Pairwise-Ranking based Collaborative Recurrent Neural Networks for Clinical Event Prediction

Zhi Qiao*, Shiwan Zhao*, Cao Xiao†, Xiang Li*, Yong Qin*, Fei Wang§
* IBM Research - China, Beijing, China
† IBM Research, Cambridge, MA, 02142
§ Healthcare Policy and Research, Weill Cornell Medical College, Cornell University, New York, NY 10065
(qzbj, zhaosw, qinyong)@cn.ibm.com, cxiao@us.ibm.com
leeshore05@hotmail.com, few2001@med.cornell.edu

Abstract
Patient Electronic Health Records (EHR) data consist of sequences of patient visits over time. Sequential prediction of patients’ future clinical events (e.g., diagnoses) from their historical EHR data is a core research task and motivates a series of predictive models including deep learning. The existing research mainly adopts a classification framework, which treats the observed and unobserved events as positive and negative classes. However, this may not be true in real clinical setting considering the high rate of missed diagnoses and human errors. In this paper, we propose to formulate the clinical event prediction problem as an events recommendation problem. An end-to-end pairwise-ranking based collaborative recurrent neural networks (PacRNN) is proposed to solve it, which firstly embeds patient clinical contexts with attention RNN, then uses Bayesian Personalized Ranking (BPR) regularized by disease co-occurrence to rank potential patient-specific diseases, as well as uses point process to provide simultaneous prediction of the occurring time of these diagnoses. Experimental results on two real world EHR datasets demonstrate the robust performance, interpretability, and efficacy of PacRNN.

1 Introduction
The Electronic Health Records (EHR) data consist of sequences of patient visits over time. Each visit is composed by a set of medical events, including diagnoses, procedures, etc. Fig. 1 shows a segment of longitudinal EHR.

Sequential prediction of clinical events (e.g., diagnoses) based on longitudinal EHR data is a core research task that could support decision makings. However, there are lots of challenges on working with EHR, such as event temporality, high-dimensionality, and visit irregularity. Such challenges motivated a series of machine learning models for EHR-based phenotyping and event predictions. To name a few, in [Choi et al., 2016c; Cheng et al., 2016], temporal dynamics among clinical events were captured using RNNs or CNNs to improve prediction of heart failure onsets. In [Ma et al., 2017; Tengfei et al., 2018], attention mechanism was introduced to add more interpretability to the prediction results. In [Farhan et al., 2016; Liu et al., 2015], low dimensional clinical concept embedding was used to provide better predictions.

In real clinical setting, the physicians need to deal with a large number of patient-specific clinical observations, and link them with the known manifestations of various diseases to infer the best diagnosis [Donald et al., 1982; Sebastian et al., 2009]. However, because of the complexity and ambiguity of complicated diseases, there is a high rate of misdiagnosis and missed diagnosis across the entire world. Therefore it may not be appropriate to formulate clinical event prediction as a hard classification problem as in previous research. The unobserved events could be missed or left out by error.

Based on the above considerations, we propose to treat clinical event prediction as a recommendation problem. We propose PacRNN, an end-to-end pairwise-ranking based collaborative recurrent neural network model to tackle this problem. PacRNN first embeds patient clinical contexts with attention RNN, then uses typical pairwise ranking method BPR regularized by disease co-occurrence to rank potential patient-specific diseases. Point process is utilized to estimate the observed time of these predicted diagnoses as well. Below we highlight the several contributions of PacRNN.

- **Personalized Ranking based Modeling:** We formulate
cl planted to prediction as a recommendation problem, which captures the potential missingness and human error in patient EHR in a more robust way. A latent factor model based BPR with disease correlation regularization is proposed to estimate the diagnoses rankings for each visit.

- **Explicit Modeling of Diagnoses Time:** We leverage point process to explicitly predict the time of predicted diagnoses. This is done by viewing the intensity function of a point process as a nonlinear function of the history information learned from RNN to simultaneously make next visit time prediction.

