
Mixture of GANs for Clustering∗

Yang Yu and Wen-Ji Zhou
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

{yuy,zhouwj}@lamda.nju.edu.cn

Abstract
For data clustering, Gaussian mixture model (GMM)
is a typical method that trains several Gaussian mod-
els to capture the data. Each Gaussian model then
provides the distribution information of a cluster.
For clustering of high dimensional and complex
data, more flexible models rather than Gaussian
models are desired. Recently, the generative ad-
versarial networks (GANs) have shown effective-
ness in capturing complex data distribution. There-
fore, GAN mixture model (GANMM) would be a
promising alternative of GMM. However, we no-
tice that the non-flexibility of the Gaussian model
is essential in the expectation-maximization pro-
cedure for training GMM. GAN can have much
higher flexibility, which disables the commonly em-
ployed expectation-maximization procedure, as that
the maximization cannot change the result of the
expectation. In this paper, we propose to use the
ε-expectation-maximization procedure for training
GANMM. The experiments show that the proposed
GANMM can have good performance on complex
data as well as simple data.

1 Introduction
Clustering is a fundamental machine learning task that divides
a data set into clusters, such that instances are similar in the
same cluster but dissimilar in different clusters [Duda et al.,
2012]. Clustering is often employed to analyze unlabeled data
set, and has been widely applied, such as in recommendation
systems [Li and Kim, 2003], computer version [Frigui and
Krishnapuram, 1999], speech processing [Chen and Gopalakr-
ishnan, 1998], etc.

Among numerous clustering methods, Gaussian mixture
model (GMM) [McLachlan and Basford, 2004; McLachlan
and Peel, 2004] is a very classical and elegant one, which
has still being consistently improved (e.g., [Li et al., 2015;
Raghunathan et al., 2017]). GMM is a linear combination
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of a set of Gaussian distributions. Its training process finds
the best parameters of each Gaussian distribution as well as
the combination weights, such that the mixture distribution
best fits the data. The training process commonly follows the
expectation-maximization (EM) procedure, which solves the
parameters efficiently. While GMM has gained successful
applications, it has a fundamental assumption is that the data
is composed by Gaussian distributions. However, real data
sets rarely satisfy this assumption, on which GMM can result
in poor clusters. Therefore, mixture of models with more
flexibility is appealing for clustering complex data sets.

Recently, the generative adversarial networks (GANs)
[Goodfellow et al., 2014; Arjovsky et al., 2017; Chen et al.,
2016] have attracted a lot attentions for its outstanding ability
of capturing complex data distribution. GAN trains a gener-
ative network and a discriminative network simultaneously.
The discriminative network is trained to separate the training
data set from the generated data, while the generative neural
network is trained to generate data indistinguishable from the
training data. This adversarial process converges such that
the generated data has a distribution close to the training data.
GANs have achieved extraordinary performance in generating
images, implying their ability to capture high-dimensional
complex distributions.

The ability of modeling complex distributions making GAN
a potential replacement of the Gaussian distribution for learn-
ing mixture models. However, we find that the replacement is
not straightforward. The expectation-maximization (EM) pro-
cedure, which is commonly employed to train GMM, cannot
be used on GAN directly. A key issue is that GAN models can
be quite flexible, such that the training by the EM procedure
immediately converges.

In this paper, we propose to use the ε-expectation-
maximization (ε-EM) procedure to train the GAN mixture
model (GANMM). The ε-EM procedure differs from the EM
procedure in that the expectation is not fully accurate but with
an ε error. The ε-expectation is implemented by learning a
classifier to separate the clusters. Meanwhile, a controlling of
the ε error can still guarantee the convergence of the proce-
dure, and it can effectively train the GANMM. Experiments on
MNIST as well as some UCI data sets show that the proposed
GANMM with the ε-EM procedure can result in superior per-
formance to GMM and some other state-of-the-art clustering
approaches.
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2 Background
2.1 Gaussian Mixture Model
Gaussian mixture model (GMM) is a popular unsupervised
learning technique. A Gaussian mixture model consists of N
Gaussian components. The Gaussian components are com-
bined using linear combination to form a distribution p(x),

p(x) =
∑N

i=1
αiN (x;µi,Σi)

=
∑N

i=1

αi√
(2π)d|Σ|

exp

(
− (x− µi)TΣ−1

i (x− µi)
2

)
where x is a d-dimensional random vector, the i-th Gaus-

sian component has the mean µi ∈ Rd and the covariance
matrix Σi ∈ Rd×d, and αi is the weight for the i-th Gaussian
component satisfying

∑N
i=1 αi = 1 and ∀i, αi ≥ 0.

