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Abstract
Trajectory-User Linking (TUL) is an essential task
in Geo-tagged social media (GTSM) applications,
enabling personalized Point of Interest (POI) rec-
ommendation and activity identification. Existing
works on mining mobility patterns often model tra-
jectories using Markov Chains (MC) or recurrent
neural networks (RNN) – either assuming inde-
pendence between non-adjacent locations or fol-
lowing a shallow generation process. However,
most of them ignore the fact that human trajectories
are often sparse, high-dimensional and may con-
tain embedded hierarchical structures. We tackle
the TUL problem with a semi-supervised learning
framework, called TULVAE (TUL via Variational
AutoEncoder), which learns the human mobility in
a neural generative architecture with stochastic la-
tent variables that span hidden states in RNN. TUL-
VAE alleviates the data sparsity problem by lever-
aging large-scale unlabeled data and represents the
hierarchical and structural semantics of trajecto-
ries with high-dimensional latent variables. Our
experiments demonstrate that TULVAE improves
efficiency and linking performance in real GTSM
datasets, in comparison to existing methods.

1 Introduction
Geo-tagged social media (GTSM) data, such as ones gener-
ated by Instagram, Foursquare and Twitter (to name but a
few sources), provides an opportunity for better understand-
ing and use of motion patterns in various applications [Zheng,
2015], such as POI recommendation [Yang et al., 2017a];
next visit-location [Liu et al., 2016]; user interest inference
and individual activity modeling [Li et al., 2017a]; etc.

An important aspect, and often an initial component, of
many applications based on GTSM data is the Trajectory-
User Linking (TUL), which links trajectories to users who
generate them. For example, ride-sharing (bike, car) apps
generate large volumes of trajectories – but the user identities
are unknown – for the sake of privacy. However, correlating
such trajectories with corresponding users seems desirable in
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many real world applications: it might lead to better, more
personalized and/or precise recommendations; it may help in
identifying terrorists/criminals from sparse spatio-temporal
data such as transient check-ins [Gao et al., 2017].

Common approaches for modeling human trajectories rely
on Markov Chain (MC) or Recurrent Neural Networks
(RNN) to model human mobility based on their historical
check-ins. MC based methods [Zhang et al., 2016], e.g.,
Ranking based Markov chain (FPMC) and ranking based MC
transition, are implemented under a strong independence as-
sumption among non-adjacent locations, which limits their
performance on capturing long term dependency of locations.
RNN, on the other hand, is a special neural network that
is able to handle variable-length input and output. It pre-
dicts the next output in a sequence, given all the previous
outputs, by modeling the joint probability distribution over
sequences. It has been successfully used in many spatio-
temporal location predictions [Liu et al., 2016] and recently
in identifying human mobility patterns in TUL context [Gao
et al., 2017]. However, applying RNN directly in modeling
check-in sequences in GTSM confronts the following chal-
lenges: (1) data sparsity: the density of check-ins such as
those from Foursquare and Yelp are usually around 0.1% [Li
et al., 2017a]; (2) structural dependency: strong and complex
dependencies among check-ins or trajectories exist at differ-
ent time-steps [Chung et al., 2015]; and (3) shallow genera-
tion: model variability (or stochasticity) occurs only when an
output (e.g., location in POI sequence) is sampled [Serban et
al., 2017].

In this paper, we tackle the above challenges in modeling
human trajectories and linking trajectories to their generating-
users with a novel method – TULVAE (TUL via Variational
AutoEncoder). The main benefits of TULVAE are:
(1) It alleviates the data sparsity problem by adapting semi-
supervised variational autoencoder [Kingma et al., 2014] to
utilize a large volume of unlabeled data to improve the per-
formance of the TUL task.
(2) It instantiates an architecture for learning the distributions
of latent random variables to model the variability observed
in trajectories. By incorporating variational inference into the
generative model with latent variables, TULVAE exposes an
interpretable representation of the complex distribution and
long-term dependencies over POI sequences.
(3) By exploiting the practical fact that users’ mobility tra-

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3212



jectories exhibit high spatio-temporal regularity (e.g., more
than 90% of nighttime mobility records are generated in the
same POI [Xu et al., 2017a]), TULVAE is able to capture
the semantics of subtrajectories inherently representing the
uniqueness of individual’s motion. Furthermore, users’ mo-
bility trajectories exhibit hierarchical properties – e.g., fre-
quent POIs within a subtrajectory, and some implicit patterns
(e.g., the meaning of destinations) encoded across trajecto-
ries. This motivates us to exploit hierarchical mobility pat-
terns for improving human mobility identification, as well as
performance. As our main contributions:

• We take a first step towards addressing the data sparsity
problem in GTSM with semi-supervised learning, espe-
cially via incorporating unlabeled data.

