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Abstract
Roles of nodes in a social network (SN) repre-
sent their functions, responsibilities or behaviors
within the SN. Roles typically evolve over time,
making role analytics a challenging problem. Pre-
vious studies either neglect role transition analysis
or perform role discovery and role transition learn-
ing separately, leading to inefficiencies and lim-
ited transition analysis. We propose a novel dy-
namic non-negative matrix factorization (DyNMF)
approach to simultaneously discover roles and learn
role transitions. DyNMF explicitly models tempo-
ral information by introducing a role transition ma-
trix and clusters nodes in SNs from two views: the
current view and the historical view. The current
view captures structural information from the cur-
rent SN snapshot and the historical view captures
role transitions by looking at roles in past SN snap-
shots. DyNMF efficiently provides more effective
analytics capabilities, regularizing roles by tempo-
ral smoothness of role transitions and reducing un-
certainties and inconsistencies between snapshots.
Experiments on both synthetic and real-world SNs
demonstrate the advantages of DyNMF in discov-
ering and predicting roles and role transitions.

1 Introduction
Roles of nodes in a social network (SN) represent their func-
tions in the network. For example, nodes may function as the
centers of stars, members of cliques or peripheral nodes. An
example is shown in Figure 1(a) where different colors in-
dicate different roles, e.g., yellow nodes are centers of stars.
In contrast with communities, which group together nodes
that are well connected to each other [Fortunato, 2010], roles
group nodes with similar structural properties [Henderson et
al., 2012]. Role discovery is the task of partitioning the nodes
by their structural patterns in the SN [Rossi et al., 2015]. Dis-
covering roles in graphs can shed light on numerous graph
mining tasks such as graph transferring [Henderson et al.,
2012], anomaly detection [Rossi et al., 2013] and commu-
nity detection [Ruan and Parthasarathy, 2014]. Therefore, the
problem of role discovery has attracted an increasing amount
of attention recently.

Existing role discovery methods focus predominantly on
static SNs. For example, non-negative matrix factorization
(NMF) based methods, such as RolX [Henderson et al.,
2012] and GLRD [Gilpin et al., 2013], cluster a node-feature
matrix to discover roles. Stochastic blockmodels employ
Bayesian methods for role discovery [Airoldi et al., 2009;
Fu et al., 2009]. In the real world, however, dynamic SNs are
ubiquitous and structures of the networks will change over
time. State-of-the-art static methods are not easy to extend
to dynamic SNs directly. Few attempts have been made to
discover roles and analyze role transitions in dynamic SNs.
These attempts either neglect role transition analysis or per-
form role discovery and role transition learning separately.
Evolutionary role clustering method [Choobdar et al., 2015]
integrates temporal information into a weighting function for
user similarity and clustering. However, role transitions have
not been analyzed in this work. DBMM [Rossi et al., 2012;
2013] directly uses RolX to discover roles in each SN snap-
shot and then analyzes the role transition based on obtained
node-role matrices. Although role transitions are analyzed in
this model, role discovery and role transition analytics are
two separate steps, i.e., role transition information can be
learned only after the role discovery process, as shown in
Figure 1(b). As we show in this paper, this strategy is inef-
ficient and unstable in practice. These problems also remain
in other studies for dynamic role discovery [Li et al., 2013;
Abnar et al., 2015]. A summary comparison of the state of
the art in role discovery methods can be found in Table 1.

