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Abstract
Bipartite networks manifest as a stream of edges
that represent transactions, e.g., purchases by retail
customers. Many machine learning applications
employ neighborhood-based measures to character-
ize the similarity among the nodes, such as the pair-
wise number of common neighbors (CN) and re-
lated metrics. While the number of node pairs that
share neighbors is potentially enormous, only a rel-
atively small proportion of them have many com-
mon neighbors. This motivates finding a weighted
sampling approach to preferentially sample these
node pairs. This paper presents a new sampling
algorithm that provides a fixed size unbiased esti-
mate of the similarity matrix resulting from a bi-
partite graph stream projection. The algorithm has
two components. First, it maintains a reservoir of
sampled bipartite edges with sampling weights that
favor selection of high similarity nodes. Second, ar-
riving edges generate a stream of similarity updates
based on their adjacency with the current sample.
These updates are aggregated in a second reser-
voir sample-based stream aggregator to yield the fi-
nal unbiased estimate. Experiments on real world
graphs show that a 10% sample at each stage yields
estimates of high similarity edges with weighted
relative errors of about 10−2.

1 Introduction
Networks arise as a natural representation for data, where
nodes represent people/objects and edges represent the rela-
tionships among them. The recent years have witnessed a
tremendous amount of research devoted to the analysis and
modeling of complex networks [Liben-Nowell and Klein-
berg, 2007]. Bipartite networks are a special class of net-
works represented as a graph G = (U, V,K), whose nodes
divide into two sets U and V , with edges allowed only be-
tween two nodes that belong to different sets, i.e., (u, v) ∈ K
is an edge, only if u ∈ U and v ∈ V . Thus, bipartite net-
works represent relationships between two different types of
nodes. Bipartite networks are a natural model for many sys-
tems and applications. For example, bipartite networks are
used to model the relationships between users/customers and

the products/services they consume. General examples in-
clude collaboration networks in which actors are connected
by a common collaboration act (e.g., author-paper, actor-
movie) and opinion networks in which users are connected by
shared objects (e.g., user-product, user-movie, reader-book).
Clearly, a bipartite network manifests as a stream of edges
representing the transactions between two types of nodes over
time, e.g., retail customers purchasing products daily. More-
over, these dynamic bipartite networks are usually large, due
to the prolific amount of activity carrying a wealth of useful
behavioral data for business analytics.

While the bipartite representation is indeed useful by it-
self, many applications focus on analyzing the relationships
among a particular set of nodes [Zhou et al., 2007]. For
the convenience of these applications, a bipartite network
is usually compressed by using a one-mode projection (i.e.,
projection on one set of the nodes), this is called bipartite
network projection. For example, for a one-mode projec-
tion on U , the projected graph will contain only U -nodes
and two nodes u, u′ ∈ U are connected if there is at least
one common neighbor v ∈ V , such that (u, v) ∈ K
and (u′, v) ∈ K. This results in the U -projection graph
GU = (U,KU , C) which is a weighted graph characterized
by the set of nodes U , and the edges among them KU . The
matrix C = {C(u, u′)}U×U represents the weighted adja-
cency matrix for the U -projection graph, where the weight
C(u, u′) represents the strength of the similarity between the
two nodes u, u′ ∈ U .

How to weight the edges has been a key question in one-
mode projections and their applications. Several weighting
functions were proposed. For example, neighborhood-based
methods [Ning et al., 2015; Zhou et al., 2007] measure the
similarity between two nodes proportional to the overlap of
their neighbor sets. Another example in [Fouss et al., 2007]
uses random walks to measure the similarity between nodes.
Finding similar nodes (e.g., users, objects, items) in a graph
is a fundamental problem with applications in recommender
systems [Koren, 2008], collaborative filtering [Herlocker et
al., 2004], social link prediction [Liben-Nowell and Klein-
berg, 2007], text analysis [Salton et al., 1993], among others.

