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Abstract
Cross-Domain Recommendation (CDR) and
Cross-System Recommendations (CSR) are two
of the promising solutions to address the long-
standing data sparsity problem in recommender
systems. They leverage the relatively richer
information, e.g., ratings, from the source domain
or system to improve the recommendation accu-
racy in the target domain or system. Therefore,
finding an accurate mapping of the latent factors
across domains or systems is crucial to enhancing
recommendation accuracy. However, this is a
very challenging task because of the complex
relationships between the latent factors of the
source and target domains or systems. To this end,
in this paper, we propose a Deep framework for
both Cross-Domain and Cross-System Recom-
mendations, called DCDCSR, based on Matrix
Factorization (MF) models and a fully connected
Deep Neural Network (DNN). Specifically, DCD-
CSR first employs the MF models to generate
user and item latent factors and then employs the
DNN to map the latent factors across domains or
systems. More importantly, we take into account
the rating sparsity degrees of individual users and
items in different domains or systems and use them
to guide the DNN training process for utilizing the
rating data more effectively. Extensive experiments
conducted on three real-world datasets demon-
strate that DCDCSR framework outperforms the
state-of-the-art CDR and CSR approaches in terms
of recommendation accuracy.

1 Introduction
Data sparsity is a long-standing problem in recommender sys-
tems (RSs). In order to address this problem, a new trend
has emerged in recent years by making the use of the rela-
tively richer information, e.g., ratings, from the source do-
main or system to improve the recommendation accuracy in
the target domain or system. Such approaches are referred
to as Cross-Domain Recommendation (CDR) [Berkovsky et
al., 2007] and Cross-System Recommendation (CSR) [Zhao
et al., 2013], respectively. For example, on Douban website

(https://www.douban.com), its recommender system can rec-
ommend books to users according to their movie reviews (i.e.,
CDR) since users in different domains are very likely to have
similar tastes. In addition, the movie features derived from
Netflix system can be transferred to Douban system [Zhao et
al., 2013] (i.e., CSR) because both Netflix and Douban have
the same domain of movie reviews.

The existing CDR approaches can be classified into two
groups, i.e., content-based approaches and transfer-based ap-
proaches. Content-based Approaches in CDR tend to link
different domains by identifying similar user/item attributes
[Chung et al., 2007], social tags [Fernández-Tobı́as and Can-
tador, 2014], and user-generated texts [Tan et al., 2014]. In
contrast, Transfer-based Approaches in CDR mainly focus
on transferring latent factors [Pan et al., 2010] or rating pat-
terns [Gao et al., 2013] from the source domain to the tar-
get domain. Different from the content-based approaches,
transfer-based approaches typically employ machine learn-
ing techniques, such as transfer learning [Zhang et al., 2016]
and neural networks [Man et al., 2017], to transfer knowl-
edge across domains. Like CDR, Cross-System Recommen-
dation (CSR) is also an effective solution for the data sparsity
problem. CSR leverages the ratings or the knowledge derived
from the source system to improve the recommendation accu-
racy in the target system, where both systems are in the same
domain [Zhao et al., 2013].

The common idea of the existing transfer-based ap-
proaches in CDR and CSR is to map the latent factors ob-
tained from a source domain or system (a relatively richer
data source) to a target domain or system (a sparser data
source) for improving the recommendation accuracy. There-
fore, accurately mapping the latent factors across domains or
systems is crucial for enhancing the recommendation accu-
racy in CDR and CSR. However, the existing transfer-based
approaches cannot effectively obtain an accurate mapping be-
tween the latent factors in two domains or systems. They ei-
ther directly replace a part of the latent factors in the target
domain or system with the corresponding latent factors in the
source domain or system [Zhao et al., 2017] (Category 1), or
map the latent factors of common users/items in the source
domain or system to fit those in the target domain or system
[Man et al., 2017] (Category 2). The approaches in Category
1 ignore the complex relationship between the latent factors
in the two domains or systems, while the approaches in Cat-
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egory 2 only focus on the common users and items to adjust
their relatively accurate latent factors in the source domain or
system to fit the worse ones in the target domain or system,
which is not reasonable and effective.
Our Approach and Contributions: Different from the exist-
ing CDR and CSR approaches, we propose a novel approach
to generating benchmark factors, which combine the features
of the latent factors in both the source and the target domains
or systems. We then map the latent factors in the target do-
main or system to fit the benchmark factors. To the best of
our knowledge, this leads to a new category of transfer-based
approaches to mapping latent factors across domains or sys-
tems, and our approach is the first one in this novel category.

The characteristics and contributions of our framework are
summarized as follows:
(1) In this paper, we propose a Deep framework for both
Cross-Domain and Cross-System Recommendations, called
DCDCSR, which employs MF models and a fully connected
Deep Neural Network (DNN);
(2) We employ the MF models to generate user and item la-
tent factors. When generating benchmark factors, we take
into account fine-grained sparsity degrees of individual users
and items to combine the latent factors learned from both the
source and target domains or systems, which can effectively
utilize more rating data in the two domains or systems;
(3) We employ the DNN to accurately map the latent factors
in the target domain or system to fit the benchmark factors,
which can improve recommendation accuracy;
(4) The extensive experiments conducted on three real-world
datasets demonstrate that our DCDCSR framework outper-
forms the state-of-the-art approaches, which clearly improves
the recommendation accuracy for both CDR and CSR.

