011; Zeiler, 2012; Tieleman and Hinton, 2012;
Kingma and Ba, 2014]. The expectation term in (4) is approx-
imated by the reparameterization trick [Kingma and Welling,
2013]:

Eq¢(z|x(’5)) {hlpe (X(i) | Z)} ~ iilnpg (X(i) ‘ Z(M)) 7
=1
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where z(*0) = e (x(i)) + €(i7€)oi (x(i)), (9 is a sample
drawn from A/ (0, I), and L is the sample size of the reparam-
eterization trick. I = 1 is usually used [Kingma and Welling,

2013]. Then, the resulting objective function is

c (0, &; x(i))
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The KL divergence between Gaussian distributions
Dkr (g6 (2| x9) [|p(2)) and its gradient can be cal-
culated analytically [Kingma and Welling, 2013]. In this
paper, we minimize the negative of (6) instead of maximizing
1t.

3 Instability of Training Gaussian VAE

To investigate the Gaussian VAE, we applied it to SMTP
data', which is a subset of the KDD Cup 1999 data and
provided by the scikit-learn community [Pedregosa ef al.,
2011]. The KDD Cup 1999 data were generated using a
closed network and hand-injected attacks for evaluating the
performance of supervised network intrusion detection, and
they have often been used also for unsupervised anomaly de-
tection. The SMTP data consists of three-dimensional contin-
uous data, and contains 95,156 data points. Figure 1a shows
a visualization of this dataset. This dataset has some bias:
the variance of some clusters of data points is small along the
dimension directions.

We trained the Gaussian VAE using this dataset by Adam
[Kingma and Ba, 2014] with mini-batch size of 100. We used
a two-dimensional latent variable vector z, two-layer neural
networks (500 hidden units per layer) as the encoder and the
decoder, and a hyperbolic tangent as the activation function.
The data were standardized with zero mean and unit variance.
We used 10% of this dataset for training.

Figure 1b shows the mean training loss, which equals
— SN L£(8,6;xD) /N. The training loss was very un-
stable. One reason for this is that the variance o3 (z(*")
in the decoder N (x¥|pg (2(%9)) , 03 (z(**))) becomes al-
most zero, where z(»? is sampled from the encoder
N (Z(i’£)|u¢ (x®) 05 (x(i))). For example, at the 983rd
epoch, the training loss jumped up sharply. Figure 1c shows
the relationship between the difference in the training losses
and the variance o (z(")) at this epoch. The training loss
of the data points with small variance o} (Z(M)) increased
drastically.

When the decoded variance o3 (z(**)) is almost zero, the
Gaussian decoder is sensitive to the error between the data
point and its decoded mean: even if x(*) differs only slightly
from its decoded mean piy (z(i’é)), the value of the first term

'This dataset is available at http:/scikit-learn.org/stable/
modules/generated/sklearn.datasets.fetch_kddcup99.html
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Figure 1: (a) Visualization of the SMTP data. (b) Mean training loss for the SMTP data. The inset is an enlargement near the 983rd

epoch. (c) Relation of the decoded variance to the difference in training losses. Loss® represents L (0, ?; x(i)) for each data at the tth

epoch, and min (In o7 (z)) represents minimum of In o7 (z). We plotted the means and standard deviations of Loss") — Loss"~"), where
min (Inoj (z)) € [c— 0.5,c + 0.5], for c in Z. From 982nd to 983rd, training loss of data points with small In o7 (z) increased drastically.

of the training objective function (6):
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changes drastically, where d is the dimension index of x()
Lo (Z(M)), and 03 (z(i’g)). This sensitivity makes the train-
ing of the Gaussian VAE unstable. We call this problem
the zero-variance problem. This zero-variance problem of-
ten occurs with biased data, since some data points are from
a cluster with very small variance, and their decoded variance
becomes much smaller as the training proceeds. Since the
cause of this problem is the sensitivity of the objective func-
tion, changing the optimizer and tuning the hyperparameters
of optimizer do not matter.

4 Student-t VAE

We would like to solve this zero-variance problem by mak-
ing the decoder robust to the error between the data point
and its decoded mean. We propose a Bayesian approach to
the inference of the Gaussian decoder, which leads to using a
Student-¢ distribution as the decoder.