Motivated by these applications, we study the bipartite
network projection problem in the streaming computational
model [Muthukrishnan, 2005]. Given a bipartite network
whose edges arrive as a stream in some arbitrary order, we
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compute the projection graph (i.e., weighted matrix C) as the
stream is progressing. We focus on common neighbors as the
weight function. The common neighbors weight is defined
for any two nodes u, u′ ∈ U , as the size of the intersection
of their neighborhood sets Γ(u) and Γ(u′), where Γ(u) ⊂ V
is the set of neighbors of u. Thus, their projected weight is
C(u, u′) = |Γ(u) ∩ Γ(u′)|. It is convenient to think of a bi-
partite network as a (binary) matrix A ∈ RU×V , where the
rows represent the node set U , and the columns represent the
node set V . In this case, computing the U -projection matrix
using common neighbors is equivalent to C = AAᵀ, where
C ∈ RU×U . In addition, the common neighbors is a funda-
mental component in many weighing functions (e.g., cosine
similarity), such as those used in collaborative filtering.

The naive solution for this problem is to compute C =
AAᵀ exhaustively withO(|U |2) for space and time complex-
ity. However, this is unfeasible for streaming/large bipartite
networks [Muthukrishnan, 2005; Ahmed et al., 2014b]. In-
stead, given a streaming bipartite network (whose edges ar-
rive over time), our goal is to compute a sample of the pro-
jection graph that contains an unbiased estimate of the largest
entries in the projection matrix C.

Contributions. Our main contribution is a novel single-
pass, adaptive, weighted sampling scheme in fixed storage for
approximate bipartite projection in streaming bipartite net-
works. Our approach has three steps. First, we maintain
a weighted edge sample from the streaming bipartite graph.
Second, we observe that the number of common neighbors
C(u, u′) between two vertices u and u′ ∈ U is equal to the
number of wedges (u, v, u′) connecting them, where (u, v) ∈
K and (u′, v) ∈ K for some v ∈ V . Thus, each bipartite
edge arriving to the sample generates unbiased estimators of
updates to the similarity matrix through the wedges it creates.
Third, a further sample-based aggregation accumulates esti-
mates of the projection graph in fixed-size storage.

2 Framework
Problem Definition and Key Intuition. Let G = (U, V,K)
be a bipartite graph, and Γ(u) = {v : (u, v) ∈ K} de-
note the set of neighbors of u ∈ U . We study the prob-
lem of bipartite network projection in data streams, where
G is compressed by using a one-mode projection. Thus, for
a one-mode projection on U , the projected graph will con-
tain only U -nodes and two nodes u, u′ ∈ U are connected
if there is at least one common neighbor v ∈ V , such that
(u, v) ∈ K and (u′, v) ∈ K. This results in the U -projection
graph GU = (U,KU , C) which is a weighted graph charac-
terized by the set of nodes U , and the edges among themKU .
The matrix C = {C(u, u′)}U×U represents the weighted ad-
jacency matrix for the U -projection graph, where the weight
C(u, u′) represents the strength of the similarity between any
two nodes u, u′ ∈ U . In this paper, we propose a novel ap-
proximation framework based on sampling to avoid the direct
computation of all pairs in C.

Definition 1 (APPROXIMATE BIPARTITE PROJECTION).
Given a bipartite network G = (U, V,K) with (binary) adja-
cency matrixA ∈ RU×V : find the vertex pair (u, u′) ∈ U×U
that maximizes C = AAᵀ. More generally, assume a given

parameter k, find the k vertex pairs {(u1, u
′
1), . . . , (uk, u

′
k)}

corresponding to the k largest entries in C.
Definition 1 corresponds to finding the pairs with largest

number of common neighbors. Intuitively, the number of
common neighbors C(u, u′) between two vertices u, u′ ∈ U ,
is equivalent to the number of wedges (u, v, u′) connecting
them, where (u, v) ∈ K and (u′, v) ∈ K for some v ∈ V .

Streaming Bipartite Network Projection. Bipartite net-
works are used to model dynamically evolving transactions
represented as a stream of edges between two types of nodes
over time. In the streaming bipartite graph model, edges
K arrive in some arbitrary order {ei : i ∈ [|K|]}. Let
Kt = {ei : i ∈ [t]} denote the first t arriving edges,
Gt = (Ut, Vt,Kt) the bipartite graph induced by the first t
arriving edges, and Ct the corresponding similarity matrix.
We aim to estimate the largest entries of Ct for any t.