2 Related Work
In this section, we review the existing CDR approaches in two
groups: (1) content-based approaches and (2) transfer-based
approaches, and the existing works on CSR.

2.1 Content-Based Approaches for CDR
Cross-Domain Recommendation (CDR) was first proposed in
[Berkovsky et al., 2007], which is a content-based approach
targeting the data sparsity problem by merging user prefer-
ences and extracting common attributes of users and items.
Later on, the work proposed in [Winoto and Tang, 2008] un-
covers the relationships of user preferences in different do-
mains, and the work proposed in [Berkovsky et al., 2008]
imports and integrates the data collected by other systems to
acquire accurate modeling of users’ interests and needs. In
addition to considering user/item attributes, linking domains
by other information is also a typical solution in this group,
such as social tags [Fernández-Tobı́as and Cantador, 2014],
and user-generated texts [Tan et al., 2014].

2.2 Transfer-Based Approaches for CDR
Transfer-based approaches mainly employ MF models to
generate latent factors or rating patterns and transfer them
across domains. The work proposed in [Singh and Gordon,
2008] suggests a non-linear relationship to share the latent

factors of entities across domains. Later on, the work pro-
posed in [Pan et al., 2011] utilizes a matrix-based transfer
learning framework to combine both user and item knowl-
edge in source domains. In addition to transferring latent
factors, transferring rating patterns [Li et al., 2009] becomes
effective in transfer-based approaches. In [Agarwal et al.,
2011], each entity shares a global latent factor generated by a
domain-specific transfer matrix, which means that this factor
can be used in both the source and the target domains directly.

2.3 Cross-System Recommendation (CSR)
Cross-System Recommendation (CSR) emerged later than
CDR. The first work for CSR was proposed in [Zhao et
al., 2013] and improved in [Zhao et al., 2017] by employ-
ing transfer learning techniques to recommend unrated items
across systems. Recently, the EMCDR framework proposed
in [Man et al., 2017] supports both CDR and CSR but can
only utilize common items or common users as a bridge.
Summary: For CDR, while the existing content-based ap-
proaches have difficulties in obtaining more user profiles and
item details [Lops et al., 2011], the existing transfer-based
approaches require a certain level of overlap between two
domains, e.g., common users or items, which restricts them
from fully utilizing historical feedback data to improve rec-
ommendation accuracy. For CSR, the existing approaches ei-
ther directly utilize the latent factors learned from the source
system [Zhao et al., 2017] or take some unreasonable map-
ping strategies [Man et al., 2017], each of which leads to a
low recommendation accuracy.

3 The Proposed DCDCSR Framework
In this section, we first formulate the Cross-Domain and
Cross-System Recommendation problems. Then, we propose
a Deep framework for both Cross-Domain and Cross-System
Recommendations, called DCDCSR, and introduce our DNN
mapping process for mapping latent factors across domains
or systems. We also introduce how to make cross-domain
and cross-system recommendations based on the predicted
ratings.

3.1 Notations and Problem Definition
Let Rs and Rt denote the rating matrices of the source and
target domains or systems, respectively. Let U = {u1, ..., un}
and V = {v1, ..., vm} denote the user and item sets, respec-
tively, where n is the number of users and m is the number of
items. rtij ∈ Rt denotes the rating that ui gives to item vj in
the target domain or system. Given a rating matrix R, after
matrix factorization, R is factorized into two latent matrices
U (K×n) and V (K×m), whereK is the dimension of fac-
tors. U and V represent the low-rank factor matrices for U
and V , respectively. Concretely, U t

i denotes ui’s latent factor
vector in the target domain or system. Based on these no-
tations, the Cross-Domain Recommendation (CDR) problem
can be defined as follows.

Definition 1. Cross-Domain Recommendation (CDR)
Problem: Input: Two observed domains including the rat-
ing matrices Rs and Rt, the user sets Us,U t ⊆ U , and
the item sets Vs,Vt ⊆ V . Output: Recommend the items
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Figure 1: The Structure of our DCDCSR Framework

Vi ⊆ Vt to a target user ui ∈ U t by utilizing both Rs and
Rt.

Likewise, we can formulate the CSR problem by replacing
“domain” with “system” in Definition 1.

3.2 The DCDCSR Framework
Targeting the above CDR and CSR problems, we propose
a deep framework, called DCDCSR, for both CDR and
CSR. This framework can be divided into three phases, i.e.,
Phase 1: MF Modeling, Phase 2: DNN Mapping, and
Phase 3: Cross-Domain and Cross-System Recommenda-
tions. The framework structure is shown in Figure 1.