• We propose an optimization-based approach for mod-
eling and inferring latent variables in human mobility,
which, to our best knowledge, is the first variational tra-
jectory inference model and opens up a new perspective
for spatial data mining.

• We tackle the problem of hierarchical structures and
complex dependencies of mobility trajectories by mod-
eling both within- and across-trajectory semantics.

• We provide experimental evaluations illustrating the im-
provements enabled by TULVAE, using three publicly
available GTSM datasets and comparing with several
existing models.

In the rest of the paper, we review related work in Section 2
and introduce preliminaries in Section 3. Section 4 introduces
the technical detail of TULVAE, followed by experimental
observations presented in Section 5 and concluding remarks
in Section 6.

2 Related Work
Mining human mobility behavior is a trending research topic
in AI [Zhuang et al., 2017], GIS [Zheng et al., 2008] and
recommendation systems [Yang et al., 2017a] and trajectory
classification (i.e., categorizing trajectories into different mo-
tion patterns) is one of the central tasks in understanding mo-
bility patterns [Zheng et al., 2008]. TUL was recently intro-
duced [Gao et al., 2017] for correlating (unlabeled) trajec-
tories to their generating-users in GTSM, using RNN based
models to learn the mobility patterns and classify trajecto-
ries by users. However, the standard RNN based supervised
trajectory models suffer from lacking of understanding hier-
archical semantics of human mobility and fail to leverage the
unlabeled data which embeds rich and unique individual mo-
bility patterns. Trajectory recovery problem was studied in
a similar manner in [Xu et al., 2017a], inferring individual’s
identity using trajectory statistics – essentially an equivalent
TUL problem. The performance is greatly limited by the ex-
treme sparsity issue in GTSM data: as observed in [Li et al.,
2017a] the density of check-ins in Foursquare and Yelp data
is around 0.1%, and that of the Gowalla data is around 0.04%
[Yang et al., 2017a].

Deep generative models, such as Generative Adversarial
Networks (GAN) [Goodfellow et al., 2014], autoregressive

models [van den Oord et al., 2016] and Variational Au-
toEncoder (VAE) [Kingma and Welling, 2014], have been
successful in image generation and natural language model-
ing [Yang et al., 2017b]. Semi-supervised generative learn-
ing, utilizing both labeled and unlabeled data for modeling
complex high dimensional latent variables, has recently at-
tracted increasing attention [Kingma et al., 2014; Hu et al.,
2017]. VAE has shown promising performance on text clas-
sification [Xu et al., 2017b] and language generation tasks
[Serban et al., 2017], however, its application in modeling
human mobility has not been well investigated and previ-
ous VAE based models cannot be applied to TUL due to the
data sparsity and complex semantic structures underlying hu-
mans’ check-in sequences. TULVAE proposed in this paper
differs from earlier works in: (1) tackling the latent variable
inference problem in human mobility trajectories; (2) learn-
ing hierarchical semantics of human check-in sequences; and
(3) incorporating the unlabeled data for identifying individ-
ual mobility pattern and for solving the TUL problem in the
manner of semi-supervised learning.

Recent research in Moving Objects Databases (MOD)
community has tackled problems related to managing spatio-
textual trajectories (cf. [Issa and Damiani, 2016]) – however,
most of the works pertain to efficient query processing and
are complementary to the problems investigated in this paper.