2.1 Adaptive Bipartite Graph Sampling
We construct a weighted fixed-size reservoir sample of bipar-
tite edges in which edge weights dynamically adapt to their
topological importance (i.e., priority). For a reservoir of size
m, we admit the first m edges, while for t > m, the sample
set comprises a subset K̂t ≤ Kt of the first t arriving edges,
with fixed size |K̂t|= m for each t ≥ m. This is achieved by
provisionally admitting the arriving edge at each t > m to the
reservoir, then discarding one of the resulting m+1 edges by
the random mechanism that we now describe.

Since edges are assumed unique, each edge ei is identified
with its the arrival order i ∈ [|K|]. All sampling outcomes are
determined by independent random variables βi, uniformly
distributed in (0, 1], assigned to each edge i on arrival. Any
edge present in the sample at time t ≥ i possess a weight wi,t

whose form is described in Section 2.2. The priority of i at
time t is defined as ri,t = wi,t/βi. Edge i is provisionally
admitted to the reservoir forming the set K̂ ′i = K̂i−1 ∪ {i},
from which we then discard the edge with minimal priority,
whose value is called the threshold.

Theorem 1 below establishes unbiased estimators of edge
counts. Define the edge indicator Si,t taking the value 1
if t ≥ i and 0 otherwise. We will construct inverse prob-
ability edge estimators Ŝi,t = I(i ∈ K̂t)/qi,t of Si,t and
prove they are unbiased. This entails showing that qi,t =
min{1,mini≤s≤t wi,s/zs} is the probability that i ∈ Kt,
conditional on the set Zi,t = {zi, . . . , zt} of thresholds
zs = minj∈K̂′s

rj,s since its arrival.

Theorem 1. Ŝi,t is an unbiased estimator of Si,t.

Proof. Trivially Ŝi,t = 0 = Si,t for t < i. For t ≥ i let
zi,t = minj∈K̂t\{i} rj,t. Observe i ∈ K̂t iff ri,s is not the

smallest priority in any K̂ ′s for all s ∈ [i, t]. In other words

{i ∈ K̂t} = ∩s∈[i,t]{
wi,s

βi
> zi,s} = {βi < min

s∈[i,t]

wi,s

zi,s
}

Thus P[i ∈ K̂t|Zi,t] = q̃i,t := min{1,mins∈[i,t] wi,s/zi,s}.
Note that q̃i,t = qi,t when i ∈ K̂t since then zi,s = zs for all
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s ∈ [i, t]. Hence when t ≥ i
E[Ŝi,t|Zi,t] = P[I(i ∈ K̂t)|Zi,t]/q̃i,t = 1 = Si,t (1)

independent of Zi,t and hence E[Ŝi,t] = Si,t.

Let z∗t = maxZm,t. Theorem 2 shows pi,t =
min{1,mini≤s≤t

wi,s

z∗s
} can be used in place of qi,t. This sim-

plifies computation since: (a) each pi,t uses the same z∗t ; (b)
updates of pi,t can be deferred until t at which wi,t increases.
Theorem 2. If t → wi,t is non-decreasing for each i then
qi,t = pi,t and hence Ŝi,t = I(i ∈ K̂t)/pi,t for all t ≥ i.
Proof. Let dt denote the edge discarded during processing ar-
rival t. By assumption, i is admitted to K̂i and since wj,t is
non-decreasing in t, zi = zi,i = wdi,i/βdi

≥ wdi,s/βdi
> zs

for all s ∈ [di, i] in order that di ∈ Ks for all s ∈ [di, i − 1].
Iterating the argument we obtain that zi ≥ Zm,i and hence
zi = z∗i and pi,i = qi,i. The argument is completed by induc-
tion. Assume pi,s = qi,s for s > i. If in addition zt+1 > z∗t ,
then z∗t+1 = zt+1 and hence pi,s+1 = qi,s+1. If zs+1 ≤ z∗s
then zs = z∗s+1 and hence wi,s+1/zs+1 ≥ wi,s+1/z

∗
s+1 ≥

wi,s/z
∗
s+1 = wi,s/z

∗
s . Thus we replace zs by z∗s+1 in the def-

inition of qi,s+1 but use of either leaves its value unchanged,
since by hypothesis both exceed qi,s ≤ wi,s/z

∗
i,s.