In Phase 1, we obtain the user and item latent factor
matrices {U s,U t,V s,V t} by using matrix factorization.
In Phase 2, we first generate the benchmark factor ma-
trices {U b,V b} by combining the latent factor matrices
{U s,U t,V s,V t} according to the sparsity degrees of in-
dividual users and items. Then, we train the deep neural net-
work in the Feedforward and the Backpropagation processes
to map the latent factor matrices {U t,V t} to fit the bench-
mark factor matrices {U b,V b}. In Phase 3, based on the
affine factor matrices {Û t, V̂ t} learned from Phase 2, we
predict the users’ ratings on all items in the target domain
or system and recommend matched items to target users. The
three phases in the framework are presented in Algorithm 1
with details explained in the following sections.

3.3 Phase 1: MF Modeling
To study the generalizability of our proposed DCDCSR
framework, in this Phase, we apply two classical rating-
oriented MF models (MMMF and PMF) and a representa-
tive ranking-oriented MF model (BPR) to generate user and
item latent factors for the following mapping process. While

Algorithm 1 The DCDCSR Framework
Require: The rating matrices, user sets, and item sets of the source and target domains

or systems Rs, Rt, Us, Ut, Vs, and Vt.
Ensure: Recommend items Vi ⊆ Vt to a target user ui in the target domain or

system.
Phase 1: MF Modeling

1: Learn {Us,V s} from Rs by using matrix factorization;
2: Learn {Ut,V t} from Rt by using matrix factorization.

Phase 2: DNN Mapping
3: Generate the benchmark factor matrix Ub for CDR or V b for CSR.
4: Normalize {Ut,Ub} for CDR or {V t,V b} for CSR.
5: Train the parameters of the deep neural network by the Feedforward and

Backpropagation processes.
6: Obtain the affine factor matrices Ût or V̂ t.
7: Denormalize Ût or V̂ t.

Phase 3: Cross-Domain Recommendation and Cross-System
Recommendation

8: For CDR, fix Ût and train V̂ t from Rt by using the MF model in Phase 1.
9: For CSR, fix V̂ t and train Ût from Rt by using the MF model in Phase 1.
10: Obtain the predicted ratings R̂t = Ût[V̂ t]> for the target domain or system.
11: return Vi.

the rating-oriented MF models focus on minimizing the error
between observed and predicted ratings, the ranking-oriented
MF model emphasizes to remain the personalized rating rank-
ings on items unchanged between observed and predicted rat-
ings, all of which can bring different biased latent factors
into the following DNN mapping process. Due to space con-
straints, we only briefly introduce them below.

Rating-Oriented Matrix Factorization
Maximum-Margin Matrix Factorization (MMMF) [Srebro et
al., 2005] learns a matrix R̂ to fit the observed rating matrix
R by minimizing a trace norm of R and maximizing the
corresponding predictive margin.
Probabilistic Matrix Factorization (PMF) [Mnih and
Salakhutdinov, 2008] is a probabilistic model with Gaussian
observation noise and its core idea is to maximize the
conditional distribution over the observed ratings.

Ranking-Oriented Matrix Factorization
Bayesian Personalized Ranking model (BPR) [Rendle et al.,
2009] is a generic optimization benchmark for personalized
ranking and its core idea is to minimize the ranking error be-
tween predicted and observed ratings.

3.4 Phase 2: The DNN Mapping
The user and item latent factor matrices {U s,U t,V s,V t}
can be learned by the above-mentioned MF models. Next, we
develop a fully connected deep neural network to represent
the relationship of latent factors between two domains or two
systems, i.e., DNN Mapping.

As mentioned in Section 1, both enforcing {U t,V t} to
be the same as {U s,V s} [Zhao et al., 2017] and mapping
{U s,V s} to fit {U t,V t} [Man et al., 2017] are not effec-
tive and reasonable because the accuracies of user and item
latent factors mainly depend on their sparsity degrees. More
importantly, a common entity in the source domain or system
may be sparser than the one in the target domain or system.
This means the latent factors of this entity in the source do-
main or system are less accurate than the ones in the target
domain and system. Therefore, we generate more reasonable
benchmark factor matrices U b and V b by integrating the la-
tent factors and considering the sparsity degrees of individual
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users and items in both the source and target domains or sys-
tems.

The Generation of Benchmark Factors
First, we extract the common users CU from two different do-
mains for CDR and the common items CV from two different
systems for CSR.

Then, we define the sparsity degrees of common entities
(either users or items) in different domains or systems below.
Definition 2. Sparsity Degrees of Common Entities: For
any common entity ei ∈ CU ∪ CV , given the total numbers of
ratings of ei in the source and target domains or systems, nsi
and nti, the sparsity degrees αs

i and αt
i of the entity ei in the

source and target domains or systems are calculated as

αs
i =

nti
(ns

i + nti)
, αt

i = 1− αs
i . (1)

In order to generate more reasonable benchmark factors
for the following DNN mapping process, both {U s,V s} and
{U t,V t} are nonnegligible factors. Thus, based on the idea
of feature combination introduced in [Burke, 2002], for each
common user ui ∈ CU , the benchmark factor vector CU b

i
can be calculated as follows:

CU b
i = (1− αs

i ) ·U s
i + (1− αt

i) ·U t
i . (2)