The rest of this paper is organized as follows: In Section 2, we discuss the connection of the proposed approaches to related work. Section 3 presents the preliminary of the work. Section 4 shows the details of the proposed PacRNN. The experimental results are presented in Section 5. Section 6 concludes the paper.

2 Related Work

Sequential prediction of clinical events based on EHR data is a hot research topic and has attracted many attentions. Most of existing models utilize RNNs for predicting the future diagnoses. RETAIN [Choi et al., 2016b] is an interpretable predictive model, which employs reverse time attention mechanism in an RNN for binary prediction task. Dipole [Ma et al., 2017] employs bidirectional recurrent neural networks and introduces three attention mechanisms to measure the relationships of different visits for the prediction. TLSTM [Baytas et al., 2017] is proposed to handle irregular time intervals by learning a subspace decomposition of the cell memory which enables time decay to discount the memory content according to the elapsed time. These existing works cannot predict diagnosis and future visit time simultaneously. DoctorAI [Choi et al., 2016a] can make both types of predictions, while it is a straightforward approach with simple RNN for sequential patient data modeling. None of these methods directly optimizes for diagnosis ranking.

Point process has been a principled framework for modeling event dynamics, such as Hawkes processes [Hawkes, 1971]. Some studies combined point process and RNN to improve time prediction performance. RMTTP [Du et al., 2016] proposed recurrent point process to make next occurring time prediction. [Xiao et al., 2017] proposed modeling the intensity function of point process via recurrent neural networks. In this paper, we incorporate point process to explicitly predict the time of predicted diagnoses.

3 Preliminary

In EHR data, each disease code can be mapped to a node of the International Classification of Diseases (ICD-9)1, and procedure code to a node of the Current Procedural Terminology (CPT)2. For notation purposes, let $\mathbb{D} = \{d_1, d_2, ..., d_{|\mathbb{D}|}\}$ denote the set of $|\mathbb{D}|$ disease codes, $\mathbb{M} = \{m_1, m_2, ..., m_{|\mathbb{M}|}\}$

---


4 Methods

In this section, we describe our algorithm, Pairwise-Ranking based Collaborative Recurrent Neural Networks (PacRNN), which is an end-to-end, simple and robust model for simultaneously future diagnoses and occurring time prediction.

Fig. 2 shows the overall design of PacRNN. First, the set of disease codes is embedded into vectors $\{\phi_k, k = 1, ..., |\mathbb{D}|\}$ and then pass through disease regularization, attention and disease ranking layers. Second, given a sequence of historical visits $\{x_1, x_2, ..., x_J\}$ from a patient, we embed each visit $x_j$ into a dense vector $v_j$. The vector $v_j$ is then fed into the Gated recurrent units (GRUs) [Cho et al., 2014], which output a hidden state $h_j$ as the representation of the $j$-th visit. With disease factors $\{\phi_k, k = 1, ..., |\mathbb{D}|\}$ and hidden states $\{h_j, j = 1, ..., J\}$, we generate two sets of attention weights. One is used for computing disease-specific patient representation $\{\hat{c}_k^j, k = 1, ..., |\mathbb{D}|\}$, which is then used to rank disease codes of the future visit at time $J + 1$. The other is used for computing time-aware patient representation $\hat{c}_t^j$. Based on $\hat{c}_t^j$, we can formulate the conditional intensity function for the future visit time prediction.

4.1 Patient Representation Learning

Given a visit $x_j \in \{0, 1\}^{|\mathbb{M}|}$, we can obtain its dense vector representation $v_j \in \mathbb{R}^l$ via $v_j = ReLU(W_v x_j + b_v)$,
where \( l \) is the size of embedding dimension, \( W_v \in \mathbb{R}^{l \times |\mathbb{M}|} \) is the embedding matrix of medical codes, and \( b_v \in \mathbb{R}^l \) is the bias vector. The reason we employ the ReLU as the activation function is that ReLU enables the learned vector representations to be interpretable. In the implementation, we use word2vec method to map medical codes \( \mathbb{M} \) into \( l \) dimensional dense representation as the initialization of \( W_v \). The embedding vector \( v_j \) is then fed into GRUs, and each unit outputs a hidden state \( h_j \) as the representation of \( j \)-th visit of the patient.