Learning GMM requires to find the best parameters µi,
Σi and αi, such that the data is best fitted. The expectation-
maximization procedure is commonly employed to solve this
problem.

2.2 Expectation-Maximization Procedure
Expectation-Maximization procedure is a general method for
parameter estimation. Generally, consider observable vari-
ables X with observed instances D = {x1,x2, ...,xM}, and
hidden variables Z. Our probabilistic model with parameters
θ (θ = {αi,µi,Σi} for GMM) gives the joint probability
p(X,Z|θ) to the variables. The parameter estimation of θ is
by maximizing the log-likehood

θ∗ = arg max
θ

LL(θ) = arg max
θ

ln p(D|θ).

For GMM, we know the log-likelihood is

LL(θ) =
M∑
i=1

log


N∑
j=1

αjN (xi|µj ,Σj)

.
A simple derive of the EM procedure is by expanding the
log-likelihood including a valid probability distribution q(Z),

LL(θ) =
∑

Z
q(Z) ln p(D|θ)

=
∑
Z

q(Z)
(
ln(p(D,Z|θ)/q(Z))−ln(p(Z|D,θ)/q(Z))

)
=
∑
Z

q(Z) ln(p(D,Z|θ)/q(Z)) +KL(q||p)

= L(q,θ) +KL(q||p). (1)

where KL(q||p) is the KL-divergence between the two dis-
tributions. Due to the expansion of the log-likelihood into
two terms, the maximization can be carried in two alternative
E-steps and M-steps.

The E-step, given the current parameters θ(t), matches the
distribution q(Z) to p(Z|D,θ(t)), so that KL(q||p) reaches
its minimum at zero and

LL(θ) = L(q,θ) =
∑

Z
q(Z) ln(p(D,Z|θ)/q(Z))

=
∑

Z
p(Z|D,θ(t)) ln p(D,Z|θ)− q(Z) ln q(Z).

For GMM, the E-step finds a guess of q(Z) according to the
posterior

p(zij |xj ,θ(t)) =
p(xj , zij |θ(t))

p(xj |θ(t))

in which zij = 1 if and only if xj is generated by the i-th
Gaussian model.

Then the M-step is to maximize LL(θ) by maximizing the
the non-constant term
θ(t+1)=arg max

θ
Q(θ,θ(t))=EZ∼p(Z|D,θ(t))ln(p(D,Z|θ)).

For GMM, we know the probability that an instance xi is
generated by the k-th Gaussian model is

γ(i, k) =
αkN (xi|µk,Σk)∑N
j=1 αjN (xi|µj ,Σj)

.

Letting Mk =
∑M
i=1 γ(i, k), we can update α, µ and Σ as

µk =
1

Mk

∑M

i=1
γ(i, k)xi

Σk =
1

Mk

∑M

i=1
γ(i, k)(xi − µk)(xi − µk)T

αk =
Mk

M
.

The E-steps and M-steps iterate until the convergence. The
convergence of the EM procedure has been well addressed.
Including the convergence properties of EM on finite mixture
models [Jordan and Xu, 1995], the link between EM procedure
and gradient methods via the projection matrix [Xu and Jordan,
1996], and more recently, the increase of the likelihood along
any EM sequence [Bouveyron and Brunet, 2012], and the
statistical consistency of parameter estimation for GMM [Xu
et al., 2016].