2.2 Edge Sampling Weights
We now specify the weights used for edge selection. The to-
tal similarity of node u ∈ U is C(u) =

∑
u′∈U C(u, u′) =∑

v∈Γ(u)(|Γ(v)|−1). Thus, the effective contributions of
an edge (u, v) to the total similarities C(u) and C(v) are
|Γ(v)|−1 and |Γ(u)|−1 respectively. This relation indicates
that if we wish to sample nodes u ∈ U, v ∈ V with high to-
tal similarities C(u) and C(v) as vertices in the edge sample,
we should sample nodes with high degrees |Γ(u)| and |Γ(v)|.
For adaptive sampling, an edge e = (u, v) ∈ K̂ ′t has weight

w(u, v) = |Γ̂t(u)|+|Γ̂t(v)| (2)

where Γ̂t(u), Γ̂t(v) are the neighbor sets of u, v in the graph
Ĝ′t induced by K̂ ′t. We also consider a non-adaptive variant
in which edges weights are computed on arrival as above, but
remain fixed thereafter.

2.3 Unbiased Estimation of Similarity Weights
Consider first generating the exact similarity Ct from the
truncated stream Kt. Each arriving edge ei = (u, v), i ≤ t
contributes to Ct(u, u

′) through wedges (u, v, u′) for v ∈
Γt(u)∩Γt(u

′). Thus to computeCt(u, u
′) we count the num-

ber of such wedges occurring up to time t, i.e.,

Ct(u, u
′) =

t∑
i=1

∑
v∈Γi(u)∩Γi(u′)

(
I(u(ei) = u))S(u′,v),i−1

+ I(u(ei) = u′))S(u,v),i−1

)
(3)

where u(e) denotes the initial node of edge e. By linearity,
we obtain an unbiased estimate Ĉt of Ct by replacing each
S(u,v),i−1 by its unbiased estimate Ŝ(u,v),i−1. Each arriving
edge ei = (u, v) generates an increment to Ĉt(u, u

′) for all
edges (u′, v) in K̂i, the increment size being the correspond-
ing value of Ŝ(u′,v),i−1, namely, 1/p(u′,v),i−1.

Algorithm 1: Adaptive Sampling for Bipartite Projection
Input: Stream of Bipartite Graph Edges in U × V ;
Edge Sample Size m; Similiarity Sample Size n
Output: Sample Similarity Edges K̂U , K̂V ; Estimate Ĉ

1 Procedure SIMADAPT(m,n)
2 K = ∅; z∗ = 0 ;
3 AGGREGATE.INITIALIZE (n) ;
4 while (new edge (u, v)) do
5 foreach (u′ ∈ Γ(v)) do
6 UPDATEEDGE((u′, v), z∗) ;
7 AGGREGATE.ADD ((u′, u), 1/p(u′, v))

8 foreach (v′ ∈ Γ(u)) do
9 UPDATEEDGE((u, v′), z∗) ;

10 AGGREGATE.ADD ((v′, v), 1/p(u, v′))

11 if |K|< m then
12 INSERTEDGE (u, v) ;
13 else if

w(u, v)/β(u, v) < min(u′,v′)∈K w(u′, v′)/β(u′, v′)
then

14 z∗ = max{z∗, w(u, v)/β(u, v)}
15 else
16 INSERTEDGE((u, v)) ;
17 (u∗, v∗) = arg min(u′,v′)∈K w(u′, v′)/β(u′, v′) ;
18 z∗ = max{z∗, w(u∗, v∗)/β(u∗, v∗)} ;
19 DELETEEDGE((u∗, v∗))

20 Procedure UPDATEEDGE((ũ, ṽ), z̃)
21 if (z̃ > 0) then
22 p(ũ, ṽ) = min{p(ũ, ṽ), w(ũ, ṽ)/z̃}

23 Procedure INSERTEDGE(ũ, ṽ)
24 foreach (u′′ ∈ Γ(ṽ)) do
25 UPDATEEDGE((u′′, ṽ), z∗) ; w(u′′, ṽ) ++

26 foreach (v′′ ∈ Γ(ũ)) do
27 UPDATEEDGE((ũ, v′′), z∗) ; w(ũ, v′′) ++

28 K = K ∪ {(ũ, ṽ)};w(ũ, ṽ) = |Γ(ũ)|+|Γ(ṽ)|; p(ũ, ṽ) = 1

29 Procedure DELETEEDGE(ũ, ṽ)
30 K = K \ {(ũ, ṽ)}; Delete p(ũ, ṽ)

31 Procedure SIMQUERY()
32 (K̂U ∪ K̂V , Ĉ) = AGGREGATE.QUERY ()

2.4 Aggregation of Similarity Updates
The above construction recasts the problem of reconstituting
the sums {Ĉt(u, u

′) : (u, u′) ∈ U × U} as the problem of
aggregating the stream of key-value pairs{(