According to Eq.(2), the smaller the sparsity degrees αs
i

and αt
i, the more accurate their corresponding latent factor

vectors U s
i and U t

i , and hence the more we take these vectors
into account in generating benchmark factor vector CU b

i .
Likewise, for CSR, we can obtain the benchmark factor

matrix CV b for the common items.
Next, we find out the different users DU t = U t − CU in

the target domain for CDR and the different items DVt =
Vt−CV in the target system for CSR. Later on, we employ the
cosine similarity to measure the similarities between common
entities and different entities. For each user ui ∈ DU t, we
choose the top-k similar users SU i from CU . Similarly, for
each item vi ∈ DVt, we also choose the top-k similar items
SVi from CV . Based on these top-k similar entities, we define
the sparsity degrees of different entities as follows.
Definition 3. Sparsity Degrees of Different Entities: For
any different entity ei ∈ DU t ∪ DVt, given the total number
of ratings of ei in the target domain or system, nsi , and the
average number of ratings of ei’s top-k similar entities in the
source domain or system, sns

i , the sparsity degree βt
i of entity

ei in the target domain or system is calculated as

βt
i =

sns
i

(nt
i + sns

i )
. (3)

Thus, for each different user ui ∈ DU t, the benchmark
factor vector DU b

i can be calculated as
DU b

i = (1− βt
i ) ·U t

i + βt
i · SUi,where

SUi =

∑
uj∈SUi

sim(ui, uj) ·U s
j∑

uj∈SUi

sim(ui, uj)
.

(4)

Similarly, for CSR, we can obtain the benchmark factor
matrix DV b for different items.

Finally, We have U b = CU b ∪DU b and V b = CV b ∪
DV b.

The Mapping Process
Normalization: The benchmark factor matrices {U b,V b}
can be obtained by the above-mentioned feature combina-
tion method. We first normalize the latent factor matrices
{U t,V t} and the benchmark factor matrices {U b,V b} into
the range [−1, 1] by using the mapminmax function.
Mapping Process: As shown in Phase 2 of Figure 1, we em-
ploy a fully connected deep neural network to map U t to fit
U b for CDR and map V t to fit V b for CSR, respectively.
Since the mapping processes for CDR and CSR are similar,
we take CDR as an example to introduce the DNN mapping
process. In general, in order to minimize the mapping loss
for CDR, the process of training mapping parameters can be
changed into the following minimization problem,

min
Θ

`(h(U t; Θ),U b), (5)

where h(·) is a DNN mapping function introduced below and
the loss function `(·) is the square loss.

The detailed training process is divided into two steps, i.e.,
Feedforward and Backpropagation.

- Feedforward: Each latent factor vector is denoted as
a low-dimensional vector, and in each layer, each input
vector is mapped into a hidden vector. Let xj denote the
input vector, Wj denote the weight vector, bj denote the
bias term, and yj denote the output vector for the j-th
hidden layer, j = 1, ..., d. Thus, for U t

i ⊂ U t, we have

x1 = U t
i ,

yj = f(Wj · xj + bj), j = 1, ..., d− 1,

h(U t
i ; Θ) = f(Wd · xd + bd), Θ = {W ; b},

(6)

and we choose the tan-sigmoid function as the activation
function, i.e., f(x) = 2

(1+exp−2x) − 1.

- Backpropagation: According to the chain rule, we re-
cursively update the parameters by computing the gra-
dients of all inputs, parameters, and intermediates as in-
troduced in [Riedmiller and Braun, 1993].

For CSR, the mapping process is similar, and we just replace
{U t,U b} with {V t,V b} as the input for the DNN.
Denormalization: After the DNN mapping, we obtain the
affine factor matrix Û t for CDR and V̂ t for CSR, respec-
tively. Finally, we denormalize the affine factor matrix into
the range of the original latent factor matrix by reversing the
mapminmax function.

3.5 Phase 3: Cross-Domain Recommendation and
Cross-System Recommendation

CDR: The items in the source and target domains are defi-
nitely different. Thus, for CDR, with the DNN mapping, we
can obtain the affine factor matrix Û t. However, original V t

has yet to be improved. To this end, we fix Û t and only up-
date V t by using the MF models to generate V̂ t.
CSR: Similarly, either the users in the source and target sys-
tems are totally different or it is difficult to determine whether
they are the same. Thus, for CSR, we first obtain V̂ t by the
DNN mapping, then fix V̂ t and obtain Û t by using the MF
models.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3714



Tasks Cross-Domain Cross-System
Datasets Douban Netflix MovieLens Douban*
Domains Movie Book Music Movie Movie Movie
#Users 3,982 3,032 1,983 59,688 138,493 500
#Items 90,553 87,848 88,986 17,434 27,278 90,553

#Ratings 2,326,913 239,330 242,013 2,000,000 20,000,263 48,619

Table 1: Experimental datasets

Finally, based on Û t and V̂ t, we can recommend matched
items Vi ⊆ Vt to target user ui ∈ U t for both CDR and CSR.