2.3 Generative Adversarial Network
Generative adversarial network (GAN) [Goodfellow et al.,
2014] is a class of approaches that train neural network mod-
els to generate data very similar to the training data. GAN
commonly consists of two networks competing with each
other in a zero-sum game framework. The objective function
of GAN is presented as [Goodfellow et al., 2014]

min
G

max
D

Ex∼pr log(D(x)) + Ez∼pz [log(1−D(G(z)))]

where G is the generator that takes input of a noise z from a
noise distribution pz and outputs a sample, D is the discrimi-
nator, and pr is the distribution of the training data.

The initial GAN could be hard to train as it was delicate and
unstable. Soon following GAN, many variants have emerged.
For examples, the DCGAN [Radford et al., 2015] employs
deep convolutional neural networks for generating high qual-
ity pictures; the f-GAN [Nowozin et al., 2016] use the f -
divergence to train GAN; and the Wasserstein GAN (WGAN)
[Arjovsky et al., 2017] choose to minimize an efficient ap-
proximation of the Earth-Mover distance to improve the per-
formance of GAN.

GANs have shown very strong ability at capturing complex
data distributions, such as images and audios from raw features.
Therefore, GANs can be a useful replacement of the simple
Gaussian model for complex data clustering.
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3 GAN Mixture Model
Early Convergence of EM Procedure
We use GAN models instead of Gaussian models in learn-
ing mixture models for capturing clusters of complex data,
while keeping the loss function unchanged. However, it is
not straightforward to train GAN mixture models (GANMM)
as that in GMM. To illustrate the problem, let us recall the
EM procedure. As the log-likelihood is expanded in (1), the
E-step matches the distribution of the hidden variable (i.e.,
clusters) with the posterior probability of the current model,
i.e., q(Z) = p(Z|D,θ(0)) from any initial model θ(0). Then
the M-step solves the parameters θ(1) from the resulted log-
likelihood

Q(θ,θ(0)) =
∑

Z
p(Z|D,θ(0)) ln p(D,Z|θ)

=
∑

Z
p(Z|D,θ(0))(ln p(Z|D,θ) + ln p(D|θ)).

Note that, if our model can be arbitrarily capable, the
model maximizing L(q,θ) will have the extreme value that
p(z(0)|D,θ(1)) = 1 for z(0) = argmaxz p(z|D,θ(0)) and
otherwise 0, and p(D|θ) = 1.

In the next iteration, we will have q(Z) = p(Z|D,θ(1))
and solves θ(2) such that p(z(1)|D,θ(2)) = 1 for z(1) =
argmaxz p(z|D,θ(1)) and otherwise 0. Noticed that

argmax
z

p(z|D,θ(1)) = z(0) = argmax
z

p(z|D,θ(0)),

we have θ(1) = θ(2), and thus the procedure has converged.
Therefore, the EM procedure will converge too early if the

model is of very high capacity. That would be likely to happen
for using GANs as the model.

ε-Expectation-Maximization Procedure
To avoid the early convergence of the EM procedure, one way
is to avoid that the model fits the current guess of the hidden
variables too well. Our idea is to introduce some error in the
E-step, i.e., an ε-E-step with

KL(q(t)||p(t)) = εt > 0,

By Eq.(1), we now have

LL(θ(t)) = L(q(t),θ(t)) + εt.

and thus
∀q,L(q,θ(t)) ≤ LL(θ(t)) = L(q(t),θ(t)) + εt.

Since the M-step is reserved, we still have

θ(t) = arg maxθ L(q(t−1),θ),

which means L(q(t−1),θ(t)) ≥ L(q(t−1),θ(t−1)). Therefore,
we have

LL(θ(t)) = L(q(t),θ(t)) + εt ≥ L(q(t−1),θ(t))

≥ L(q(t−1),θ(t−1)) = LL(θ(t−1))− εt−1

≥ LL(θ(0))−
∑t−1

i=0
εi,

which shows that the ε-E-step can lead to an amount of loss of
the log-likelihood. However, if we keep lim

t→+∞

∑t−1
i=0 εi <∞,

there exists C > 0 such that for all t > C, LL(θ(t)) ≥
LL(θ(t−1)) and thus the procedure converges. The above
procedure is call ε-EM.

