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Abstract

Point-of-Interest (POI) recommendation, i.e., rec-
ommending unvisited POIs for users, is a funda-
mental problem for location-based social networks.
POI recommendation distinguishes itself from tra-
ditional item recommendation, e.g., movie rec-
ommendation, via geographical influence among
POIs. Existing methods model the geographical
influence between two POIs as the probability or
propensity that the two POIs are co-visited by the
same user given their physical distance. These
methods assume that geographical influence be-
tween POIs is determined by their physical dis-
tance, failing to capture the asymmetry of geo-
graphical influence and the high variation of ge-
ographical influence across POIs. In this paper,
we exploit POI-specific geographical influence to
improve POI recommendation. We model the
geographical influence between two POIs using
three factors: the geo-influence of POI, the geo-
susceptibility of POI, and their physical distance.
Geo-influence captures POI’s capacity at exerting
geographical influence to other POIs, and geo-
susceptibility reflects POI’s propensity of being ge-
ographically influenced by other POIs. Experi-
mental results on two real-world datasets demon-
strate that POI-specific geographical influence sig-
nificantly improves the performance of POI recom-
mendation.

1 Introduction
Location-based social networks (LBSNs), such as Foursquare
and Gowalla, are increasingly popular, bridging the gap be-
tween the physical world and online social networking ser-
vices [Xiao et al., 2010; Sun et al., 2017]. In LBSNs, users
share their locations and content associated with location
information, facilitating the understanding of users’ prefer-
ence and behavior [Bao et al., 2012; Liu and Xiong, 2013;
Gao et al., 2015; Wang et al., 2015a]. Point-of-Interest
(POI) recommendation, i.e., recommending for users unvis-
ited POIs (e.g., restaurants, shopping malls, and theaters) ac-
cording to users’ check-in records, gains great research in-

terest in the last few years [Li et al., 2016; He et al., 2016;
Zhang et al., 2016; Li et al., 2017].

One of the most prominent features for POI recommen-
dation is that locations of POIs and target user are critical
factors for recommendation. For example, in Gowalla and
Foursquare, 90% of users’ consecutive check-ins are within
the distance less than 50km [Liu et al., 2017]. Therefore,
besides modeling users’ preference from the interaction be-
tween users and POIs, as done in traditional item recom-
mendation, researchers devote to exploiting the geographical
proximity or geographical influence among POIs to improve
the performance of POI recommendation [Ye et al., 2011;
Lian et al., 2014; Xie et al., 2016].

Existing methods that exploit geographical influence for
POI recommendation roughly falls into two paradigms. The
first kind of methods leverages the geographical proximity
to improve the learning of users’ preference, assuming that
POIs in close proximity to each other share similar user pref-
erences [Liu et al., 2014; Li et al., 2015; Xie et al., 2016;
Feng et al., 2017]. For these methods, geographical prox-
imity is used as a kind of spatial regularization for users’
preferences. The second kind of methods explicitly mod-
els the geographical influence among POIs as the probabil-
ity or propensity that the two POIs are co-visited by the
same user given their physical distance [Ye et al., 2011;
Cheng et al., 2012; Zhang and Chow, 2013; Lian et al., 2014;
Saleem et al., 2017]. Various forms of functions, e.g., power
law function and Gaussian distribution, are employed to cap-
ture the co-visited probability distribution of POIs with re-
spect to their physical distance. Although the aforemen-
tioned methods gain some success at leveraging geographi-
cal influence, they are incapable to capture the high varia-
tion of geographical influence across POIs. For example, as
shown in Figure 1, 10 randomly-selected POIs in Foursquare
dataset exhibit quite different geographical influence, indicat-
ing that geographical influence cannot be well captured solely
by physical distance and thus geographical influence should
be POI-specific.

In this paper, we exploit POI-specific geographical influ-
ence to improve POI recommendation. We model the POI-
specific geographical influence between two POIs using three
factors: the geo-influence of POI, the geo-susceptibility of
POI, and their physical distance. Geo-influence captures
POI’s capacity to spread its visitors to other POIs, and geo-
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Figure 1: Heat map of the check-in correlation over distance of 10
randomly sampled POIs on the Foursquare dataset. Take 0.5 km as
one bin, and for each bin, we count the average correlation between
each selected POI and POIs falling into the bin. We normalize these
values by the largest one.

susceptibility reflects POI’s propensity of receiving visitors
from other POIs. For example, subway stations generally
have high geo-influence and restaurants usually have high
geo-susceptibility. Here, geo-influence and geo-susceptibility
are two low-dimensional vectors, and the geographical influ-
ence between two POIs is represented by the inner product of
the geo-influence vector of one POI and the geo-susceptibility
vector of the other POI.