To sum up, there are two issues in previous work: (1) lack
of role transition analysis; and (2) inefficiency in role transi-
tion analysis. To tackle these issues, in this work we propose
a new dynamic non-negative matrix factorization (DyNMF)
approach. DyNMF is a unified model to discover role and
role transition simultaneously in dynamic SNs. An illustra-
tion of DyNMF is shown in Figure 1(c) where we can simul-
taneously obtain the role matrix of snapshot t+1 and the role
transition from snapshot t to t + 1 by using information in
snapshot t+1 and the role matrix of snapshot t. In particular,
DyNMF can solve the two issues effectively and efficiently:
• For the issue of lack of role transition analysis, DyNMF

explicitly introduces a role transition matrix for role
transition, where roles and role transitions are modeled
in a unified framework. Current and historical views are
combined for role analytics. The current view follows
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Methods Unsupervised Dynamic Transition Role Definition

RolX [Henderson et al., 2012]
√

- - role explanation after role discovery
GLRD [Gilpin et al., 2013]

√
- - role explanation after role discovery

DBMM [Rossi et al., 2013]
√ √ √

role explanation after role discovery
LAP [Li et al., 2013] -

√
- predefined roles based on data sets

ERM [Choobdar et al., 2015]
√ √

- predefined roles based on influence and blockage
SSRM [Abnar et al., 2015]

√ √
- predefined roles (e.g., leader, mediator)

DyNMF (our method)
√ √ √

role explanation after role discovery

Table 1: Comparison of role discovery methods.

Role matrix for 
snapshot t

Role matrix for 
snapshot t+1

Role transition matrix

Role transition matrix

n1

n2

n1

n2

Snapshot t Snapshot t+1

(a) Example of roles and role transitions in SNs.

(b) Role detection and role transition analysis in previous studies.

(c) Role detection and role transition analysis in DyNMF.

Role matrix for 
snapshot t+1

Role matrix for 
snapshot t

Figure 1: Examples of roles and role analytics in previous methods
and DyNMF.

RolX to discover roles in the current SN snapshot, while
the historical view learns role transitions using past role
information and the current SN snapshot.
• For the issue of inefficiency in role transition analysis,

DyNMF, as a unified model, supports the simultaneous
discovery of both roles and role transitions. In particular,
it requires only one pass over the data to obtain roles and
role transitions compared with previous studies.

DyNMF is also advantageous in a further aspect: by com-
bining current and historical views, we can regularize the
roles by capturing the temporal smoothness of roles and
also reduce uncertainties and inconsistencies between snap-
shots. Thus, temporal information is better explored com-
pared to [Choobdar et al., 2015] and the discovered roles are
more stable compared to DBMM.

All of these advantages of DyNMF are validated through
extensive experiments on both synthetic and real-world SNs.
The results validate DyNMF is advantageous in discovering
roles, capturing role transitions, and predicting roles.

2 Role Analytics Using DyNMF
We first briefly revisit the original RolX approach to static
role discovery using NMF [Henderson et al., 2012]. We then

introduce DyNMF, our new approach for dynamic role ana-
lytics in dynamic SNs.

2.1 NMF based Role Discovery
Non-negative matrix factorization (NMF) [Lee and Seung,
2001] is a popular model in multivariate analysis and linear
algebra where a matrix is factorized into two matrices, with
the property that all three matrices have no negative elements.
There are several advantages in NMF including ease of im-
plementing inference and ease of interpreting results. Hence,
this model is widely used in text mining.

RolX [Henderson et al., 2012] is the first method to dis-
cover roles using NMF. Given a node-feature matrix Vn×l,
where n and l is the number of nodes and features respec-
tively, the idea of RolX is to generate a rank r approximation
GF ≈ V where r is the number of roles, matrix Gn×r de-
notes the nodes’ membership and matrix Fr×l represents the
association of roles and features. Thus, the problem of role
discovery is to seek two low rank matrices G and F to satisfy:

min
G,F
‖V −GF‖2, s.t. G ≥ 0, F ≥ 0 (1)

where ‖ · ‖ is the Frobenius norm. The non-negativity con-
straint in Eq. (1) makes the representation of the original
data easier to interpret and more semantically meaningful
compared with other factorization methods, e.g., SVD and
PCA [Lee and Seung, 2001]. Using multiplicative update
rules, the solution for Eq. (1) is shown as follows:

G← G ◦ V FT

GFFT
, F ← F ◦ GTV

GTGF
(2)

where ◦ denotes the element-wise product. By introducing
notions of sparsity, diversity and alternativeness, RolX was
extended with more guidance used as constraints in the matrix
factorization for role discovery [Gilpin et al., 2013]. How-
ever, these methods focus only on static SNs and it is non-
trivial to extend them to dynamic SNs directly.