training 
data cluster 2

cluster 1

cluster N

Classifier

Discriminator 1

Discriminator 2

Discriminator N

Generator 1

Generator 2

Generator N

data flow
label flow

Figure 1: The GANMM Architecture

GAN Mixture Model
To implement the ε-EM procedure, we need an unfitted model
for the expectation at some beginning steps. We restrict that
the distribution of the clusters q(t) in a bounded hypothesis
space Ht. Then, εt = minq∈Ht

KL(q||p(t)). Given the power
of the M-step, it is easy to see that as long as ∀t : Ht ⊆ Ht−1

and |Ht| > 0 (i.e., the ε-E-step cannot be quite adversarial,
the M-step will fit the data and eliminate the error), the finite
accumulated error that limt→+∞

∑t−1
i=0 εi <∞ is guaranteed.

In the above, finding q(t) by the criterion
minq∈Ht

KL(q||p(t)) inspires us to train a classifier
with moderate complexity (i.e., to control the hypothesis
space Ht) to fit the current guess of the cluster assignment.
Therefore, we propose the GANMM training approach using
the ε-EM procedure as follows.
ε-E-step: (1) From the current model θ(t), sample a data set
S(t) = {(x̃i, yi)ni=0} from the GAN generators, while x̃i is
the data point generate by k-th generator and yi = k. (2)
Train a (not so perfect) classifier hq from S. (3) Assign the
cluster of each training instance xi by the training data by the
classifier, i.e., hq(xi).
M-step: For the clustered data D = {D1, D2, . . . , DN},
train the i-th GAN model on Di for several iterations.

We run the ε-E-step and the M-step alternatively until con-
vergence. The GANMM architecture is shown in Figure 1.

Implementation Details
GAN model: Since the original GAN approach proposed
in [Goodfellow et al., 2014] has some limitations such as
missing modes, we employ the Wasserstein GAN (WGAN)
[Arjovsky et al., 2017] to train our GAN models, which
implemented from https://github.com/igul222/
improved_wgan_training. WGAN optimize the two
losses iteratively

lossG = −Ex∼Pg
[fw(x)]

lossD = Ex∼Pg
[fw(x)]− Ex∼Pr

[fw(x)]

Initialization: GMM usually starts from a random param-
eter initialization. However, for a random parameter initial-
ization of GANMM, it is highly possible that all training data
is assigned to one cluster, resulting in a bad clustering. We
therefore start from a random assignment of training instances
to clusters, and then learn each GAN model from each cluster,
and continue the ε-EM procedure.
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Algorithm 1 GAN mixture model learning algorithm

Require:
α: learning rate.
m: training set size.
N : cluster number.
nepoch: number of epoch for GANs.
σt, number of augmented data points.

1: randomly divide D into {D(0)
1 ,. . . , D(0)

N }
2: θ(0)

D
(0)
i

,θ
(0)
Gi
← trainWGAN(D(0)

i , nepoch) for each i =

1, . . . , N
3: t = 0
4: while θE not converged do
5: t = t+ 1
6: S = {(x̃i, yi)}mi=1 is sampled from {Gj}Nj=1 each with

probability |D(t−1)
i |/|D|.

7: gθh ← ∇θh [ 1
m

∑m
i=1 cross entropy(fθh(x̃i), yi)]

8: θh ← θh + α· RMSProp(θh, gθh )
9: assign D as {Di}Ni=1 by using hq(D; θh)

10: for i = 1 to N do
11: add σt instances from D−Di with highest posterior

for cluster i by hq to Di

12: θ
(t)
Di
,θ

(t)
Gi
← trainWGAN(D(t)

i , nepoch) for each i =
1, . . . , N

13: end for
14: end while

Dealing with imbalanced classification: Since we employed
a ε-E-step classifier trained from GAN generated samples, the
classifier is easy to assign clusters with imbalanced instances,
particularly at the beginning of the procedure. The imbalance
could get reinforced through the procedure. As a result, some
GAN models receives more and more data and the remaining
fewer and fewer.