3 Preliminaries
We now introduce the TUL problem and basics of VAE.
Trajectory-User Linking: Let tui = {ci1, ci2, ..., cin} de-
note a trajectory generated by the user ui during a time in-
terval, where cij (j ∈ [1, n]) is a location at time tj for the
user ui, in a suitable coordinate system (e.g., longitude + lat-
itude, or some (xij , yij). We refer to cij as a check-in in this
paper. A trajectory t̄i = {c1, c2, ..., cm} for which we do
not know the user who generated it, is called unlinked. The
TUL problem is accordingly defined as: suppose we have a
number of unlinked trajectories T = {t̄1, ..., t̄m} produced
by a set of users U = {u1, ..., un} (m � n). TUL learns
a mapping function that links unlinked trajectories to users:
T 7→ U [Gao et al., 2017].
Variational Autoencoders: Similar in spirit to text modeling
(cf. [Yang et al., 2017b]), we consider a dataset consisting
of pairs (tu1

, u1), · · · , (tum , um), with the i-th trajectory
tui ∈ T and the corresponding user (label) ui ∈ U . We
assume that an observed trajectory is generated by a latent
variable zi. Following [Kingma and Welling, 2014], we omit
the index i whenever it is clear that we are referring to terms
associated with a single data point – i.e., a trajectory. The
empirical distribution over the labeled and unlabeled subsets
are respectively denoted by p̃l(t, u) and p̃u(t).

We aim at maximizing the probability of each trajectory t
in the training set under the generative model, according to
pθ(t) =

∫
z
pθ(t|z)pθ(z)dz, where: pθ(t|z) refers to a gener-

ative model or decoder; pθ(z) is the prior distribution of the
random latent variable z, e.g., an isotropic multivariate Gaus-
sian; pθ(z) = N (0, I) (I is the identity matrix); and θ is the
generative parameters of the model. Typically, to estimate the
generative parameters θ, the evidence lower bound (ELOB)

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3213



Ed(t) (a.k.a. the negative free energy) on the marginal like-
lihood of a single trajectory is used as an objective [Kingma
and Welling, 2014]:

logpθ(t) = log pθ(t)

∫
z

qφ(z|t)dz ≥ −Ed(t)

= Ez∼qφ(z|t)[log pθ(t|z)]−KL [qφ(z|t)||pθ(z)] (1)

where qφ(z|t) is an approximation to the true posterior
pθ(z|t) (a.k.a recognition model or encoder) parameterized
by φ. KL [qφ(·)||pθ(·)] is the Kullback-Leibler (KL) diver-
gence between the learned latent posterior distribution q(z|t)
and the prior p(z) (for brevity, we will omit the parameters
φ and θ in subsequent formulas). Since the objective (of
the model) is to minimize the KL divergence between q(z|t)
and the true distribution p(z|t) – we can alternatively maxi-
mize ELOB Ed(t) of log p(t) w.r.t. both θ and φ, which are
jointly trained with separate neural networks such as multi-
layer perceptrons. We refer to [Kingma and Welling, 2014;
Kingma et al., 2014] regarding the details of VAE and re-
parameterization approaches used for stochastic gradient de-
scent training.

4 TUL via Variational AutoEncoder
(TULVAE)

We now describe the details of the proposed TULVAE model
consists of four RNN-based components: encoder RNN, in-
termediate RNN, decoder RNN and classifier, as illustrated in
Figure 1.
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Figure 1: Overview of the approach: TULVAE first uses trajecto-
ries to learn all check-in embeddings (low-dimension representa-
tion) T ∈ R|C|×d. Bottom Left: Encoder and intermediate RNNs are
employed to learn the hierarchical structures of check-in sequences,
with two-layer of latent variables concatenated to represent the la-
tent space. Top Left: A sample z from the posterior qφ(z|t, u) and
user u are passed to the generative network to estimate the proba-
bility pθ(t|u, z). Bottom Right: The unlabeled data is used to train
a classifier qφ(z|t) to characterize label-distribution. Top Right: A
user for a given unlinked trajectory is predicted by the deep neural
networks.