4 Experiments and Analysis
Extensive experiments are conducted on three real-world
datasets, which aim to answer the following questions:
Q1: How does the dimension K of the latent factors affect
the efficiency of our DCDCSR framework? (in Result 1)
Q2: How does our approach outperform the state-of-the-art
approaches for both Cross-Domain and Cross-System Rec-
ommendations? (in Results 2 & 3)

4.1 Experimental Settings
Datasets: In the experiments, we use three real-world
datasets, namely two public benchmark datasets Netflix
Prize1 and MovieLens 20M2, and a Douban dataset crawled
from the Douban website. Since MovieLens 20M contains
more than 20 million ratings (relatively richer), for the di-
versity of our experiments, we extract a subset from Netflix
Prize, with a smaller scale of ratings (2 million). The details
of these three datasets are shown in Table 1.

For the CDR experiments, we take DoubanMovie as the
source domain corresponding to the target domains Douban-
Book and DoubanMusic. For the CSR experiments, we take
Netflix and MovieLens as the source systems and extract a
subset Douban*Movie from DoubanMovie as the target sys-
tem. The numbers of common items of Netflix-Douban* and
MovieLens-Douban* are 3,700 and 5,712, respectively. For
the Douban dataset, the numbers of common users of Movie-
Music and Movie-Book are 295 and 379, respectively.

In our experiments, we split each dataset into a training
set (80%) with the early ratings and a test set (20%) with the
later ratings. The sequences of ratings and latent factors may
slightly affect the performances of matrix factorization and
mapping respectively. Thus, we report the average results of
5 random times.
Parameter Setting: We set the dimension K of the latent
factor as 10, 20, 50, and 100, respectively. In order to gen-
erate the benchmark factors, we set k = 5 for top-k similar
items or users. For the deep neural network, we set the depth
of the hidden layers d to 5 because when d > 5, the per-
formances of our methods almost do not change. We set the
dimension of the input and output of the DNN to K, and the
number of hidden nodes to 1.5 ×K. We randomly initialize
the parameters as suggested in [Glorot and Bengio, 2010],
i.e., W ∼ U [− 1√

2K
, 1√

2K
]. In addition, we set the batch size

to 32, and the learning rate to 0.005.
Experimental Tasks and Evaluation Metrics: In total, we
design two CDR tasks and two CSR tasks as follows:

1https://www.kaggle.com/netflix-inc/netflix-prize-data
2https://www.kaggle.com/grouplens/movielens-20m-dataset

Task 1: DoubanMovie→ DoubanBook (for CDR),
Task 2: DoubanMovie→ DoubanMusic (for CDR),
Task 3: Netflix→ Douban*Movie (for CSR),
Task 4: MovieLens→ Douban*Movie (for CSR).

We use the Mean Absolute Error (MAE) and the Root
Mean Squared Error (RMSE) as metrics to evaluate recom-
mendation performance, which are commonly used in the lit-
erature for CDR and CSR [Pan et al., 2010; Zhao et al., 2017].
Comparison Methods: In the experiments, we imple-
ment our DCDCSR framework into three methods by ap-
plying MMMF, PMF, and BPR as the MF models, i.e.,
MMMF DCDCSR, PMF DCDCSR, and BPR DCDCSR.

We compare our three DCDCSR methods with the fol-
lowing seven methods implemented from three representative
models:
(1) Bayesian Personalized Ranking model (BPR) [Rendle et
al., 2009]: BPR is a ranking-oriented MF model. We choose
it as a conventional baseline method running on the target do-
main and system, which does not take any Cross-Domain or
Cross-System strategies.
(2) Active transfer learning framework (ATL) [Zhao et al.,
2017]: This is a state-of-the-art framework which utilizes
Transfer Learning (TL). It offers three methods. In our
experiments, we choose the two well-performing methods
MMMF TL and PMF TL.
(3) Embedding and Mapping framework (EMCDR) [Man et
al., 2017]: This is a state-of-the-art framework which uti-
lizes Linear Matrix Translation (LIN) and Multi-Layer Per-
ceptron (MLP). It adopts PMF and BPR as its MF models,
and maps the latent factors across domains or systems with
both LIN and MLP (2× 2). Thus, this framework offers four
methods, namely, MF EMCDR LIN, MF EMCDR MLP,
BPR EMCDR LIN and BPR EMCDR MLP, all of which are
compared in our experiments.

4.2 Performance Comparison and Analysis
All the experimental results are presented in Table 2.

Result 1: Impact of Latent Factor Dimension
In order to answer question Q1, we investigate how the per-
formance of DCDCSR framework is affected by the dimen-
sion K of the latent factors. From Table 2, we can see that
when K = 10 or 20, in general, the performances of DCD-
CSR methods increase (i.e., the MAE and RMSE decrease)
with K. However, when K = 50, there is no significant im-
provement in the performance. Moreover, when K = 100,
the performances have a slight decline. This is because the
number of parameters of the DNN geometrically increases
with K. When K = 100, while the training data remains the
same, the performance of the DNN mapping declines slightly.