We introduce a prior distribution for the variance of the
Gaussian decoder. Let the precision parameter 7y(z) be the
inverse of the variance, 79(z) = 1/07 (z). We use the conju-
gate prior for the precision parameter, which is the following
Gamma distribution:

b7 Lexp (—br)

I'(a) ’
where a is a shape parameter and b is a rate parameter. The
domains of a and b are positive.

Gam (7 | a,b) = 8)

4.1 MAP Estimation

First, we present the maximum a posteriori (MAP) estimation
as a way to solve the zero-variance problem. To simplify the
calculation, we use Gam (7 | 1,b) as the prior for 1/03 (z).
Its log probability is given by

b
o (2)

Accordingly, the objective function of MAP estimation for
the VAE is:

IES (i) | G0 b
le_;{lnpg(x | z* >—03(Z(M))}
— Dgkr (q¢ (z | x(i)) Hp(z)) . (10)

We call this type of VAE the MAP VAE. This objective func-
tion can be viewed as a regularized version of the original
Gaussian VAE objective function (6), where the small vari-
ance o3 (z(“9) is penalized by —b/0? (z(")) with the reg-
ularization parameter b. This regularization parameter b can
be tuned by cross-validation, which requires a heavy compu-
tational cost. In addition, the MAP VAE has a problem in
that the prior distribution is assumed to be independent of la-
tent variables z, which leads to a lack of flexibility in density
estimation.

In Gam (79(2z) | 1,b) =Inb — bryp(z) x — )

4.2 Marginalization of the Variance Parameter

We propose a more flexible and computationally efficient ap-
proach by introducing a Gamma prior distribution that de-
pends on latent variables, Gam (7 | a (z) , b (2z)), where a (z)
and b (z) are the shape and rate parameters, respectively,
which take the latent variable z as their inputs. By analyti-
cally integrating out the precision 7, the conditional distribu-
tion of the observation x given the latent variable z becomes
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(a) Gaussian decoder. (b) Student-t decoder.

Figure 2: The diagram of decoders. The decoder neural network
takes the latent variable z as input, and estimates the parameters of
assumed distribution. (a) Gaussian decoder network estimates the
mean pp (z) and variance oj (z). (b) Student-t decoder network
estimates the mean o (z), precision Ag (z), and degree of freedom

vy (z).

a Student-¢ distribution as follows:

po (x| 2)

:/N(x|u9 (z),77") Gam (7 | a(z),b(z))dr
0

P89 @\ @@
" () (%) [” N
=St (x| po(2), 0 (2),v0 (2)), 11

where \g (z) = a(z)/b (z) is a precision® of a Student-¢ dis-
tribution, and vy (z) = 2a (2z) is a degree of freedom. We
use neural networks to model the parameters of the Student-¢
distribution, Ay (z) and vy (z) as well as py (z), and use them
as the decoder. We call this type of VAE the Student-t VAE.
The diagram of Student-¢ decoder is illustrated in Figure 2.

Figure 3 shows a plot of the Student-t distribution. The
Student-¢ distribution is obtained by mixing an infinite num-
ber of Gaussians that have the same mean but different vari-
ances, and it has an important property: the tail heaviness. It
is well-known that a heavy-tailed distribution is robust be-
cause the probability in the tail region is higher than that
of a light-tailed distribution such as a Gaussian distribution
[Lange et al., 1989]. Therefore, the Student-t decoder is
robust to the error between the data point and its decoded
mean, which makes the training of the Student-¢ VAE stable.
Since the degree of tail heaviness can be adjusted by tuning v,
the Student-¢ VAE can set an appropriate robustness for each
data point by estimating vy (z), which leads to obtaining bet-
ter flexibility than the MAP VAE. Since there is no need to
use the cross-validation for tuning the parameters such as the
MAP VAE, the Student-¢ VAE requires only a lightweight
computational cost.

2This parameter is not always equal to the inverse of the variance.
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In(St(z | 0,1,v))

Figure 3: Plot of Student-¢ distribution St (x | 0,1, v) in log scale
for various values of v. The Student-¢ distribution has a heav-
ier tail compared with a Gaussian, and in the case of v — oo,
St (2 | p, A, v) corresponds to a Gaussian N (z | p, A™").

SMTP  Aloi Thyroid Cancer Satellite
Datasize 95,156 50,000 6,916 367 5,100
Dimension 3 27 21 30 36

Table 1: Number of data points and dimensions of five datasets

S5 Experiments

In this section, we evaluate the robustness of the training and
the density estimation performance of the Student-¢ VAE.