4.1 Semantic Trajectory Segmentation
The trajectories of a user ui are originally separated by days,
i.e., the original trajectory data Tui is segmented into k con-
secutive sub-sequences t1ui , ..., t

k
ui , where k is the number of

days that ui has check-ins. We consider two semantic factors:
(1) Temporal influence: Following [Gao et al., 2017], each
daily trajectory tjui (j ∈ [1, k]) is split into 4 consecutive sub-
sequences tj,1ui , ..., t

j,4
ui based on time intervals of 6 hours. (2)

Spatial influence: In Gowalla and Foursquare datasets, 90%
of users’ transition distances are less than 50km [Xu et al.,
2017a] – indicating that users tend to visit nearby POIs. Thus,
we further split a subtrajectory tj,mui (m ∈ [1, 4]) if the con-
tinuous POI distance is more than 50 km.

4.2 Hierarchical Trajectory Encoding
Inspired by the hierarchical text models - e.g., in document-
level classification [Zhang et al., 2018], and utterance-level
dialogue generation [Serban et al., 2017], we model daily tra-
jectories in a two-level structural hierarchy: a trajectory con-
sists of subtrajectories that encode spatio-temporal moving
patterns of an individual, while a subtrajectory is composed
of sequential POIs:

pθ(s1, · · · , sN ) =

N∏
n=1

Mn∏
m=1

pθ(sn,m|sn,1:m−1, s1:n−1) (2)

where sn is the nth subtrajectory in a daily check-in se-
quence, sn,m is the mth POI in the nth subtrajectory, and
Mn is the number of POIs in the mth subtrajectory.

At the POI level, a POI Long Short-Term Memory
(LSTM) [Hochreiter and Schmidhuber, 1997] (or a Gated Re-
current Unit (GRU) [Chung et al., 2014]) is used to encode
the POIs to form an implicit topic of a subtrajectory (e.g.,
“working”, “Leisure” or “Home” in Figure 1). The last hid-
den states of the POI level encoder are fed into the interme-
diate LSTM (or GRU), where the internal hidden states are
encoded into a vector to reflect the structured characteristics
of daily mobility. The internal state of the hierarchical trajec-
tory encoding is mathematically described as:{
hPOI
n,0 = 0,hPOI

n,m = LSTM(hPOI
n,m−1, sn,m), POI RNN

hINT
0 = 0,hINT

n = LSTM(hINT
n−1,h

INT
n,Mn), Intermediate RNN

where respective LSTM(·) is a “vanilla” LSTM function:
it = σ(Wivt +Uiht−1 + bi)

ft = σ(Wfvt +Ufht−1 + bf )

ot = σ(Wovt +Uoht−1 + bo)

c̃t = tanh(Wcvt +Ucht−1 + bc)

ct = ft � ct−1 + it � c̃t

Evt = ht = ot � tanh(ct) (3)

where it, ft, ot and b∗ are respectively the input gate, forget
gate, output gate and bias vectors; σ is the logistic sigmoid
function; matrices W and U (∈ Rd×d) are the different gate
parameters; and vt is the embedding vector of the POI ct.

The memory cell ct is updated by replacing the existing
memory unit c̃t with a new cell, where tanh(·) is the hyper-
bolic tangent function, and � is the component-wise multi-
plication. The output encoding vector Evt is the final hidden
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layer. We refer the proposed hierarchical TUL learning as
HTULERs, which alone improves the performance, in com-
parison with shallow POI-level learning methods (cf. Sec-
tion 5).

4.3 TULVAE
To alleviate data sparsity problem, incorporating unlabeled
data can improve the performance of identity linking –
which may be partially addressed by the semi-supervised
VAE [Kingma et al., 2014]. However, this has limitations
in modeling hierarchical structures of latent variables due to
estimating the posterior with a single layer of encoder and
may fail to capture abstract representations. Similarly, re-
cursively stacking VAEs on top of each other [Sønderby et
al., 2016] is restricted by the overfitting of bottom generative
layer – which alone learns sufficient representation to recon-
struct the original data and renders the above layer(s) unnec-
essary [Zhao et al., 2017].

Thus, we prefer to encode abstract topics of subtrajectories
on certain part of the latent variables, and POI sequence pat-
terns in others – learning the inference model in a “flat” semi-
VAE framework. The basic idea of this implicit hierarchical
generative model is inspired by the variational ladder autoen-
coder (VLAE) [Zhao et al., 2017], where shallow networks
are used to express low-level simple features. Deep networks,
in turn, express high-level complex features, and inject Gaus-
sian noise at different levels of the network. We note, though,
that VLAE is designed for continuous latent feature discrimi-
native learning, while TULVAE is a semi-supervised learning
framework for discrete trajectory data.