Then we compute the disease-specific attention weights by adopting the approach similar to [Bahdanau et al., 2015]. In particular, given the disease factor set \( \{\phi_k, k = 1...|\mathbb{D}|\} \), and hidden states \( \{h_j, j = 1...|\mathbb{D}|\} \) of a patient, \( \alpha^d_k \) is computed as:

\[
\alpha^d_k = \text{Softmax}(e^d_{k,j})
\]

where

\[
e^d_{k,j} = V_h^{dT} \text{tanh}(W_h^d h_j + U_v^d \phi_k)
\]

is an alignment model which scores how well \( \phi_k \) and \( h_j \) match. \( V_h^d \in \mathbb{R}^{d \times p}, U_v^d \in \mathbb{R}^{d \times 2p} \) and \( V_v^d \in \mathbb{R}^p \) are the parameters to be learned. Based on \( \alpha^d_k \), we can derive disease-specific contextual state as \( c^d_k = \sum_{j=1}^J \alpha^d_k h_j \). Concatenated with the last hidden state \( h_J \), we have the disease-specific patient representation \( c^d = \text{ReLU}(W_c[h_J, c^d]) \).

We also use self-attention mechanism to learn time-aware attention weights for the future visit time prediction. The self-attention function is to calculate the weights solely from the current hidden state \( h_j \): \( e^j = V_h^{dT} \text{tanh}(W_h^d h_j + b_v^d) \), where \( W_h^d \in \mathbb{R}^{d \times p}, b_v^d \in \mathbb{R}^p \) and \( v_v^d \in \mathbb{R}^p \) are the parameters to be learned. Then, we can obtain the attention weight vector \( \alpha \) using softmax function. Based on \( \alpha \), we can derive time-aware contextual state as \( c^j = \sum_{j=1}^J \alpha_j h_j \) and time-aware patient representation \( c^j = \text{ReLU}(W_c[h_j, c^j]) \).

### 4.2 Bayesian Personalized Ranked Ranking for Diagnosis Modeling

In real clinical settings, doctors often assign several disease codes to patients as diagnosis, ranked by the severity and possibility of these diseases. The diagnosis prediction can be considered as the ranking of diseases give the current state of a patient. In this paper, we explicitly optimize on patient-specific ranking of disease by using learning to rank approach, which is employed in a wide variety of applications in information retrieval, natural language processing, and data mining [Li, 2011; Qiao et al., 2014].

Formally, given a patient \( u \) with diagnoses \( o_{j+1} \) (further denoted by \( \mathbb{D}^+ \) for convenience) at visit \( J+1 \), we then denote \( \mathbb{D}^- = \mathbb{D} \setminus \mathbb{D}^+ \). We assume that the patient \( u \) intends to have a disease in \( \mathbb{D}^+ \) over all diseases in \( \mathbb{D}^- \). In this paper, we adopt BPR [Rendle et al., 2009] to model such ranking problem with the pairwise ranking loss. In particular, we compare each positive disease in \( \mathbb{D}^+ \) with several sampled negative diseases in \( \mathbb{D}^- \), and compute the loss as:

\[
\ell^r(o_{j+1}|\Theta) = \prod_{(d_k,d_{k'}) \in \mathbb{D}^+ \cup \mathbb{D}^-} P(s(u,d_k) > s(u,d_{k'}))|\Theta|
\]

(1)

where \( \Theta = (\phi, b_v) \), \( \phi \) is the set of disease-specific patient representation, \( \phi \) is the set of latent factors of diseases, and \( b_v \) is the bias. \( s(u,d_k) \) is the score function, representing the possibility of patient \( u \) having disease \( d_k \). The score function is defined as \( s(u,d_k) = c^d_k \cdot \phi_k + b^d \), and \( P(s(u,d_k) > s(u,d_{k'})|\Theta) \) is then defined as:

\[
P(s(u,d_k) > s(u,d_{k'}))|\Theta) = \frac{1}{1 + e^{s(u,d_k) - s(u,d_{k'})}}
\]