5.1 Data

We used the following five datasets: SMTP, Aloi, Thyroid,
Cancer and Satellite. The SMTP data is the same as the
data used in Section 3, where we used 10% of this dataset
for training. We also used 10% of this dataset for validation
and the remaining 80% for test. The Aloi data is the Amster-
dam library of object images [Geusebroek er al., 2005], and
the Thyroid, Cancer and Satellite datasets were obtained from
the UCI Machine Learning Repository [Lichman, 2013]. We
used the transformations of these datasets by [Goldstein and
Uchida, 2016] 3. We used 50% of the dataset for training,
10% for validation, and the remaining 40% for test. The total
number of data points and the dimensions of the observation
of the five datasets are listed in Table 1.

5.2 Setup

We used two-layer neural networks (500 hidden units per
layer) as the encoder and the decoder, and a hyperbolic tan-
gent as the activation function. We trained the VAE by us-
ing Adam [Kingma and Ba, 2014] with mini-batch size of
100. We set the sample size of the reparameterization trick to
L = 1. The maximum number of epochs was 500, and we
used early-stopping [Goodfellow et al., 2016] based on the
validation data. We used a two-dimensional latent variable
vector z with the SMTP data, and a 20-dimensional latent

3These datasets are available at https://dataverse.harvard.edu/
dataset.xhtml?persistentld=doi: 10.7910/DVN/OPQMVF
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Figure 4: Mean training loss (— Zf’zl L (9, @; x<i)) /) for each data set.
Method SMTP Aloi Thyroid Cancer Satellite
Gaussian -1.248 £0.404 45418 £5.457 15519 +4.422 -18.668 + 3.448  -1.852 + 0.370
MAP(b=1) -4.864 +£0.020 -38.210 £ 0.156 -31.266 + 0.159 -45.895 4+ 0.843 -50.895 + 0.238
MAP(b=0.001) -1.932+0.404 30406 +0.383  18.037 £ 1.318 -19.017 +3.273  -1.899 + 0.372
Student-¢ 0.827 £ 0.105  77.022 + 0.539  69.543 + 0.634 -18.253 + 2.629  -1.811 + 0.289

Table 2: Comparison of test log-likelihoods. We highlighted the best result in bold, and we also highlighted the results in bold which are not
statistically different from the best result according to a pair-wise ¢-test. We use 5% as p-value.

variable vector for the other datasets. For the evaluation, we
calculated the marginal log-likelihood of the test data by us-
ing the importance sampling [Burda er al., 2015]. We set the
sample size of the importance sampling to 100. We ran all
experiments ten times each. The data was standardized with
zero mean and unit variance. We used the following setup:
CPU was Intel Xeon E5-2640 v4 2.40GHz, the memory size
was 1 TB, and GPU was NVIDIA Tesla M40.

5.3 Results

Figures 4a—4e show the relationship between the mean train-
ing loss and wall clock (seconds), and Table 2 compares the
test log-likelihoods of the Gaussian VAE, MAP VAE, and
Student-t VAE.

First, we focused on the Gaussian VAE. With the SMTP,
Aloi and Thyroid data, training of the Gaussian VAE was un-
stable, and the test log-likelihoods of the Gaussian VAE were
worse than those of the Student-{ VAE. On the other hand,
with the Cancer and Satellite data, the training of the Gaus-

sian VAE was stable, and the Gaussian VAE and the Student-¢
VAE achieved the comparable test log-likelihoods. Figures Sa
and 5b show the test log-likelihoods by the Gaussian VAE for
different mini-batch sizes, and different learning rates for the
SMTP data, respectively. Even though the mini-batch size
and learning rate changed, the test log-likelihood with the
Gaussian VAE was worse than that with the Student-t VAE.
These results indicate that improving the robustness of the
objective function is better than tuning the hyper parameters
of the optimizer.