More specifically, we consider a two-layer of latent vari-
ables z1, z2, respectively denoting the POI-level (bottom) and
abstract level (top) layer. The prior p(z) = p(z1, z2) is a
standard Gaussian and the joint distribution p(t, z1, z2) can
be thus factored as p(t, z1, z2) = p(t|z1, z2)p(z1|z2)p(z2).
In the generative network, the latent variable z is a concate-
nation of two vectors z = [RNNm(z2);RNNn(z1)], where
z2 and z1 are respectively parameterized by the intermediate
RNN and POI RNN. For the inference network, the approx-
imate posterior p(z|t) is a Gaussian N (µi, σi)(i = 1, 2) pa-
rameterized by two-level RNNs.

Given the implicit representation of the hierarchy of latent
variables, we now learn the trajectories in a semi-supervised
manner and essentially adapt in a single-layer model. Thus,
when the user u corresponding to a trajectory is observed (la-
beled data Dl), we have:

logp(t, u) = Ez∼q[log p(t|u, z)] + log p(u)

−KL [q(z|t, u)||p(z)] +KL [q(z|t, u)||p(z|t, u)] (4)

Our goal is to approximate the true posterior p(z|t, u) with
q(z|t, u), i.e., minimizing KL [q(z|t, u)||p(z|t, u)]. There-
fore, we obtain the following ELOB Eg1 (t, u):
Eg1 (t, u) = Ez∼q[log p(t, u, z)]−KL [q(z|t, u)||p(z)] (5)

where KL [q(z|t, u)||p(z)] is the KL divergence between
the latent posterior q(z|t, u) and the prior distribution p(z),
which measures how much information is lost when approx-
imating a prior over z. The expectation term is the recon-
struction error or expected negative log-likelihood of the data,

which encourages the decoder to reconstruct the trajectory
from the latent distribution.

In the case of unlabeled trajectory data Du, the user iden-
tity u is predicted by performing posterior inference with a
classifier qφ(u|t). We now have following ELOB Eg2 (t), by
considering u as another latent variable:

log p(t) ≥ Ez∼q(u,z|t)[log p(t, u, z)− log q(u, z|t)]
=
∑
u

q(u|t)(Eg1 (t, u)) +H(q(u|t)) = Eg2 (t) (6)

where H(q(u|t)) is the information entropy, and the loss of
the classifier qφ(u|t) during training is measured by L2 re-
construction error between the predicted user and the real la-
bel. Thus, the ELOB E on the marginal likelihood for the
entire dataset is:

E = −
∑

(t,u)∼Dl

(Eg1 (t, u) + α log q(u|t))−
∑

t∼Du

Eg2 (t) (7)

where the first RHS term includes an additional classification
loss of classifier qφ(u|t) when learning from the labeled data,
and hyper-parameter α controls the weight of labeled data
learning.

We note that semi-VAE scales linearly in the number of
classes in the data sets, which is raised by re-evaluating the
generative likelihood for each class during training. For the
task of text classification, the number of classes is small
(e.g., 2 classes in IMDB and 4 classes in AG’s News).
However, the number of classes (i.e., users) in TUL is
very large, which incurs heavy computation on evaluating
classifier qφ(u|t). To overcome this problem, we employ
the Monte Carlo method suggested in [Xu et al., 2017b]
to estimate the expectation evaluations per class, where
the baseline method from [Williams, 1992] is used to re-
duce the variance of the sampling-based gradient estimator:
5φEz∼q(z|t,u)[q(u|t)(−Eg1 (t, u)]. Since ELOB Eg2 (t) deter-
mines the magnitude of classifier qφ(u|t), the baseline we
use in TULVAE is the averaged Eg2 (t), following the choice
in previous text classification works, i.e., [Xu et al., 2017b].