2.2 DyNMF Approach
To solve problems in previous studies on dynamic role dis-
covery, i.e., (1) requiring separate analysis for role transi-
tion after discovering roles [Rossi et al., 2012; 2013] and (2)
no role transition analysis [Abnar et al., 2015; Choobdar et
al., 2015], we propose a novel dynamic non-negative matrix
factorization (DyNMF) approach for role discovery and role
transition analysis simultaneously.

DyNMF factorizes the current node-feature matrix from
two different views: current view and historical view. Fig-
ure 2 is to illustrate the proposed DyNMF approach. The first
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Figure 2: Graphical representation of DyNMF approach which consists of current view and historical view. To learn the node-role matrix
G(t), role transition M (t) and associate matrix F (t) in snapshot t, we take node-feature matrix V (t) in snapshot t and node-role matrix
G(t−1) from snapshot t− 1 as the input.

view is derived from the current SN snapshot same to RolX
introduced in Section 2.1. Formally, the current view based
factorization component for snapshot t is:

min
G(t),F (t)

‖V (t) −G(t)F (t)‖2 (3)

where V (t), G(t) and F (t) are the node-feature, node-role,
and role-feature matrix in snapshot t, respectively.

The second view captures historical information by look-
ing at the roles in the previous SN snapshot. We explicitly
introduce a role transition matrix M to capture the transitions
between previous roles and current roles. Formally, the his-
torical view based factorization component for snapshot t is:

min
F (t),M(t)

‖V (t) −G(t−1)M (t)F (t)‖2 (4)

where V (t) and F (t) have the same meaning in Eq. (3), M (t)

denotes the role transition matrix from snapshot t−1 to t and
G(t−1) denote the node-role matrix from snapshot t− 1.

By combining these two views of factorization compo-
nents, we can make good use of the temporal information to
discover roles and learn role transitions simultaneously. We
formulate the objective function of DyNMF as follows:

min
G(t),F (t),M(t)

L = min
G(t),F (t),M(t)

‖V (t) −G(t)F (t)‖2 (5)

+ ‖V (t) −G(t−1)M (t)F (t)‖2

s.t. G(t) ≥ 0, F (t) ≥ 0,M (t) ≥ 0.

Note that we use only the first-order assumption in Eq. (5).
One can extend it to any higher-order version by setting k >
1, i.e., the roles depend on more than one previous snapshots:

min
G(t),F (t),M

(t)
i ,...,M

(t)
k

‖V (t) −G(t)F (t)‖2 (6)

+ ‖V (t) −G(t−1)M
(t)
1 F (t)‖2 + ...

+ ‖V (t) −G(t−k)M
(t)
k F (t)‖2

s.t. G(t) ≥ 0, F (t) ≥ 0,M
(t)
i ≥ 0, 1 ≤ i ≤ k

where M
(t)
k is the transition matrix to capture the role transi-

tion from snapshot t − k to t. However, higher-order exten-
sion suffers from two limitations: (1) from the computational

perspective it is more complex since there are more param-
eters to learn, i.e., M (t)

k ; (2) from the empirical perspective,
we have observed that higher-order extensions have not im-
proved performance compared to DyNMF (in Section 3.2).
Therefore, unless explicitly stated otherwise, we only focus
on the first-order version, i.e., Eq. (5), in following sections.