Second, we focused on the MAP VAE. When the regular-
ization parameter was large, b = 1, the negative variational
lower bound was stable but it did not decrease well. When
the regularization parameter was small, b = 0.001 with the
SMTP, Aloi and Thyroid data, the negative variational lower
bound became unstable, and it behaved similarly to that of
the Gaussian VAE. The test log-likelihoods of the MAP VAE
were equal to or worse than the Gaussian VAE, because the
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Figure 5: Relationship between the test log-likelihoods and various settings of Gaussian VAE and MAP VAE. We used SMTP data, and plotted
the test log-likelihoods in Table 2 by dashed line for comparison. The semi-transparent area and error bar represent standard deviations. (a)
Relationship between the test log-likelihoods and mini-batch size with the Gaussian VAE. (b) Relationship between the test log-likelihoods
and learning rate with the Gaussian VAE. (c) Relationship between the test log-likelihoods and regularization parameter b with the MAP
VAE. (d) Relationship between the test log-likelihoods and the stability of training under noisy environment.

constant parameter of the Gamma prior b was not flexible.
Figure 5c shows the test log-likelihoods with different reg-
ularization parameter values b for the SMTP data. When
b < 0.001, the test log-likelihood of the MAP VAE was
not statistically different from the Gaussian VAE, and when
b > 0.01, the larger b was, the worse the test log-likelihood
of the MAP VAE became. These results indicate that set-
ting an appropriate robustness for each data point is effective
to avoid zero-variance problem without lacking the flexibility
of density estimation.

Third, we focused on the Student-t VAE. With all of the
datasets, the Student-t VAE reduced the training loss sta-
bly, and obtained the equal to or better density estimation
performance than that of the Gaussian VAE and the MAP
VAE. Since the Student-t VAE can set the appropriate ro-
bustness for each data point by estimating vy (z), it avoids
zero-variance problem while improving the flexibility of the
decoder, which makes the training stable and leads to obtain-
ing good density estimation performance.

In addition, we evaluated the stability of training under the
noisy environment. We added noisy samples which follows
uniform distribution to SMTP data, and evaluated the test log-
likelihoods. Figure 5d shows the relationship between the
test log-likelihoods and the ratio of noisy samples to dataset.
Whereas the training of Gaussian VAE becomes unstable as
the ratio of noisy samples increases, the training of Student-
t VAE continues to be stable. This result indicates that the
Student-t VAE is useful under the noisy environments such
as real-world applications.

These results indicate that the Student-t VAE is a good al-
ternative to the Gaussian VAE: the training of the Student-
t VAE is stable, which requires only a lightweight compu-
tational cost, and the density estimation performance of the
Student-t VAE is equal to or better than that of the Gaussian
VAE.

6 Related Work

Regarding related work on improving the stability of train-
ing the VAE, a number of methods have been proposed
that reduce the variance of stochastic gradients [Johnson
and Zhang, 2013; Wang et al., 2013; Kingma et al., 2015;
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Roeder et al., 2017; Miller et al., 2017]. These methods fo-
cused on the stability of optimization methods, such as the
reparameterization trick and the stochasticity due to data sub-
sampling. The Student-¢t VAE focuses on the different part
from these methods: the robustness of the training objective
function. This requires only a lightweight computational cost,
and can be used together with these existing methods.

It is well-known that the Student-¢ distribution has robust-
ness [Lange er al., 1989], and this robustness has been ap-
plied to a number of machine learning algorithms, such as
stochastic neighbor embedding [Maaten and Hinton, 2008],
Gaussian process [Jyldnki e al., 2011], and Bayesian opti-
mization [Martinez-Cantin et al., 2017]. These algorithms
used a Student-¢ distribution to reduce the influence of noise
included in the observed data. The Student-t{ VAE uses a
Student-¢ distribution for reducing the influence of the error
between the data point and its decoded mean, which makes
the training objective function of Student-¢ VAE robust.

7 Conclusion

We proposed the Student-¢ variational autoencoder: a robust
multivariate density estimator based on the variational au-
toencoder (VAE). The training of the Gaussian VAE often
becomes unstable. We investigated the cause of this insta-
bility, and revealed that the Gaussian decoder is sensitive to
the error between the data point and its decoded mean when
the decoded variance is almost zero.

In order to improve the robustness of the VAE, we in-
troduced a Bayesian approach to the Gaussian decoder: we
set a Gamma prior for the inverse of the decoded variance
and marginalized it out analytically, which led to using the
Student-¢ distribution as the decoder. Since the Student-¢ dis-
tribution is a heavy-tailed distribution, the Student-t decoder
is robust to the error, which makes the training stable. We
demonstrated that the robustness of the training and the high
density estimation performance of the Student-¢ VAE in ex-
periments using five datasets.

In the future, we will try to apply the Student-t VAE to
real-world applications such as anomaly detection [Suh et al.,
2016] and image generation [van den Oord ef al., 2016].
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