4.4 Training
At the early stage of TULVAE training, the term
KL [q(z|t, u)||p(z)] in Eq.4 may discourage encoding inter-
esting information into the latent variable z, thereby easily
resulting in model collapse – largely because of the strong
learning capability of autoregressive models such as RNN as
observed in [Bowman et al., 2016]. One efficient solution is
to control the weight of KL-divergence term by gradually in-
creasing its co-efficiency β (from 0 to 1), which is also called
KL cost annealing [Bowman et al., 2016].

The activation function used in the RNN models is soft-
plus (i.e., f(x) = ln(1 + ex)), which applies nonlinearity
to each component of its argument vector ensuring positive
variances. In addition, we use the “bucket trick” to speed up
the training process: we sort all trajectories by length, and
put those with similar length into the same bucket, in which
the data is padded to the same length and fed into the neural
networks as a batch. This may yield efficiency – i.e., reduce
the computation time since variable length data is one of the
bottlenecks in RNN based training.
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Finally, we use Bidirectional LSTMs in TULVAE which
could jointly model the forward likelihood and the backward
posterior for training the POI sequences, which could poten-
tially capture richer representation of the mobility patterns
and speed up the convergence of training.
Discussion: TULVAE formulates the solution to TUL prob-
lem in a semi-VAE framework combined with hierarchical
trajectory modeling with RNNs. There exist several other
choices in TULVAE – e.g., the decoder could be replaced
with a CNN which has the potential to improve the efficiency
since it only requires a convolution on one dimension for dis-
crete data, such as dilation CNN decoder used in [Yang et al.,
2017b] for text modeling. Another modification is to incor-
porate the label information to the latent representation, using
the disentangled variables instead of introducing a classifier
qφ(u|t) [Li et al., 2017b]. By dividing the latent represen-
tation into disentangled variables and non-interpretable vari-
ables, the categorical information can be explicitly employed
to regularize the disentangled representation. However, in
this work we focus on inferring the distribution of variables
in human check-ins and improving the performance of TUL.
The investigation of alternatives for TULVAE are left for our
future work.

5 Evaluation
In this section we present the evaluation of the benefits of
TULVAE using three real-word GTSM datasets. To ease the
reproduction of our results, we have made the source code of
TULVAE publicly available1.

Dataset |U| |Tn|/|Te| |C| R Tr
Gowalla 201 9,920/10,048 10,958 219 [1,131]

112 4,928/4,992 6,683 191 [1,95]

Brightkite 92 9,920/9,984 2,123 471 [1,184]
34 4,928/4,992 1,359 652 [1,44]

Foursquare 270 12,800/12,928 7,195 242 [1,35]
109 5,312/5,376 4,227 246 [1,35]

Table 1: Data description: |U|: the number of users; |Tn|/|Te|: num-
ber of trajectories for training and testing; |C|: number of check-ins;
R: average length of trajectories (before segmentation); Tr: range
of the trajectory length

Datasets: We conducted our experiments on three pub-
licly available GTSM datasets: Gowalla2, Brightkite3 and
Foursquare4. For Foursquare, we choose the most popular
city – New York. We randomly select |U| users and their
corresponding trajectories from the datasets for evaluation –
for each dataset, we select two different numbers of those
users (e.g., labels here) who generate varied trajectories for
robustness check of model performance. Table 1 depicts the
statistics of the three datasets.
Baselines and Metrics: We compare TULVAE with sev-
eral state-of-the-art approaches from the field of trajectory
similarity measurement and deep learning based classifica-
tion. We also implemented three hierarchical variations of

1https://github.com/AI-World/IJCAI-TULVAE
2http://snap.stanford.edu/data/loc-gowalla.html
3http://snap.stanford.edu/data/loc-brightkite.html
4https://sites.google.com/site/yangdingqi/home

(a) |U|=109 (b) |U|=270

Figure 2: Comparing to traditional methods on Foursquare.

TULER (TUL via Embedding and RNN) [Gao et al., 2017]
– namely: HTULER-L, HTULER-G and HTULER-B, re-
spectively implemented with the hierarchical LSTM, GRU
and Bi-directional LSTM but without variational inference.
In our implementation, multivariate Gaussian distribution is
used as the prior in TULVAE. The learning rate of all mod-
els is initialized with 0.001 and decays with rate of 0.9. The
weight β (KL cost annealing) increases from 0.5 to 1; and
the dropout rate is 0.5. We embed POIs in 250 dimensional
vectors and used 300 units for classifier, 512 units for the
encoder-decoder RNN and 100 units for latent variable z. Fi-
nally, the batch size is 64 for all RNN based models.