The objective function in Eq. (5) (or Eq. (6)) is not convex
for all parameters G(t), F (t) and M (t) simultaneously. We
use the multiplicative update rules to solve this optimization
problem due to its good compromise between speed and ease
of implementation [Lee and Seung, 2001]. The optimization
is done by iterating the three following steps until the conver-
gence (or the number of iteration exceeds a given threshold):
(1) fix matrices F (t) and M (t) to update G(t) (2) fix matri-
ces G(t) and F (t) to update M (t) and (3) fix matrices G(t)

and M (t) to update F (t) (Algorithm 1). Formally, using the
Karush-Kuhn-Tucker (KKT) conditions to solve the objective
function in Eq. (5), we get the update rules:

G(t) ← G(t) ◦ V (t)F (t)T

G(t)F (t)F (t)T
(7)

M (t) ←M (t) ◦ G(t−1)TV (t)F (t)T

G(t−1)TG(t−1)M (t)F (t)F (t)T
(8)

F (t) ← F (t)◦ (9)

G(t)TV (t) +M (t)TG(t−1)TV (t)

G(t)TG(t)F (t) +M (t)TG(t−1)TG(t−1)M (t)F (t)

Algorithm 1 Optimization Algorithm

Input: previous node-role matrix G(t−1), node-feature matrix V (t)

Output: node-role matrix G(t), transition matrix M (t)

Initialize G(t), M (t) and F (t) with random non-negative values
while not converge do

Update G(t) according to Eq. (7)
Update M (t) according to Eq. (8)
Update F (t) according to Eq. (9)

end while

Complexity analysis of DyNMF. For simplicity, given two ma-
trices Mn×r and Nr×l, the computational complexity of the
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multiplication of M and N is O(nrl). The complexity of
Algorithm 1 is O(nrl + nr2 + lr2) and therefore by consid-
ering the number of iteration i the number of snapshots t the
complexity is O(ti(nrl + nr2 + lr2)). The complexity of
feature extraction and model selection, discussed below, can
be referred to [Henderson et al., 2012].

2.3 Model Selection
In this paper, we view role as a latent class and use a model
selection method to determine the number of roles in the dis-
covery process because this method has better generalization
in SNs [Henderson et al., 2012]. We adopt the model selec-
tion method proposed in [Henderson et al., 2012]. It uses
the Minimum Description Length (MDL) [Rissanen, 1978]
to decide on the number of roles. The appropriate number of
roles r is the one that minimizes the description length L, de-
fined as sum of the coding costM and the model description
cost E . M is defined as br(n + l), where b is the bits used
for each element. E is defined as sum of the KL divergence
based errors from current view E1 and historical view E2:

E1 =
∑
t

∑
i,j

(
V

(t)
i,j log

V
(t)
i,j

U
(t)
i,j

− V
(t)
i,j + U

(t)
i,j

)
(10)

E2 =
∑
t

∑
i,j

(V
(t)
i,j log

V
(t)
i,j

W
(t)
i,j

− V
(t)
i,j +W

(t)
i,j ) (11)

where U (t) = G(t)F (t) and W (t) = G(t−1)M (t)F (t). Note
that to calculate E1 and E2, we sum the errors of all snapshots.
We choose the optimal number of roles with the minimal de-
scription length L empirically.

2.4 Feature Extraction
In previous studies on role discovery, a variety of feature
extraction methods have been employed. In [Henderson et
al., 2012], the features consist of local and egonet proper-
ties based on counts of links and the egonet-based proper-
ties generated in a recursive fashion [Henderson et al., 2011].
In [Zhao et al., 2013], five types of network properties, i.e.,
homophily, triadic closure, reachability, embeddedness and
structural holes, have been used as the features to infer the
social roles in the SNs. The structural properties of nodes in
the graph such as clustering coefficient and the locality in-
dex, have been considered as node features in [Choobdar et
al., 2015]. In order to compare our proposed method with the
original NMF-based role discovery method, we use the same
feature extraction method as RolX [Henderson et al., 2012]
and DBMM [Rossi et al., 2013] in this work.

3 Experimental Study
3.1 Settings
To validate the advantages of our proposed DyNMF for role
discovery and role transition learning, we conduct experi-
ments on one synthetic data set and four real-world data sets1.
A summary of these data sets is shown in Table 2.