(2)

**Regularization based on Disease Correlation**

With latent factor based BPR framework, we can easily integrate extra knowledge by joint matrix factorization and/or regularization [Yuan et al., 2011]. In this paper, we regularize latent factors of diseases by their co-occurrence, assuming that frequent co-occurring diseases tend to have similar representations. We firstly construct correlation network among diseases:

\[
\Upsilon_{k,k'} = \frac{\Delta_k \cap \Delta_{k'}}{\Delta_k \cup \Delta_{k'}}
\]

(3)

where \( \Delta_k \) represents the set of visits containing disease \( k \), \( \Delta_k \cap \Delta_{k'} \) denotes the number of the set of visits containing both disease \( k \) and \( k' \), and \( \Delta_k \cup \Delta_{k'} \) the number of the set with either diseases.

After we derive the disease correlation network, we incur regularization term for disease latent factors and add a Gaussian prior in the model:

\[
p(\Upsilon_{k,k'}|b_{rel}) = N(\Upsilon_{k,k'} - \text{Sigmoid}(\phi_k^T \phi_{k'}), 0, b_{rel})
\]

(4)

where \( b_{rel} \) is the bias.

### 4.3 Future Visit Time Modeling

Point process is an effective mathematical tool to model sequential data. Point process models the dynamics of the sequence by using the conditional intensity function \( \lambda(t) \): for a short time window \( [t, t + dt] \), \( \lambda(t)dt = P(\text{event in } [t, t + dt]|H_t) \) is the probability of the occurrence of a new event conditioned on the history \( H_t \). Given the conditional density function \( f(t) \) and its corresponding cumulative distribution function \( F(t) \), the conditional intensity function can be specified as:

\[
\lambda(t)dt = \frac{f(t)dt}{1 - F(t)}
\]

(5)

Then the conditional density function can be obtained by:

\[
f(t) = \lambda(t)exp(-\int_t^\infty \lambda(\varepsilon)d\varepsilon)
\]

(6)

**Conditional Intensity based on Historical Information**

Based on time-aware patient representation \( c^d \) of the \( i \)-th patient, we can now formulate the conditional intensity function by:

\[
\lambda_i(t) = \text{exp}(\tau^T \cdot c^d + \alpha_\xi(t - t_i) + b_i)
\]

(7)

where \( \tau \) is a column vector, and \( b_i \) is a scalar as the bias. \( \alpha_\xi \) represents the time-aware weight. More specifically: 1) The
first term represents the accumulative influence from the historical visits. Compared to the fixed parametric formulations of typical point process models for the past influence, we now have a highly non-linear general specification of the dependency over the history. 2) The second term emphasizes the influence of time. 3) The last term gives a base intensity level for the occurrence of the next event. The exponential function outside acts as a non-linear transformation and guarantees that the intensity is positive.

Based on Eq. 6 and 7, we can derive the likelihood that the next visit will occur at the time \( J + 1 \) given the history by the following equation:

\[
\ell^i(t_{J+1}) = f_i(t_{J+1}) = \lambda_i(t) \exp\left(-\int_{t_{J}}^{t_{J+1}} \lambda_i(\varepsilon) d\varepsilon\right) \quad (8)
\]

### 4.4 Joint Optimization

Deep neural networks are flexible to mix and match different input signals and capture their correlations through hidden layers. Latent representation of users, often used in factor models, can be easily incorporated into our network just like other embedding representations do. Having the two tasks at hand and the inputs, we consider solving them jointly. The parameters in model are then trained by minimizing the combined objective:

\[
\min - \sum_{i=1}^{N} \log \ell^i(o_{J+1} | \Theta) - \beta_1 \sum_{i=1}^{N} \log \ell^i(t_{J+1}) - \beta_2 \sum_{k,k' \in \mathcal{D} \land k \neq k'} \log p(\lambda_{k,k'} | h_{rel})
\quad (9)
\]

where \( \beta_1, \beta_2 \) are hyperparameters used for tuning impacts from the regression loss of time prediction and regularization loss of disease correlation to the overall loss.