(u, u′), p−1
(u′,v),i−1

)
: i ∈ [t], ei = (u, v), (u′, v) ∈ K̂i

}
Exact aggregation would entail allocating storage for ev-
ery key (u, u′) in the stream. Instead, we use weighted
sample-based aggregation to provide unbiased estimates of
the Ĉt(u, u

′) in fixed storage. Specific aggregation algo-
rithms with this property include Adaptive Sample & Hold
[Estan and Varghese, 2002], Stream VarOpt [Cohen et al.,
2011] and Priority-Based Aggregation (PBA) [Duffield et al.,
2017]. Each of these schemes is weighted, inclusion of new
items having probability proportional to the size 1/p(u,v),i−1

of an update. Weighted sketch-based methods such as Lp

sampling [Andoni et al., 2011; Monemizadeh and Woodruff,
2010] could also be used, but with space factors that grow
polylogarithmically in the inverse of the bias, they are less
able to take advantage of smoothing from aggregation.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3288



Estimation Variance. Inverse probability estimators
[Horvitz and Thompson, 1952] like those in Theorem 1
furnish unbiased variance estimators computed directly from
the estimators themselves; see [Tillé, 2006]. For Ŝi,t this
takes the form V̂i,t = Ŝi,t(p

−1
i,t − 1), with the unbiasedness

property E[V̂i,t] = Var(Ŝi,t). These have performed well
in graph stream applications [Ahmed et al., 2017]. The
approach extends to the composite estimators with sample-
based aggregates, using variance bounds and estimators
established for the methods listed above, combined via the
Law of Total Variance. We omit the details.

2.5 Algorithms
Alg. 1 defines SIMADAPT which implements Adaptive Pri-
ority Sampling for bipartite edges, and generates and aggre-
gates a stream of similarity updates. It accepts two reservoir
size parameters: m for streaming bipartite edges, and n for
similarity matrix estimates. Aggregation of similarity incre-
ments uses the class AGGREGATE, which has three methods.
INITIALIZE initializes sampling in a reservoir of a given size;
ADD aggregates an update to the similarity estimate; QUERY
returns the estimate of the similarity graph at any point in the
stream. Each arriving edge generates similarity updates for
each adjacent edge as inverse probabilities (lines 7, 10).

The bipartite edge sample is maintained in a priority queue
K based on increasing order of edge priority, which for each
(u, v) is computed as the quotient of the edge weight w(u, v)
(the sum of the degrees of u and v) and a permanent random
number β(u, v) ∈ (0, 1], generated on demand as a hash of
the unique edge identifier (u, v). An arriving edge is inserted
(line 12)) if the current occupancy is less than m. Otherwise,
if its priority is less than the current minimum, it is discarded
and the threshold z∗ updated (line 14). If not, the arriving
edge replaces the edge of minimum priority (lines 16–19).
Edge insertion increments the weights of each adjacent edge
(lines 25 and 27). Since wi,t and z∗t are non-decreasing in t,
the update of pi,t (i.e., pi,t = min{pi,t−1, wi,t/z

∗
t }) (line 22)

is deferred until wi,t increases (lines 25, 27) or pi,t is used in
a similarity update (lines 6, 9).

A variant SIMFIXED uses (non-adaptive) sampling for bi-
partite edge sampling with fixed weights. It is obtained by
modifying Algorithm 1 as follows. Since weights are not
updated, the update and increment steps are omitted (lines
6 and 25–27). Edge probabilities are computed on demand as
p(u, v) = min{1, w(u, v)/z∗}. We compare with SIMUNIF,
a variant of SIMFIXED with unit weights.

Data Structure and Time Cost. We implement the priority
queue as a min-heap [Cormen et al., 2001] where the root po-
sition points to the edge with the lowest priority. Access to the
lowest priority edge is O(1). Edge insertions are O(logm)
worst case. In SIMADAPT, each insertion of an edge (u, v)
increments the weights of its neighboring edges. Each weight
increment may change its edge’s priority, requiring its posi-
tion in the priority queue to be updated. The worst case cost
for heap update is O(logm). But since the priority is in-
cremented, the edge is bubbled down by exchanging with its
lowest priority child if that has lower priority.