For the synthetic data set, we generate a series of graph
snapshots with four roles, i.e., star-center nodes, star-edge

1networkrepository.com/index.php

Data set # Nodes # Edges # Roles # Snapshots
Synthetic 100 1729 4 8
Enron 147 1666 8 9
Reality 6809 9467 11 10
Facebook 44416 196414 12 12
Slashdot 51068 130324 11 12

Table 2: Summary of data sets used in the experiments.

Methods NMI
Feature-based methods
in social science

K-means 0.4831
Agglomerative 0.5116

Graph-based methods Spectral 0.6233
MMSB 0.6382

NMF-based methods
in data mining

RolX 0.7220
DyNMF 0.7816

Table 3: Comparison of role discovery performance using NMI. The
highest value is in bold.

nodes, bridges and cliques. In each snapshot, based on a
fixed change rate, part of nodes will change to other roles
randomly. As we have ground-truth labels of roles, we can
use traditional clustering evaluation metrics, e.g., Normalized
Mutual Information (NMI), to verify the experimental results.
To further examine the sensitivity of DyNMF towards role
changes in SNs, the change rate is set to vary from 0% to
25% and the performance will be compared. For the real-
world data sets, there are no ground-truth labels of roles, so
the numbers of roles shown in Table 2 are the “best” numbers
of roles determined by the method introduced in Section 2.3.
To evaluate the performance, goodness-of-fit index [Wasser-
man and Faust, 1994] is applied.

Our experimental study is aimed to analyze the perfor-
mance of DyNMF on three analytics tasks:
• Role discovery analysis. This task aims to analyze the

performance of role discovery using DyNMF quantita-
tively. We first use NMI to evaluate DyNMF on the
synthetic data set. Then we examine the sensitivity of
DyNMF towards role changes. We also use goodness-
of-fit index to measure DyNMF on real-world SNs. Fur-
thermore we compare models with different orders.
• Role transition analysis. The goal of this task is to

verify the effectiveness and stability of the role transi-
tion learned by DyNMF. In particular, we calculate the
traces of the normalized role transition matrices learned
by DyNMF and DBMM respectively for comparison.
• Role prediction analysis. The evaluation of the predic-

tion ability is another way to validate the effectiveness
of the role transition. In this experiment, we propose
two strategies to predict nodes’ roles using the transition
matrices learned by DyNMF.

3.2 Role Discovery Analysis
NMI on Synthetic Data Set To quantitatively evaluate the
performance of DyNMF, we use Normalized Mutual Infor-
mation (NMI) as the measurement on the synthetic data set.
NMI is obtained by dividing the mutual information by the
arithmetic average of the entropy of obtained cluster C and
ground-truth cluster D. We compare three types of methods:
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Methods Average goodness-of-fit index
Enron Reality Facebook Slashdot

K-means 1.7722 1.5950 0.1802 0.0496
Agglomerative 0.8750 0.7875 0.0461 0.0888
Spectral 1.4235 0.9945 0.0864 0.1025
MMSB 1.0425 0.7596 0.1174 0.0950
RolX 1.1873 1.0685 0.1168 0.0314
DyNMF 0.5788 0.6051 0.0393 0.0345

Table 4: Comparison of role discovery performance using goodness-
of-fit index. The lowest error in each data set is in bold.

Method goodness-of-fit index Running time
Enron Reality Enron Reality

first-order 0.5788 0.6051 1.6ms 307.1s
second-order 0.5758 0.6344 1.8ms 370.5s
third-order 0.5818 0.6129 2.3ms 414.5s

Table 5: Goodness-of-fit index and running time vs. orders.

feature-based methods in social science, graph-based meth-
ods and feature-based methods in data mining. Note that all
the feature-based methods use the same features extracted by
the method introduced in Section 2.4 and graph-based meth-
ods use the adjacency matrix from the graph as the input.