### 4.5 Diagnosis and Time Prediction

**Diagnosis Prediction.** After we learn the disease factor set \( \phi = \{ \phi_1, \phi_2, ..., \phi_D \} \) and the disease-specific patient representation set \( c^d = \{ \hat{c}^d_1, \hat{c}^d_2, ..., \hat{c}^d_{|D|} \} \), we can make personalized diagnosis prediction by:

\[
s(u, d_k) = \hat{c}^d_k \cdot \phi_k + b_d \quad (10)
\]

We sort the diseases for the patient \( u \) in descending order according to their scores, and return the top-\( k \) diseases as diagnosis.

**Time Prediction.** We estimate the timing for the next event using the expectation:

\[
\hat{t}_{J+1} = \int_{t_J}^{\infty} t f_i(t) dt \quad (11)
\]

In general, the integration in above equation does not have analytic solutions, so we can apply commonly used numerical integration techniques [Isaacson, 1989] for one-dimensional functions to compute above equation instead.

### 5 Experiments

#### 5.1 Dataset

We conduct experiments on two real world datasets, CMS (2008-2010), MIMIC III. CMS is synthetic medical claims data while MIMIC is clinical data collected from ICU patients. MIMIC dataset mainly consists of clinical logs of patients admitted to critical care units with serious conditions. The statistics of the two datasets are provided in Table 1. For CMS dataset, we remove patients with less than four visits. Similarly, for small volume MIMIC III dataset, we remove patients with less than three visits.

For both datasets, each visit is represented by a set of structured medical codes, including disease codes (ICD 9) and procedure codes. There have more than 5,000 unique ICD-9 codes and 2,000 procedure codes for both datasets. To reduce the size of feature set and avoid information overload, we group codes into coarse-grained categories. For both disease and procedure codes, we extract the top-2 digits, yielding 112 unique disease groups and 112 unique procedure groups for CMS data, 110 disease groups and 109 procedure groups for MIMIC III data.

We randomly split the dataset into training, validation and testing sets in the ratio 8:1:1, where the validation set is used to determine the best values of parameters.

#### 5.2 Settings

In order to verify the performance gain by introducing the regularization of the disease correlation, we create two variants for our method: one with regularization (PacRNN), the other without regularization (PacRNNw). We then compare our methods with the state-of-the-art approaches for diagnosis prediction and future visit time prediction, respectively.

**Diagnosis prediction task.** Three state-of-the-art methods are selected as baselines for diagnosis prediction task:

- **DoctorAI:** [Choi et al., 2016a] embeds visits into vector representations and then feeds them into the GRUs. The hidden states of the GRUs are used to predict the medical codes of the future visit.
- **RETAI:** [Choi et al., 2016b] proposes an interpretable predictive model in healthcare with reverse time attention mechanism.
- **Dipole:** [Ma et al., 2017] uses attention-based bidirectional recurrent neural networks for diagnosis prediction.

---

3https://www.cms.gov
4https://physionet.org
### Methods

<table>
<thead>
<tr>
<th>Dx</th>
<th>Dx&amp;Time</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

### Evaluation Metrics

- **Recall@30**: Measures the proportion of correct predictions among the top 30 predictions.
- **Recall@20**: Measures the proportion of correct predictions among the top 20 predictions.
- **Recall@10**: Measures the proportion of correct predictions among the top 10 predictions.
- **RMSE (Root-Mean-Square Error)**: Measures the average magnitude of errors in a set of predictions, without considering their direction.