Result 2: Cross-Domain Recommendation (Tasks 1 & 2)
In order to answer question Q2, we compare the perfor-
mances of our methods and the seven comparison methods
in the CDR tasks (Tasks 1 & 2). From Table 2, we can
see that, for the CDR tasks, MMMF DCDCSR does not
perform as well as PMF DCDCSR and BPR DCDCSR be-
cause its MF model cannot effectively learn a predicted ma-
trix R̂ by maximizing the predictive trace margin on the tar-
get domains DoubanBook and DoubanMusic. In terms of
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Cross-Domain Recommendation (CDR) Cross-System Recommendation (CSR)
Task 1 Task 2 Task 3 Task 4

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

K=10

BPR 0.7187 (± 0.0011 ) 0.9386 (± 0.0014) 0.7231 (± 0.0012) 0.9416 (± 0.0017) 0.7524 (± 0.0014) 0.9628 (± 0.0016) 0.7524 (± 0.0014) 0.9628 (± 0.0016)
MMMF TL 0.7001 (± 0.0009) 0.9128 (± 0.0007) 0.6978 (± 0.0006) 0.9093 (± 0.0005) 0.7162 (± 0.0012) 0.8951 (± 0.0003) 0.7090 (± 0.0007) 0.8997 (± 0.0003)

PMF TL 0.7022 (± 0.0016) 0.9187 (± 0.0006) 0.7077 (± 0.0008) 0.9097 (± 0.0005) 0.7031 (± 0.0008) 0.8913 (± 0.0012) 0.7120 (± 0.0003) 0.9030 (± 0.0007)
MF EMCDR LIN 0.7065 (± 0.0003) 0.9103 (± 0.0006) 0.7024 (± 0.0012) 0.9163 (± 0.0004) 0.7096 (± 0.0008) 0.9113 (± 0.0007) 0.7340 (± 0.0009) 0.9326 (± 0.0007)
MF EMCDR MLP 0.7011 (± 0.0015) 0.9071 (± 0.0009) 0.7022 (± 0.0008) 0.9045 (± 0.0012) 0.7087 (± 0.0008) 0.9049 (± 0.0005) 0.7045 (± 0.0004) 0.9062 (± 0.0005)
BPR EMCDR LIN 0.7084 (± 0.0012) 0.9111 (± 0.0006) 0.7065 (± 0.0005) 0.9105 (± 0.0013) 0.7038 (± 0.0004) 0.9035 (± 0.0003) 0.7080 (± 0.0005) 0.9043 (± 0.0006)
BPR EMCDR MLP 0.7061 (± 0.0005) 0.9054 (± 0.0005) 0.6987 (± 0.0003) 0.9055 (± 0.0008) 0.6995 (± 0.0005) 0.8994 (± 0.0003) 0.6991 (± 0.0002) 0.8994 (± 0.0005)
MMMF DCDCSR 0.7041 (± 0.0005) 0.8971 (± 0.0004) 0.6992 (± 0.0003) 0.8875 (± 0.0002) 0.6998 (± 0.0003) 0.8865 (± 0.0002) 0.6994 (± 0.0005) 0.8836 (± 0.0004)

PMF DCDCSR 0.7037 (± 0.0005) 0.8965 (± 0.0003) 0.6996 (± 0.0004) 0.8866 (± 0.0002) 0.6838 (± 0.0012) 0.8681 (± 0.0011) 0.6753 (± 0.0006) 0.8659 (± 0.0007)
BPR DCDCSR 0.6943 (± 0.0003) 0.8881 (± 0.0006) 0.6971 (± 0.0008) 0.8872 (± 0.0004) 0.6786 (± 0.0007) 0.8651 (± 0.0008) 0.6854 (± 0.0014) 0.8712 (± 0.0009)

K=20

BPR 0.7146 (± 0.0014) 0.9292 (± 0.0007) 0.7234 (± 0.0011) 0.9352 (± 0.0006) 0.7432 (± 0.0012) 0.9532 (± 0.0014) 0.7432 (± 0.0012) 0.9532 (± 0.0014)
MMMF TL 0.7068 (± 0.0004) 0.9146 (± 0.0008) 0.7109 (± 0.0003) 0.9104 (± 0.0002) 0.6915 (± 0.0002) 0.8922 (± 0.0003) 0.7026 (± 0.0003) 0.8986 (± 0.0002)

PMF TL 0.7017 (± 0.0003) 0.9188 (± 0.0008) 0.7176 (± 0.0004) 0.9244 (± 0.0006) 0.7024 (± 0.0003) 0.8969 (± 0.0002) 0.7057 (± 0.0003) 0.9012 (± 0.0003)
MF EMCDR LIN 0.7015 (± 0.0008) 0.9070 (± 0.0006) 0.7021 (± 0.0006) 0.9076 (± 0.0019) 0.7027 (± 0.0005) 0.9074 (± 0.0013) 0.6977 (± 0.0015) 0.9032 (± 0.0002)
MF EMCDR MLP 0.7021 (± 0.0003) 0.9095 (± 0.0005) 0.7001 (± 0.0003) 0.9095 (± 0.0005) 0.6995 (± 0.0003) 0.8995 (± 0.0003) 0.6993 (± 0.0005) 0.8995 (± 0.0005)
BPR EMCDR LIN 0.7041 (± 0.0009) 0.9174 (± 0.0005) 0.7021 (± 0.0008) 0.9147 (± 0.0012) 0.7060 (± 0.0007) 0.9024 (± 0.0005) 0.6949 (± 0.0006) 0.9012 (± 0.0008)
BPR EMCDR MLP 0.7023 (± 0.0006) 0.9074 (± 0.0006) 0.7021 (± 0.0008) 0.9047 (± 0.0012) 0.6991 (± 0.0005) 0.8993 (± 0.0003) 0.6995 (± 0.0002) 0.8999 (± 0.0002)
MMMF DCDCSR 0.7001 (± 0.0002) 0.8876 (± 0.0004) 0.6987 (± 0.0003) 0.8866 (± 0.0003) 0.7004 (± 0.0003) 0.8875 (± 0.0004) 0.7012 (± 0.0001) 0.8816 (± 0.0004)