To fix this issue, we first make sure that every GAN model
generates the same amount of data for training the ε-E-step
classifier. Moreover, we allow a GAN model explore new
by augmenting their training data. After the assignment of
clusters, D = {D1, . . . , DN}, we augment each cluster data
set Di by adding an amount of instances from D −Di with
the highest posterior probability of belonging to the i-th clus-
ter according to the output of the classifier. The amount of
the augmented data is reducing along the procedure for the
convergence.

An implementation of GANMM can be found at https:
//github.com/eyounx/GANMM.

4 Experiments
We compare GANMM with GMM, a state-of-the-art deep
clustering method Deep Embedded Clustering (DEC) [Xie et
al., 2016], and the degrade version of GANMM trained using
EM procedure (where the E-step uses the discriminators to
assign the clusters). Note that DEC was originally proposed to
operate in the embedded space by an autoencoder. For a fair
comparison, we have tested them both in the raw features space
and the embedded space. The implementation of DEC is from

https://github.com/fferroni/DEC-Keras. As
for GANMM, we don’t modify the WGAN implementation,
and the classifier has two convolution layers and two dense
layers on the raw feature data sets. Meanwhile, we use only
the two dense layers in the generator, discriminator and the
classifier on the embedded feature data sets.

Evaluate Metrics
Since clustering results are hard to be measured objectively,
using the data with oracle labels (note that the original labels
themselves usually not purposed for clustering), we employ
three metrics: purity, Adjusted Rand index (ARI) and Normal-
ized Mutual Information (NMI).

Purity is the average of the portion of the largest class in
each cluster, i.e.,

purity =
N∑
i=1

mi

m
max
j

mij

mi
,

where mi is size of cluster i, and mij is the number of class j
instances in cluster i. Purity lies in between 0 and 1. Higher
purity indicates that each cluster is more concentrated.

ARI considers the number of instances that exist in the same
cluster and different clusters.

ARI =
m11 +m00

m
,

where m11 is the number of pairs of instances that are in the
same cluster and have the same oracle label, and m00 is the
number of pairs of instances that are in the different cluster
and have the different oracle labels. ARI lies in between 0 and
1. High ARI means that instances are clustered more correctly.

NMI can effectively measure the amount of statistical in-
formation shared by random variables representing the cluster
assignments and the oracle labels [Fahad et al., 2014].

NMI =

∑
dh,llog(

|Ω|·dh,l

dhcl
)√

(
∑
h dhlog(dhd ))(

∑
l cllog( cld ))

,

where dh is the number of instances in class h. cl denotes the
number of instances in cluster l. And dh,l is the number of
instances in cluster l which have ground-truth label h. NMI
also lies in between 0 and 1 and high NMI means cluster
assignments matches ground-truth label assignments well.

4.1 On MNIST Dataset
We first compare the methods on the classical MNIST dataset
[LeCun et al., 1998]. It is a handwriting digital dataset con-
taining 60,000 images of size 28 by 28 pixels consist of 10
classes from digit ’0’ to ’9’.

Clustering in Raw Feature Space
In the raw 28 by 28 pixels feature space, we test the clustering
performance of each method, which is a challenging task as the
algorithm is required to extract features and find the clusters
simultaneously. The experiments are repeated 10 times to
report the means and standard deviations, as listed in Table 1.

We can observe that GANMM has significantly higher
scores than all other methods on all three metrics. It achieves
twice purity and triple ARI and NMI of the runner-up. DEC

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3050



(in this experiment without a fine-tuned stacked auto-encoder)
performs overall similar with GMM, which is slightly worse
in purity and slightly better in ARI and NMI. Meanwhile,
GANMM (EM) has the worst performance in purity and ARI.

To see more closely, we list the purity results of these meth-
ods on MNIST datasets in a single experiment in Table 2.
First, counting the majority of the oracle label in each cluster,
GANMM and GMM each loses one label (“9”), DEC loses
three labels (“2”, “5”, “6”), and GANMM (EM) loses the most
labels (“0”, “4”, “5”, “8”). Then from the number of instances
in each cluster, GANMM and GMM achieve related balanced
clusters, DEC has small (<2,000) and large (>10,000) clus-
ters, and GANMM (EM) is the worst with a cluster eliminated.
These results show that GANMM achieves similar properties
with the classical GMM. Meanwhile, GANMM achieves sig-
nificantly higher purity in clusters than all the other methods,
from 0.5666 to 0.9379.