The NMI results of different methods are shown in Ta-
ble 3. Note that these results are based on 5% role change
rate. From the results, it can be observed that: (1) DyNMF
outperforms all the other methods. It indicates the advantage
of DyNMF in role discovery by explicitly leveraging the tem-
poral smoothness in role transition. (2) Feature-based meth-
ods in data mining, i.e., RolX and DyNMF, perform better
than other methods. This result demonstrate that latent mod-
els like NMF are better choices in role discovery.

Smoothness Experiment on Synthetic Data Set We in-
vestigate the influence of smoothness in role transition and
sensitivity of DyNMF towards role changes in SNs. The
change rate between two consecutive snapshots is set to vary
from 0% to 25% and the NMIs of DyNMF and RolX are
shown in Figure 3. This result shows the limitation of our
proposed DyNMF in the condition that the assumption of
smoothness in role transition does not hold, i.e., the change
rate becomes larger. However, this limitation does not influ-
ence the performance of DyNMF on real-world data sets for
role discovery and role transition analysis. More results and
discussion are shown in following experiments.

Goodness-of-fit indices on Real-world Data Sets Due to
lack of ground-truth roles in real-world data sets, evalua-
tion of role discovery is challenging in practice. Based on
structural equivalence [Lorrain and White, 1971], researchers
in sociology have applied goodness-of-fit indices to measure
how well the representation of roles and the relations among
these roles fit a given SN [Wasserman and Faust, 1994]. In
goodness-of-fit indices, it is assumed that the output of a role
discovery method is an optimal model, and nodes belong-
ing to the same role are predicted to be perfectly structurally
equivalent. For more details about goodness-of-fit indices,

change rate
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I
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Figure 3: The influence of change rates on DyNMF and RolX.
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Figure 4: Traces of transition matrices using DBMM and DyNMF.

please refer to [Wasserman and Faust, 1994].
To validate the effectiveness of DyNMF, we compare it

with some baselines including K-means, Agglomerative clus-
tering, Spectral clustering and RolX. The comparison of av-
erage goodness-of-fit index over all snapshots is shown in Ta-
ble 4. From the results, it can be observed that DyNMF out-
performs other methods except on Slashdot. This may result
from the extreme sparsity of Slashdot.

Higher-order Comparison on Real-world Data Set We
validate the rationality and effectiveness of the first-order as-
sumption empirically introduced in Eq. (6). We compare
the goodness-of-fit index of DyNMF on Enron and Reality
with second-order and third-order versions. The second-order
DyNMF looks two steps back and uses role information from
snapshot t − 1 and t − 2 to detect roles in snapshot t, i.e.,
k = 2 in Eq. (6). Similarly, in third-order version, k = 3. The
results are shown in Table 5. It can be observed that higher or-
der models have similar performance with first-order model,
i.e., DyNMF, but increase the computational complexity due
to more parameters, i.e., more transition matrices, to learn.

3.3 Role Transition Analysis
We use DBMM as a competitor approach to DyNMF in our
analysis of the role transition stability. Since there is no con-
straint in the transition matrix M in DBMM, in order to com-
pare DyNMF with DBMM, we also follow that work not
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adding constraint to M . One could easily add different types
of constraint in M , e.g., orthogonal. As the values of ele-
ments in transition matrices between different snapshots may
be in different ranges, we normalize each M by row to make
it be a Markov matrix M̃ , i.e., ∀ i,

∑
j M̃ij = 1.

We calculate the traces of the normalized role transition
matrices, i.e., Tr(M̃) =

∑
i M̃ii, to further validate this

statement. Figure 4 shows the traces of role transition matri-
ces using DyNMF and DBMM on the four data sets, respec-
tively. Higher trace value means less change of roles. From
the results, some conclusions can be drawn:

(1) DyNMF can obtain higher trace in almost all the snap-
shots of the SNs. This result demonstrates the stability of the
role transitions obtained by DyNMF. (2) The stability of tran-
sition is more obvious in Enron and Facebook. The reason
may be the characteristics of these SNs. Intuitively, the roles
(positions) of employees in a company, e.g., Enron, rarely
change abruptly and few users in a SN, e.g., Facebook, can
become cyberstars suddenly. Therefore, the changes of roles
are more smooth in these data sets. In addition, the stability
also depends on the temporal granularity of snapshots. (3)
The finding of role stability is consistent with the discovery
in [Revelle et al., 2016] that some roles are persistent in SNs.