PMF DCDCSR 0.7003 (± 0.0004) 0.8872 (± 0.0005) 0.6985 (± 0.0003) 0.8879 (± 0.0004) 0.6880 (± 0.0001) 0.8609 (± 0.0006) 0.6805 (± 0.0004) 0.8654 (± 0.0001)
BPR DCDCSR 0.6941 (± 0.0002) 0.8845 (± 0.0001) 0.6949 (± 0.0004) 0.8867 (± 0.0003) 0.6723 (± 0.0002) 0.8556 (± 0.0008) 0.6780 (± 0.0003) 0.8601 (± 0.0002)

K=50

BPR 0.7115 (± 0.0014) 0.9413 (± 0.0011) 0.7252 (± 0.0005) 0.9464 (± 0.0008) 0.7252 (± 0.0012) 0.9364 (± 0.0018) 0.7252 (± 0.0012) 0.9364 (± 0.0018)
MMMF TL 0.7062 (± 0.0010) 0.9189 (± 0.0009) 0.7143 (± 0.0007) 0.9132 (± 0.0004) 0.6899 (± 0.0002) 0.8851 (± 0.0003) 0.6948 (± 0.0003) 0.8975 (± 0.0004)

PMF TL 0.7022 (± 0.0005) 0.9203 (± 0.0004) 0.7121 (± 0.0012) 0.9287 (± 0.0007) 0.7011 (± 0.0012) 0.8954 (± 0.0010) 0.7021 (± 0.0007) 0.8974 (± 0.0012)
MF EMCDR LIN 0.7051 (± 0.0003) 0.9080 (± 0.0002) 0.7021 (± 0.0008) 0.9082 (± 0.0006) 0.7095 (± 0.0014) 0.9062 (± 0.0005) 0.7012 (± 0.0007) 0.9055 (± 0.0009)
MF EMCDR MLP 0.7065 (± 0.0005) 0.9114 (± 0.0006) 0.7076 (± 0.0004) 0.9086 (± 0.0008) 0.6997 (± 0.0005) 0.8997 (± 0.0004) 0.6993 (± 0.0006) 0.8995 (± 0.0002)
BPR EMCDR LIN 0.7055 (± 0.0007) 0.9086 (± 0.0004) 0.7020 (± 0.0002) 0.9084 (± 0.0003) 0.7013 (± 0.0004) 0.9034 (± 0.0012) 0.6983 (± 0.0005) 0.9016 (± 0.0008)
BPR EMCDR MLP 0.6917 (± 0.0004) 0.8994 (± 0.0005) 0.6987 (± 0.0004) 0.9003 (± 0.0001) 0.7022 (± 0.0011) 0.8981 (± 0.0005) 0.6995 (± 0.0004) 0.9003 (± 0.0001)
MMMF DCDCSR 0.7003 (± 0.0002) 0.8880 (± 0.0003) 0.6988 (± 0.0001) 0.8889 (± 0.0001) 0.6924 (± 0.0007) 0.8856 (± 0.0005) 0.6935 (± 0.0002) 0.8746 (± 0.0003)

PMF DCDCSR 0.6941 (± 0.0001) 0.8871 (± 0.0002) 0.6918 (± 0.0004) 0.8925 (± 0.0002) 0.6820 (± 0.0012) 0.8655 (± 0.0009) 0.6794 (± 0.0014) 0.8636 (± 0.0011)
BPR DCDCSR 0.6954 (± 0.0002) 0.8862 (± 0.0003) 0.6957 (± 0.0002) 0.8874 (± 0.0002) 0.6712 (± 0.0008) 0.8555 (± 0.0007) 0.6595 (± 0.0003) 0.8564 (± 0.0002)

K=100

BPR 0.7199 (± 0.0005) 0.9332 (± 0.0011) 0.7303 (± 0.0005) 0.9396 (± 0.0005) 0.7334 (± 0.0012) 0.9321 (± 0.0004) 0.7334 (± 0.0012) 0.9321 (± 0.0004)
MMMF TL 0.7104 (± 0.0003) 0.9191 (± 0.0002) 0.7124 (± 0.0003) 0.9241 (± 0.0001) 0.6931 (± 0.0002) 0.8772 (± 0.0003) 0.6948 (± 0.0003) 0.8997 (± 0.0002)