### Table 2: The Top-k Recalls of Diagnosis Prediction Task with two settings (Dx and Dx&Time).

<table>
<thead>
<tr>
<th>Methods</th>
<th>Dx</th>
<th>Dx&amp;Time</th>
<th>Dx</th>
<th>Dx&amp;Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipole</td>
<td>0.4624</td>
<td>0.6840</td>
<td>0.8172</td>
<td>N/A</td>
</tr>
<tr>
<td>Retain</td>
<td>0.4572</td>
<td>0.6835</td>
<td>0.8150</td>
<td>N/A</td>
</tr>
<tr>
<td>DoctorAI</td>
<td>0.4552</td>
<td>0.6804</td>
<td>0.8122</td>
<td>0.4516</td>
</tr>
<tr>
<td>PacRNNwr</td>
<td>0.4662</td>
<td>0.6889</td>
<td>0.8216</td>
<td>0.4641</td>
</tr>
<tr>
<td>PacRNN</td>
<td><strong>0.4681</strong></td>
<td><strong>0.6893</strong></td>
<td><strong>0.8222</strong></td>
<td><strong>0.4663</strong></td>
</tr>
</tbody>
</table>

### Table 3: The AUC scores of Diagnosis Prediction Task

<table>
<thead>
<tr>
<th>Methods</th>
<th>CMS</th>
<th>MIMIC III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipole</td>
<td>0.8745</td>
<td>N/A</td>
</tr>
<tr>
<td>Retain</td>
<td>0.8728</td>
<td>N/A</td>
</tr>
<tr>
<td>DoctorAI</td>
<td>0.8717</td>
<td>0.8712</td>
</tr>
<tr>
<td>PacRNNwr</td>
<td>0.8776</td>
<td>0.8809</td>
</tr>
<tr>
<td>PacRNN</td>
<td><strong>0.8781</strong></td>
<td><strong>0.8775</strong></td>
</tr>
</tbody>
</table>

### Figure 3: Comparison with other methods on time prediction.

**Time prediction task.** We further compare our method with the following approaches for evaluating the performance of visit time prediction:

- **DoctorAI**: It is also capable of predicting time.
- **Homogeneous Poisson Process**: The intensity function is a constant, which produces an estimate of the average inter-event gaps.
- **Hawkes Process**: We fit a self-excitation Hawkes process for the intensity function modeling \( \lambda(t) = \gamma_0 + \alpha \sum_{t_j < t} \gamma(t, t_j) \).
- **Self-correcting Process**: We fit a self-correcting process for the intensity function modeling \( \lambda(t) = \exp(\mu - \sum_{t_j < t} \alpha) \).

**Evaluation Metrics.** To evaluate the performance of each method on diagnosis prediction task, we adopt the Top-k recall and AUC score as measurement metrics. Top-k recall is defined as the number of correct diagnosis codes in top k ranked list divided by the number of ground-truth diagnoses. In our experiments, we set k to be 10, 20, and 30. AUC [Rendle et al., 2009] measures the overall results of pairwise ranking. It is suitable for highly imbalanced datasets, as in our case where the negative diseases take a high proportion.

\[
AUC = \frac{\sum_{i=1}^{N} \sum_{d_j \in P^i_u} \sum_{d_k \in N^i_{P^i_u}} I(s(u_i, d_j) > s(u_i, d_k))}{\sum_{i=1}^{N} |P^i_u| |N^i_{P^i_u}|}
\]

where \( I(\cdot) \) is an indicator function that equals to 1 if \( s(u_i, d_j) > s(u_i, d_k) \), otherwise 0.

To evaluate the performance of each method on time prediction task, we adopt root-mean-square error (RMSE) which is a frequently used measure of the differences between real values and predicted values.

\[
RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{N} (t_i - \hat{t}_i)^2}
\]

**Implementation Details.** We set \( \beta_1 = 1 \) and \( \beta_2 = 0.01 \) with the help of validation set. In all experiments, the learning rate is set to be 0.001, embedding size \( l = 50 \) and hidden state size \( p = 50 \) for baselines and our methods. We also use regularization (L2 norm with the coefficient 0.0001), drop-out strategies (with the drop-out rate 0.5) and batch size 20 for all methods.

In BPR, ranking loss optimization on all disease pairs \( (d_k, d_{k'}) \in (D^+, D^-) \) of each patient leads to poor convergence owing to negative skewness, and high computation cost \( O(|D^+| |D^-|) \). Therefore, for each \( d_k \in D^+ \), we randomly sample 10 diagnosis \( d_{k'} \in D^- \).