This experiment shows that GANMM has an outstanding
ability to deal with complex data directly, without any extra
pre-process step. Comparing with the inferior performance
of GMM and DEC, we can owe the ability of GANMM to
the employment of the GANs that can capture complex dis-
tributions. Comparing with the degraded performanced of
GANMM (EM), it shows that the ε-EM procedure is crucial
to iterate the GANMM models for a good convergence.

Since GANMM is composed of generative models, we can
easily observe GANMM by generating images from it. A set of
generated images by GANMM and GANMM (EM) are shown
in Figure 2. Images in the left two columns are generated
by the ten clusters of GANMM and right two columns are

Purity ARI NMI
GANMM 0.6430±0.0045 0.4924±0.0059 0.6159±0.0038
GMM 0.3261±0.0006 0.0991±0.0003 0.1414±0.0004
DEC 0.3065±0.0003 0.1437±0.0005 0.1935±0.0003
GANMM(EM) 0.2786±0.0019 0.0665±0.0013 0.2414±0.0004

Table 1: Comparison of clustering performance in raw feature space
on MNIST.

(a) by GANMM (b) by GANMM (EM)

Figure 2: Images generate by GANMM (left two columns) and by
GANMM (EM) (right two columns)

Figure 3: Comparison of purity on different data scales

Figure 4: Comparison of ARI on different data scales

generated by GANMM (EM). Each block is generated from
one of the GAN model.

It can be observed that the digits generated by GANMM
are obviously more regular than those generated by GANMM
(EM). Although we observed from Table 2 that GANMM
losses the digit “9”, we can find that it actually generated “9”
but mixed with digits “4” and “7”. Meanwhile, some digits
generated by GANMM (EM) are not in good shape, which is
due to the very small clusters it receives.

On Different Data Scales
We then investigate how sensitive GANMM is to the data
scale. We experimented on MNIST dataset using different
data scales. We train on 100%, 50%, 10% of MNIST dataset
separately and assign the clusters on the whole dataset. In this
experiment, we also directly run the clustering methods in the
original raw feature space. We repeat the experiments five
times to report the means and standard deviations. The results
are shown in Figures 3, 4, and 5.

It can be observed that even on 10% of the data, i.e., 6, 000
instances in all, GANMM still have significantly superior
performance to the other methods, on all the three metrics.
Meanwhile, we can still observe some performance drops of
GANMM as the data size reduces. Since GANMM can fit
complex data distribution, too few instances would result in
worse fitted model. The other approaches are less effected by
the data scales, as their performance has already been quite
low compared with GANMM.

Clustering in Embedded Feature Space
We also compare the methods in an embedded feature spaced.
We use a fine-tuned stacked auto-encoder (SAE) to transform
the original pictures to 10 dimensional feature vectors. The
SAE is the same as in the DEC’s paper [Xie et al., 2016]. The
results of the compared methods are shown in Table 3.
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cluster id GANMM GMM DEC GANMM(EM)
label #data point purity label #data point purity label #data point purity label #data point purity

1 1 5940 0.9149 3 5894 0.3174 8 5914 0.1921 9 0510 0.3941
2 7 2984 0.5666 1 6094 0.4641 7 2219 0.6237 3 9291 0.2797
3 7 5099 0.6607 4 4169 0.3118 9 1315 0.5148 9 6098 0.3296
4 6 4982 0.9379 2 5415 0.3162 1 6185 0.8791 1 15109 0.3395
5 8 4744 0.6072 5 2895 0.1565 3 8769 0.2127 7 0327 0.9220
6 2 4958 0.9255 1 4692 0.4235 7 1649 0.3596 2 16207 0.2269
7 5 4128 0.6061 0 7773 0.3435 7 3069 0.6695 6 00429 0.9161
8 4 5526 0.7144 6 5245 0.3399 4 4317 0.3141 - 0000 0.0000
9 3 5852 0.6476 8 2016 0.2787 0 14282 0.3161 1 0040 0.7250
10 0 5787 0.7665 7 5807 0.3675 9 2285 0.4512 6 1944 0.9460