The baselines used for benchmarking can be broadly cate-
gorized as:
(a) Traditional approaches, including LDA (Linear Dis-
criminant Analysis, with SVD as matrix solver), DT (Deci-
sion Tree), RF (Random Forest) and SVM (Support Vector
Machine, with linear kernel), which are widely used for mea-
suring mobility patterns and classifying trajectories in litera-
tures [Zheng, 2015].
(b) RNN based TUL, including TULER-LSTM, TULER-
GRU, TULER-LSTM-S, TULER-GRU-S and Bi-TULER
proposed in [Gao et al., 2017], which are the state-of-the-art
methods for trajectory-user linking.

We report the ACC@K, macro-P, macro-R and macro-F1
of all methods, which are common metrics in information
retrieval area. Specifically, ACC@K is used to evaluate the
trajectory-user linking accuracy as:

ACC@K =
# correctly identified trajectories @K

# trajectories

and macro-F1 is the harmonic mean of the precision
(macro-P) and recall (macro-R), averaged across all classes
(users in TUL):

macro-F1 = 2× macro-P× macro-R
macro-P + macro-R

Performance comparison
Table 2 summarizes the performance comparisons among the
proposed method and RNN based baselines on three datasets,
where the best method is shown in bold, and the second best
is shown as underlined. We demonstrate the comparison to
traditional approaches in Figure 2 only for Foursquare dataset
– because, to our knowledge, these methods have already
been shown to be inferior to TULERs [Gao et al., 2017] on
Gowalla and Brightkite. From the results, we can see how the
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Dataset
Method

Metric ACC@1 ACC@5 macro-P macro-R macro-F1 ACC@1 ACC@5 macro-P macro-R macro-F1
|U|=112 |U|=201

G
ow

al
la

TULER-LSTM 41.79% 57.89% 33.61% 31.33% 32.43% 41.24% 56.88% 31.70% 28.60% 30.07%
TULER-GRU 42.61% 57.95% 35.22% 32.69% 33.91% 40.85% 57.31% 29.52% 27.80% 28.64%
TULER-LSTM-S 42.11% 58.01% 33.49% 31.97% 32.71% 41.22% 57.70% 29.34% 28.68% 29.01%
TULER-GRU-S 41.35% 58.45% 32.51% 31.79% 32.15% 41.07% 57.49% 29.08% 27.17% 28.09%
Bi-TULER 42.67% 59.54 % 37.55% 33.04% 35.15% 41.95% 57.58% 32.15% 31.66% 31.90%
HTULER-L 43.89% 60.90% 35.95% 34.32% 35.12% 43.40% 60.25% 34.43% 33.63% 34.02%
HTULER-G 43.33% 60.74% 37.71% 34.47% 36.01% 42.88% 59.41% 32.72% 32.54% 32.63%
HTULER-B 44.21% 62.28% 36.48% 33.51% 34.93% 44.50% 60.93% 34.89% 34.46% 34.67%
TULVAE 44.35% 64.46% 40.28% 32.89% 36.21% 45.40% 62.39% 36.13% 34.71% 35.41%

|U|=34 |U|=92

B
ri

gh
tk

ite

TULER-LSTM 48.26% 67.39% 49.90% 47.20% 48.51% 43.01% 59.84% 38.45% 35.81% 37.08%
TULER-GRU 47.84% 67.42% 48.88% 46.87% 47.85% 44.03% 61.36% 38.86% 36.47% 37.62%
TULER-LSTM-S 47.88% 67.38% 48.81% 47.03% 47.62% 44.23% 61.00% 38.02% 36.33% 37.16%
TULER-GRU-S 48.08% 68.23% 48.87% 46.74% 47.78% 43.93% 61.85% 37.93% 36.01% 36.94%
Bi-TULER 48.13% 68.17% 49.15% 47.06% 48.08% 43.54% 60.68% 38.20% 36.47% 37.31%
HTULER-L 49.44% 71.13% 51.51% 47.31% 49.32% 45.26% 63.55% 41.61% 38.13% 39.79%
HTULER-G 49.12% 70.81% 51.85% 46.88% 49.24% 44.50% 63.17% 41.10% 37.51% 39.22%
HTULER-B 49.78% 70.69% 52.45% 47.98% 48.90% 45.30% 63.93% 41.82% 39.32% 38.60%
TULVAE 49.82% 71.71% 51.26% 46.43% 48.72% 45.98% 64.84% 43.15% 39.65% 41.32%