PMF TL 0.7089 (± 0.0005) 0.9213 (± 0.0004) 0.7071 (± 0.0008) 0.9207 (± 0.0005) 0.7020 (± 0.0003) 0.8966 (± 0.0002) 0.6995 (± 0.0003) 0.8954 (± 0.0005)
MF EMCDR LIN 0.6994 (± 0.0012) 0.9094 (± 0.0009) 0.7026 (± 0.0009) 0.9097 (± 0.0003) 0.7045 (± 0.0005) 0.9060 (± 0.0003) 0.6961 (± 0.0002) 0.9082 (± 0.0012)
MF EMCDR MLP 0.7014 (± 0.0004) 0.9001 (± 0.0004) 0.7011 (± 0.0004) 0.8991 (± 0.0005) 0.7001 (± 0.0002) 0.9008 (± 0.0008) 0.6998 (± 0.0012) 0.9004 (± 0.0001)
BPR EMCDR LIN 0.6985 (± 0.0004) 0.9098 (± 0.0001) 0.7030 (± 0.0008) 0.9099 (± 0.0003) 0.7077 (± 0.0011) 0.9072 (± 0.0002) 0.7017 (± 0.0006) 0.9099 (± 0.0008)
BPR EMCDR MLP 0.7024 (± 0.0006) 0.8981 (± 0.0003) 0.7089 (± 0.0001) 0.8972 (± 0.0002) 0.6999 (± 0.0005) 0.9000 (± 0.0008) 0.6995 (± 0.0002) 0.9003 (± 0.0006)
MMMF DCDCSR 0.7004 (± 0.0003) 0.8904 (± 0.0002) 0.7005 (± 0.0002) 0.8932 (± 0.0003) 0.6915 (± 0.0004) 0.8798 (± 0.0002) 0.6865 (± 0.0009) 0.8769 (± 0.0004)

PMF DCDCSR 0.6986 (± 0.0001) 0.8895 (± 0.0004) 0.6942 (± 0.0001) 0.8931 (± 0.0001) 0.6852 (± 0.0012) 0.8718 (± 0.0009) 0.6814 (± 0.0003) 0.8665 (± 0.0004)
BPR DCDCSR 0.6971 (± 0.0001) 0.8882 (± 0.0002) 0.6998 (± 0.0003) 0.8904 (± 0.0001) 0.6745 (± 0.0008) 0.8612 (± 0.0011) 0.6678 (± 0.0004) 0.8594 (± 0.0002)

Table 2: The experimental results of CDR and CSR

MAE, PMF DCDCSR performs the best and it outperforms
the seven comparison methods by an average of 1.42%, rang-
ing from 0.94% to 3.57%. Moreover, in terms of RMSE,
BPR DCDCSR performs the best and it outperforms the
seven comparison methods by an average of 2.6%, ranging
from 1.66% to 5.41%. Compared to all the seven compari-
son methods, our methods perform clearly better because our
sparsity guided DNN mapping process can map the latent fac-
tors across domains more accurately.

Result 3: Cross-System Recommendation (Tasks 3 & 4)
In order to answer question Q2, we compare the perfor-
mances of our methods and the seven comparison methods
in the CSR tasks (Tasks 3 & 4). From Table 2, we can see
that, except when K = 10 in Task 4, BPR DCDCSR out-
performs MMMF DCDCSR and PMF DCDCSR because its
MF model can create a large number of triples on the tar-
get system Douban* to train the parameters, which can gen-
erate relatively accurate latent factors. In terms of MAE,
BPR DCDCSR outperforms all the seven comparison meth-
ods by an average of 4.20%, ranging from 3.00% to 9.00%.
Moreover, in terms of RMSE, BPR DCDCSR outperforms
all the seven comparison methods by an average of 4.46%,
ranging from 3.43% to 9.08%. Compared to all the seven
comparison methods, our methods perform clearly better be-
cause our sparsity guided DNN mapping process maps the
latent factors across systems more accurately.

Furthermore, compared to Result 2, in Result 3, our meth-

ods deliver more improvements in terms of MAE and RMSE.
This is because our methods can effectively utilize the ratings
of the source systems MovieLens and Netflix when they are
much richer than those of the target system Douban*.
Summary: According to Result 1, we can answer question
Q1 as follows: In general, the performances of DCDCSR
methods increase with the dimension K of the latent factors
when K ∈ {10, 20}. However, when K ∈ {50, 100}, the
performances have no significant improvement even declines
slightly. According to Results 2 & 3, we can answer ques-
tion Q2 as follows: In general, our DCDCSR methods out-
perform all the comparison methods for both CDR and CSR
because our sparsity guided DNN mapping process can map
latent factors across domains or systems more accurately. In
addition, the comparison of Results 2 & 3 demonstrates that
our methods can effectively utilize more rating data.

5 Conclusions
In this paper, we have proposed a Deep framework for both
CDR and CSR, called DCDCSR, which is based on MF mod-
els and a fully connected Deep Neural Network (DNN). The
DNN is applied to more accurately map the latent factors
across domains or systems. In addition, we utilized the spar-
sity degrees of individual users and items in the source and
target domains or systems to guide the DNN training process,
which can effectively utilize more rating data. The superior
performances of our model have been demonstrated by exten-
sive experiments conducted on three real-world datasets.
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