Bipartite Similarity
dataset |U |+|V | |K| dmax davg |KU | |RU |
RATING 2M 6M 12K 5 204M 203
MOVIE 62K 3M 33K 90 1.2M 6,797
GITHUB 122K 440K 4K 7 22.3M 156

Table 1: Datasets and characteristics. Bipartite graph: |U |+|V |:
#nodes, |K|: #edges, dmax: max. degree, davg: average degree.
Similarity graph: |KU |: #edges in source similarity, |RU |# dense
ranks = #distinct weights in source similarity graph.

Space Cost. The space requirement isO(|V̂ |+|Û |+m+n),
where |Û |+|V̂ | is the number of nodes in the reservoir, with
m and n the capacities of the edge and similarity reservoirs.

3 Evaluation
Datasets. Our evaluations use three datasets comprising
bipartite real-world graphs publicly available at Network
Repository [Rossi and Ahmed, 2015]. Basic properties are
listed in Table 1. In the bipartite graph G = (U, V,K),
|U |+|V | is the number of nodes in both partitions, |K| is the
number of edges, dmax and davg are maximum and average
degrees. |KU | is the number of edges in the source partition
and |RU | the number of dense ranks, i.e. the number of dis-
tinct similarity values. In RATING (rec-amazon-ratings) an
edge indicates a user rated a product; in MOVIE (rec-each-
movie) that a user reviewed a movie, and in GITHUB (rec-
github ) that a user is a member of a project. The experiments
used a 64-bit desktop equipped with an Intel R© CoreTM i7
Processor with 4 cores running at 3.6 GHz.

Accuracy Metrics. Since applications such as recommen-
dation systems rank based on similarity, our metrics focus
on accuracy in determining higher similarities that dominate
recommendations with metrics that have been used in the lit-
erature; see e.g., [Gunawardana and Shani, 2009].

Dense Rankings and their Correlation. We compare esti-
mated and actual rankings of the similarities. We use dense
ranking in which edges with the same similarity have the
same rank, and rank values are consecutive. Dense ranking
is insensitive to permutations of equal similarity edges and
reduces estimation noise. We use the integer part of the esti-
mated similarity to reduce noise. To assess the linear relation-
ship between the actual and estimated ranks we use Spear-
man’s rank correlation on top-k actual ranks. For each edge
e = (u, u′) in the actual similarity graph, let re and r̂e denote
the dense ranks of C(u, u′) and bĈ(u, u′)c. Cor(k) is the
top-k rank correlation, i.e., over pairs {(re, r̂e) : e ∈ KU,k}
where KU,k = {e ∈ KU : re ≤ k}.

Weighted Relative Error. We summarize relative errors by
weighting by the actual edge similarity, and for each k, we
compute the top-k weighted relative error WRE(k) as,∑

(u,u′)∈KU,k

∣∣∣Ĉ(u, u′)− C(u, u′)
∣∣∣/ ∑

(u,u′)∈KU,k

C(u, u′)

Baseline Methods. We compare against two baseline meth-
ods. First, SIMPLE takes a uniform sample of the bipartite

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3289



SIMFIXED SIMADAPT
dataset metric top-100 top-Max top-100 top-Max
RATING WRE 0.027 0.089 0.012 0.072

1-Cor 0.021 0.022 0.009 0.012
MOVIE WRE 0.006 0.122 0.002 0.135

1-Cor 0.004 0.018 0.001 0.025
GITHUB WRE 0.094 0.128 0.064 0.120

1-Cor 0.100 0.069 0.046 0.053

Table 2: Performance of SIMADAPT, SIMFIXED with fm = 10%
edge sampling, fn = 10% PBA. WRE and 1 − Cor. Max rank is
{200, 6400, 150} for {RATING, MOVIE, GITHUB}