Table 2: Purity of each cluster in one experiment

Figure 5: Comparison of NMI on different data scales

Purity ARI NMI
GANMM 0.8908±0.0015 0.8361±0.0025 0.8654±0.0008
GMM 0.8617±0.0008 0.7933±0.0011 0.8451±0.0002
DEC 0.8673±0.0000 0.8091±0.0000 0.8457±0.0000
GANMM(EM) 0.5243±0.0024 0.3210±0.0034 0.4701±0.0019

Table 3: Comparison of clustering performance in embedded feature
space on MNIST

GANMM (EM) has the worst performance in the embedded
feature space, while the performance of GMM and DEC has
been drastically improved from the raw feature space. This ob-
servation implies that GMM and DEC seriously rely on feature
pre-process in applications, and would work in low dimen-
sional spaces. Still, GANMM achieves better performances
in all metrics. GANMM improves from DEC by around 0.02
on purity and NMI, and 0.03 on ARI. These improvements
can be significant given the high values of the baseline scores.
The result reveal that GANMM can work well not only in raw
feature spaces but also in highly abstracted embedded spaces.

4.2 On More Datasets
We finally compare the clustering performance on two UCI
datasets [Dua and Karra, 2017]. They are Image Segmen-
tation dataset and Artificial Characters dataset. The Image
Segmentation dataset is an image dataset described by high-
level numeric-valued attributes. It contains 2310 instances
with 19 features. It have 7 classes, which are BRICKFACE,
FOLIAGE, CEMENT, WINDOW, PATH, SKY, GRASS. The Ar-

Purity ARI NMI
GANMM 0.7241±0.0010 0.5523±0.0022 0.6428±0.0018
GMM 0.4532±0.0048 0.2214±0.0095 0.4124±0.0047
DEC 0.4428±0.0078 0.2014±0.0104 0.4077±0.0159
GANMM(EM) 0.5791±0.0012 0.4101±0.0010 0.5386±0.0009

Table 4: Comparison of clustering performance in raw feature space
on Image Segmentation dataset

Purity ARI NMI
GANMM 0.2568±0.0002 0.0887±0.0003 0.2027±0.0022
GMM 0.2184±0.0001 0.0452±0.0000 0.1206±0.0001
DEC 0.2031±0.0000 0.0365±0.0000 0.0856±0.0000
GANMM(EM) 0.2495±0.0000 0.0645±0.0000 0.1309±0.0000

Table 5: Comparison of clustering performance in raw feature space
on Artificial Characters dataset

tificial Characters dataset is artificially generated by using first
order theory which describes structure of ten capital letters of
English alphabet. It contains 6000 instances with 6 features.
It has 10 classes, which are A, C, D, E, F, G, H, L, P, R.

Tables 4 and 5 present the experiment results. It can be ob-
served that in all cases and all metrics, GANMM consistently
has a better performance than the other methods. Note that
the improvement of the metric scores can be quite significant
in both data sets. These results imply that GANMM can be
applied in various situations.

5 Conclusion
In this paper, we propose a mixture model with GAN as the
components, i.e., GANMM. Mixture models such as Gaus-
sian mixture models are very popular tools for data analysis.
However, traditional distribution models, such as Gaussian dis-
tribution, is lack of flexibility for complex data. The recently
developed GAN model has shown outstanding performance
to model complex distributions. Therefore, GANMM can
serve as an alternative mixture model to GMM for complex
situations. We noticed that GANMM is hard to be trained by
the classical EM procedure. We thus propose to use the ε-EM
procedure, where the ε-E-step, implemented by a classifier
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learned from the clusters, introduces some controllable error
so that the optimization of GANMM can continue. Several ex-
periment results show that GANMM can drastically improve
the clustering performance on complex data from GMM as
well as some state-of-the-art approaches, in both of the raw
feature space and abstracted embedded feature space.
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