3.4 Role Prediction Analysis
We formulate the goal to predict the roles Ĝ(t+1) in t + 1
snapshot using the role membership matrix G(t) in t snap-
shot and the transition matrices M (i) (0 < i ≤ t). Note that
these transition matrices are also normalized. To analyze the
prediction ability, we design two strategies:
• average strategy (AvgDyNMF). This strategy is based on

the global consistency and assumes that the role tran-
sitions are smooth in all the snapshots, i.e., Ĝ(t+1) =
G(t)

∑t
i M

(i)/t.
• previous strategy (PrevDyNMF). This strategy is based

on the local consistency and assumes that the role transi-
tion is smooth between two consecutive snapshots, i.e.,
Ĝ(t+1) = G(t)M (t).

We report the squared Frobenius norm of the prediction error,
i.e., ‖G(t+1) − Ĝ(t+1)‖2. Note that there is no ground-truth
role indicator G(t+1) and therefore we use the node-role ma-
trices detected by RolX in each snapshot as the golden stan-
dard similar to the experiment in [Rossi et al., 2013]. The
prediction performance results are shown in Figure 5. To
validate the effectiveness of DyNMF, we compare its perfor-
mance with DBMM also using these two strategies.

In fact, DBMM learns the transition directly from the dis-
covered roles, i.e., obtaining M (t) by minimizing ‖G(t+1) −
G(t)M (t)‖2F and intuitively calculating G(t)M (t) to predict
Ĝ(t+1) will be a good approximation of G(t+1). Thus, this
role prediction analysis does not aim to beat DBMM but to
demonstrate that by learning role and transition simultane-
ously we can still obtain satisfactory results. Some conclu-
sions can be drawn from these results:

(1) Our proposed DyNMF can effectively predict the roles
based on the learned transition matrices since both the errors
and the trends of curves for DyNMF are similar to those of
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Figure 5: Role prediction using DBMM and DyNMF with average
and previous strategies.

DBMM on all the data sets. (2) The average strategy per-
forms better than the previous strategy on all data sets. It
indicates that the global consistency plays a more important
role in the dynamics of SNs and all nodes exhibit the aver-
age behaviors. This conclusion is consistent with [Rossi et
al., 2013]. (3) The gaps between average strategy and pre-
vious strategy, e.g., snapshot 8 in Enron, snapshot 5 in Re-
ality, snapshot 4 in Facebook and snapshot 10 in Slashdot,
reflect that there are more role changes happened. DyNMF
can effectively handle such changes because in average strat-
egy DyNMF performs equally well as DBMM and in previous
strategy DyNMF outperforms DBMM on all data sets.

4 Conclusions
In this work we proposed DyNMF, a novel dynamic non-
negative matrix factorization approach to discover roles and
role transitions simultaneously in dynamic SNs. Current and
historical views have been combined for the node-feature ma-
trix factorization. The current view is based on structural
information in the current snapshot and the historical view
captures the correlation between previous roles and current
roles using role transition matrices. We conducted compre-
hensive experiments on both synthetic and real-world data
sets to validate the performance of DyNMF in role discov-
ery and role transition learning. We analyzed the experimen-
tal results from three aspects including role discovery, role
transition, and role prediction. The results indicate the effec-
tiveness of our proposed method for the challenging problem
of dynamic role analytics.

For further study, first towards improving performance, it
is interesting to study the impact of constraints on role in-
dicator matrices. A second area for improvement is to uti-
lize faster and more scalable matrix factorization methods. A
third area for future exploration is to exploit other feature ex-
traction methods which can capture temporal information.
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