|U|=109 |U|=270

Fo
ur

sq
ua

re

TULER-LSTM 57.24% 69.27% 49.35% 47.61% 48.46% 50.69% 62.11% 46.27% 41.84% 43.95%
TULER-GRU 56.85% 69.40% 49.05% 47.34% 48.18% 50.65% 62.68% 46.38% 41.65% 43.89%
TULER-LSTM-S 57.14% 69.57% 48.48% 47.59% 48.03% 49.55% 62.65% 43.40% 42.11% 42.75%
TULER-GRU-S 56.31% 69.56% 49.04% 46.98% 47.99% 50.21% 62.33% 46.17% 41.01% 43.44%
Bi-TULER 58.31% 71.17% 50.84% 48.88% 49.84% 52.31% 64.03% 47.15% 44.95% 46.03%
HTULER-L 56.66% 71.46% 48.33% 47.28% 47.80% 51.59% 65.53% 45.82% 44.06% 44.92%
HTULER-G 55.92% 71.37% 48.10% 46.47% 47.27% 51.46% 65.15% 45.34% 43.03% 43.97%
HTULER-B 59.10% 72.40% 51.37% 49.85% 50.03% 54.91% 67.76% 48.94% 47.82% 48.37%
TULVAE 59.91% 73.60% 53.59% 50.93% 52.23% 55.54% 68.27% 51.07% 48.63% 49.83%

Table 2: Comparison among different TUL methods on three datasets.

hierarchical trajectory modeling combined with latent repre-
sentation in exploring human mobility patterns yields perfor-
mance improvements over the baseline(s). In summary:
(1) TULVAE performs the best on most of metrics. This su-
perior result is due to its capability of learning the compli-
cated latent distribution of trajectories and leveraging the un-
labeled data. By modeling the distribution of trajectories in
a probabilistic generative model (rather than point estimation
in “vanilla” RNNs), TULVAE is able to capture underlying
semantics of mobility patterns. In addition, by incorporat-
ing unlabeled data into the training, the semi-supervised clas-
sifier in TULVAE may ameliorate the data sparsity problem
inherent to the GSTM data. However, the latent representa-
tion learned is often not effective enough, especially when the
data size is small, e.g., |U| = 34 in Brightkite. We conjecture
that this is partially because of the entangled representation
produced by the encoder, which results in difficulty on char-
acterizing variations of relative small and sparse datasets.
(2) We note the improvements due to hierarchical trajectory
modeling when focusing more specifically on comparison be-
tween HTULERs and TULERs. Although TULERs use vari-
ant RNNs, they suffer from the shallow generation in model-
ing check-in sequences. In contrast, HTULERs explore struc-
tural information of human mobility, which leads to a more
robust performance – even superior on several metrics when
the number of users is relative small.
(3) When it comes to the training process of various deep
learning-based TUL methods, Figure 3 shows the results
(ACC@1) on Foursquare and it shows that TULVAE exhibits
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Figure 3: Training ACC@1 of various TUL methods on Foursquare.

fastest convergence. This demonstrates the effectiveness of
inherent generative models in understanding human mobility.
Similar results also hold for other metrics and other datasets
but are omitted here due to the lack of space.

6 Conclusions

We presented TULVAE, a generative model to mine human
mobility patterns, which aims at learning the implicit hi-
erarchical structures of trajectories and alleviating the data
sparsity problem with the semi-supervised learning. TUL-
VAE achieves a significant performance improvement for the
TUL problem in comparison to existing methods. In addition,
TULVAE can be augmented by incorporating other represen-
tative features such as spatial and temporal information in the
latent space, which we leave for our future investigation.
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