edge stream, and forms an unbiased estimate of C(u, u′) by
|Γ̂(u) ∩ Γ̂(u′)|/p2 where p is the bipartite edge sampling
rate. Second, we compare with sampling-based approach to
link prediction in graph streams recently proposed in [Zhao
et al., 2016], which investigated several similarity metrics.
We use CNHASH to denote its common neighbor (CN) esti-
mate adapted to the bipartite graph setting. CNHASH uses a
separate edge sample per node of the full graph, sampling a
fixed maximum reservoir size L per node using min-hashing
to coordinate sampling across different nodes in to order pro-
mote selection of common neighbors. Similarity estimates
are computed across node pairs. Unlike our methods, CN-
HASH does not offer a fixed bound on the total edge sam-
ple size in the streaming case because neither the number of
nodes nor the distribution of edges is known in advance. We
attribute space costs for CNHASH using constant space per
vertex property of the sketch described in [Zhao et al., 2016],
and map this to an equivalent edge sampling rate fm, nor-
malizing with the space-per-edge costs of each method. For
a sample aggregate size n, we apply our metrics to the CN-
HASH similarity estimates of the top-n true similarity edges.

Experimental Setup. We applied SIMADAPT, SIMFIXED
and SIMUNIF to each dataset, using edge sample reser-
voir size m a fraction fm of the total edges, and sam-
ple aggregation reservoir size n a fraction fn of the edges
of the actual similarity graph. MOVIE and GITHUB used
fm ∈ {5%, 10%, 15%, 20%, 25%, 30%}. The RATING
achieved the same accuracy with smaller sampling rates
{1%, 5%, 10%}. Second stage sampling fractions were fn ∈
{5%, 10%, 15%, 100%}, where 100% is exact aggregation.

4 Results
Comparison of Proposed Methods. For SIMADAPT and
SIMFIXED, Table 2 summarizes the metrics WRE and 1−Cor
applied to {RATING,MOVIE,GITHUB} for both top-100 and
maximal dense ranks of {200, 6400, 150} respectively. The
sampling rates are fm = 10% for bipartite edges fn = 10%
PBA for similarity edges. SIMADAPT performs noticeably
better for the top-100 dense ranks, with errors ranging from
0.1% to 6.4% representing an error reduction of between 32%
and 73% relative to SIMFIXED. The methods have similar
accuracy up to maximal ranks.

Accuracy and Bipartite Edge Sample Rate fm. Figure 1
shows metric dependence on edge sample rate fm for top-
100 dense ranks, using WRE on MOVIE (right) and 1 − Cor

Figure 1: Dependence on bipartite edge sample rate fm. Left: WRE
on MOVIE. Right: 1− Cor(k) on GITHUB. Top-100 dense ranks.

Figure 2: Dependence on rank. Left: WRE on MOVIE. Right: 1 −
Cor(k) on GITHUB. Top-k dense ranks for k up to top-Max.

on GITHUB (left). Each figure has curves for SIMADAPT,
SIMFIXED and SIMUNIF (and baseline methods CNHASH
and SIMPLE discussed below). We observe that SIMADAPT
obtains up to an order of magnitude reduction in both metrics
for fm ≥ 20%.

Accuracy and Similarity Rank. Figure 2 displays the same
metric/data combinations as Figure 1 with fm = 10% for top-
k ranks as a function of k. As expected, SIMADAPT is most
accurate for lower ranks that it is designed to sample well,
with WRE 0.002 for MOVIE at k = 50 growing to about 0.2
at maximum rank considered. SIMUNIF performed slightly
better at high ranks, we believe because it was directing rela-
tively more resources to high rank edges.

Accuracy and Aggregation Sampling Rate fn. In all
datasets the PBA second stage had little effect on accuracy
for sampling rates fn down to about 10% or less under a
wide variety of parameter settings. Figure 3 shows results
for SIMFIXED applied to MOVIE at fraction fm = 10% and
PBA sampling rates of 5% and 15%, specifically WRE and
1 − Cor for the top-k dense ranks, as a function of k. For k
up to several hundred, even 5% PBA sampling has little or
no effect, while errors roughly double when nearly all ranks
are included. SIMUNIF, and to a lesser extent SIMFIXED,
exhibited more noise, even at higher bipartite sampling rates
fm, which we attribute to a greater key diversity of updates
(being less concentrated on high similarities) competing for
space. Indeed, this noise was absent with exact aggregation.

Baseline Comparisons. Figures 1 and 2 include met-
ric curves for the baseline methods SIMPLE and CNHASH.
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Figure 3: Sample based aggregation w/ PBA fn = 5%, 15%, and
none. Left: WRE. Right: 1−Cor, as function of top-k ranks. Dataset
MOVIE with SIMFIXED fm = 10% bipartite edge sampling.