We perform 100 iterations and report the best performance for each method.

### 5.3 Experimental Results

**Diagnosis Prediction Results**

Table 2 shows the accuracies of the proposed PacRNN and baselines on both CMS and MIMIC III datasets for the diagnosis prediction task. We report the results in two settings: (i) optimization only for Diagnosis Prediction (Dx) and (ii) joint optimization for both diagnosis and time predictions (Dx&Time).

In Table 2, one can observe that the accuracies on the MIMIC III dataset are higher than those on the CMS dataset. The reason is that CMS is a kind of claims data, in which
We note that the accuracy of DoctorAI is somewhat lower than others on both datasets. The main reason is that DoctorAI is the only one without using attention mechanism. It predicts the diagnosis depending on the last hidden state of the RNN, which cannot memorize all the past information, causing that DoctorAI mainly focuses on the information of recent visits. However, RETAIN, Dipole and our methods, i.e., PacRNNwr and PacRNN, can take all the visits into consideration. By assigning different attention weights to each visit, these methods achieve better performance than DoctorAI. Furthermore, our methods directly optimize for ranking, outperform Retain and Dipole on both datasets.

Compared with PacRNNwr, PacRNN achieves better performance by regularizing latent factors of diseases by their co-occurrence, assuming that frequent co-occurring diseases tend to have similar representation. Note that the accuracies of the joint task are lower than those of the task only predicting diagnosis, because that the hypothesis space of the joint prediction task is larger.

We also measure all methods by AUC metrics. The results are shown in Table 3. Similarly, our proposed models, PacRNNwr and PacRNN achieve better ranking performance.

Time Prediction Results
We use the expectation of the log time interval between the current and next events as our estimation. For PacRNN, PacRNNwr and DoctorAI, we make the time prediction by jointly optimizing diagnosis prediction and time prediction, namely, with setting $\text{Dx}\&\text{Time}$ as shown in Table 2.

The right column of Table 2 shows the RMSE values for the time prediction task, the smaller the better. Note that only DoctorAI of the baselines in Table 2 is capable of predicting next visit time. One can observe that our methods outperform DoctorAI on both datasets, demonstrating that time prediction models based on point process can achieve higher accuracy. Again, attention mechanism proves to be useful in time prediction task.

To further verify the performance of our methods on time prediction task. We introduce more point process based baselines. Fig. 3 shows the time prediction accuracies of all methods. It shows that our methods PacRNNwr and PacRNN have better performance. Hawkes processes, Homogeneous Poisson Process, and Self-correcting Process are all typical point process models, which are making specific assumptions about the functional forms of the generative processes, which may not reflect the reality, and thus the respective fixed parametric representations may restrict the expressive power of these models.

Case Study
Table 4 shows one example patient from real MIMIC III data, with top-10 diseases predicted by PacRNN and DoctorAI. The ICD codes marked with an asterisk are correctly predicted. Our method has better ranking performance (3 correct ones in top-5) than DoctorAI (1 in top-5). It is worth noting that ICD code 51 (Other Diseases of Respiratory System) and 48 (Pneumonia and Influenza) are correctly diagnosed by PacRNN, in the rank positions of 2 and 5 respectively. Both diseases are not observed in the historical visits of this patient, demonstrating that our method is capable of predicting new diseases. The two diseases (ICD code 51 and 48) often co-occur. Regularization based on disease correlation can help for correct predictions.

6 Conclusions
In this paper, we propose to formulate the clinical event prediction problem as a pairwise ranking problem considering the high rate of misdiagnosis and missed diagnosis across the entire world. We propose PacRNN, an end-to-end pairwise-ranking based collaborative recurrent neural networks for
clinical event prediction. Experimental results on two real world EHR datasets demonstrate the robust performance, interpretability, and efficacy of PacRNN.

Acknowledgments
The work of Fei Wang is supported by NSF IIS-1750326 and IIS-1716432.

References


[Donald et al., 1982] Connelly Donald, Benson Ellis, and Burke M. Clinical decisions and laboratory use. In Minneapolis: University of Minnesota Press, 1982.