SIMADAPT and SIMFIXED typically performed better than
SIMPLE by at least an order of magnitude. In some exper-
iment with higher edge sample rate fm, SIMUNIF was less
accurate than SIMPLE, we believe due to the noise described
above; Our methods performed noticeably better than CN-
HASH in all cases, while CNHASH was often no better than
SIMPLE. The reasons for this are two-fold. First, in the
streaming context, CNHASH does not make maximal use of
its constant space per vertex for nodes whose degree is less
than maximum L. However, even counting only the stored
edges, CNHASH performs worse than our methods for stor-
age use equivalent to our edge sampling rate fm < 15%. This
second reason is the interaction of reservoir design with graph
properties. Using shared edge buffer, SIMADAPT and SIM-
FIXED devote resources to high adjacency edges associated
with high similarity in a sparse graph. Edges incident at high
degree nodes are more likely to acquire future adjacencies.

Noise reduction was employed for similarity estimates
comprising a small number of updates. These exhibit noise
from inverse probability estimators without the benefit of
smoothing. We maintained an update count per edge and
filtered estimates with count below a threshold. Most ben-
efit was obtained by filtering estimates of update count below
10; this was used in all experiments reported above. Fig-
ure 4 compares the effects of no filtering (top) with filtering
at threshold 10 (right) applied to SIMADAPT with fm = 10%
edge sample, for the approximately 1,000 similarity edges in
the top 100 estimated dense ranks. The left column shows
actual and forecast weights. Without filtering, noise in the
estimated similarity curve is due to a few edges whose esti-
mated similarity greatly exceeds the actual similarity due to
estimation noise, These are largely absent after filtering. The
right column shows a scatter of (actual, forecast) ranks. Ob-
serve the cluster of edges with high actual rank (i.e. lower
actual weight) and overestimated weight present with no fil-
tering, that are removed by filtering.

5 Related Work
A number of problems specific to bipartite graphs have re-
cently attracted attention in the streaming or semi-streaming
context. The classic problem of bipartite matching has
been considered for semi-streaming [Eggert et al., 2012;
Kliemann, 2011] and streaming [Goel et al., 2012] data. Iden-
tifying top-k queries in graphs streams has been studied in
[Pan and Zhu, 2012]. The Adaptive Graph Priority Sampling

Figure 4: Noise and Filtering. GITHUB fm = 10%. Top-100 dense
ranked edges. Top: No filtering. Bottom: filter threshold 10. Left:
forecast and actual weights. Right: scatter of (forecast, actual) ranks.

of this paper builds on the graph priority sampling frame-
work GPS in [Ahmed et al., 2017] while the second sam-
ple aggregation method appears in [Duffield et al., 2017].
Graph stream sampling for subgraph counting is addressed
in [Ahmed et al., 2017; Jha et al., 2015; Stefani et al., 2017;
Zakrzewska and Bader, 2017; Ahmed et al., 2014a] amongst
others; see [Ahmed et al., 2014b] for a review. [Zhao et
al., 2016] is closer to our present work in that it provides a
sample-based estimate of the CN count, albeit not special-
ized to the bipartite context. We make a detailed comparison
of design and performance of [Zhao et al., 2016] with our
proposed approach in in Section 4.

6 Summary and Conclusion
This paper has proposed a sample-based estimator of the
similarity (or projection graph) induced by a bipartite edge
stream, i.e., the weighted graph whose edge weights or simi-
larities are the numbers of common neighbors of its endpoint
nodes. The statistical properties of real-world bipartite graphs
provide an opportunity for weighted sampling that devotes re-
sources to nodes with high similarity edges in the projected
graph. Our proposed algorithm provides unbiased estimates
of similarity graph edges in fixed storage without prior knowl-
edge of the graph edge stream. With a relatively small sample
of bipartite and the similarity graph edges (10% in each case),
and with the enhancement of count based filtering of similar-
ity edges at threshold 10, the sampled similarity edge set re-
produces the actual similarities of sampled edges with errors
of about 10−2 for top-100 dense estimate ranked edges, ris-
ing to an error of about 10−1 when most estimated edges are
considered. Indeed, for the parameters used, the rank distri-
bution of the sampled similarity graph is very similar to that
of the actual graph for all but the highest ranks.
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