Our model for POI-specific geographical influence has two
unique benefits: (1) Geographical influence between POIs is
asymmetric, offering high flexibility to capture the high vari-
ability of geographical influence across POIs. (2) Instead of
directly modeling the POI-specific geographical influence us-
ing a POI interaction matrix, our model represent geograph-
ical influence by two low-dimensional vectors for each POI,
significantly reducing the number of free parameters [Wang
et al., 2015b]. Thus, our model is appropriate for POI recom-
mendation which suffers from severe data sparsity issue.

Finally, we integrate POI-specific geographical influence
into a standard model that captures users’ preference, forming
a new POI recommendation method. We train our model us-
ing users’ check-in records and validate the recommendation
performance by applying the model to “predict” the POIs that
they are likely to visit in the near future. We conduct exten-
sive experiments on two real-world datasets from Foursquare
and Gowalla to illustrate the effectiveness of our model. Ex-
perimental results demonstrate that POI-specific geographi-
cal influence significantly improves the performance of POI
recommendation, outperforming state-of-the-art POI recom-
mendation methods.

2 Related Work
In this section, we give a brief review about POI recom-
mendation. POI recommendation recommends for users un-
visited POIs according to users’ check-in records. Consid-
ering users’ check-ins are implicit feedback, existing meth-
ods model check-ins either by fitting scores converted from
check-in counts [Lian et al., 2014] or by optimizing a pair-
wise ranking of users’ preferences to POIs [Li et al., 2015;
2016; Zhao et al., 2017].

Due to the sparsity of users’ check-ins, only exploiting
check-in counts often suffer from poor performance. Aux-
iliary information can be incorporated to alleviate this sit-
uation. For example, geographical influence is one of the
most important factors and it does not exist on the online

recommendation sense. Existing methods of modeling ge-
ographical influence can be grouped into two categories,
i.e., global methods [Ye et al., 2011; Cheng et al., 2012;
Zhang and Chow, 2013; Lian et al., 2014] and regional meth-
ods [Liu et al., 2014; Li et al., 2015; Xie et al., 2016;
Feng et al., 2017].

Global methods model the relation between POIs’ cooc-
curence and their geographical coordinates. Ye et al. [2011]
and Lian et al. [2014] respectively use a power-law distribu-
tion and a Gaussian distribution to characterize geographi-
cal influence over distance. [Cheng et al., 2012; Zhang and
Chow, 2013] capture the scatter plot of each user’s check-
ins (e.g., the longitude and latitude) by a fixed distribution.
Regional methods consider that POIs in a same geographi-
cal region share similar attraction to users. [Xie et al., 2016;
Feng et al., 2017; Zhao et al., 2017] use representation-based
learning method and restrict POIs in the same region share
similar representations. [Liu et al., 2014; Li et al., 2015] di-
rectly calculate the attraction of a target POI by considering
the attraction of its geographical neighbors. However, global
methods and regional methods provide two coarse grained
representations of geographical influence, which ignore the
POI-specific attributes. We address the problem in this paper.

In addition, many studies have explored other information
to facilitate POI recommendation performance, such as social
relationship [Tang et al., 2013], temporal factors [Yuan et al.,
2013] and category [Zhang and Chow, 2015], etc.

3 Preliminary
We denote with U and I the set of users and the set of POIs
respectively. For a user u and a POI i, we denote with cui
as the number of times that user u visited POI i, and wui is a
scaled version of cui. All POIs that user u visited form his/her
check-in history, denoted as Hu. For each POI i, its location
is denoted as longitude loni and latitude lati. We use dij to
represent the physical distance between POI i and POI j. For
each user u, its preference is denoted as a vector ~tu. For each
POI i, we denote with ~zi its preference vector, and denote
with ~gi and ~hi its geo-influence vector and geo-susceptibility
vector. We summarize the notations in Table 1.

POI recommendation: Given a set of users U with check-
in history H and a set of POIs I with location information
(lon, lat), POI recommendation recommends for each target
user u ∈ U a list of POIs {i|i ∈ I} consisting of POIs that
the target user is potentially interested in but didn’t visit up to
the recommendation.

4 Model and Optimization
In this section, we describe the proposed model for POI rec-
ommendation. The proposed model consists of two parts, one
for POI-specific geographical influence and the other for the
modeling of user/item preference. The major novelty of the
proposed model lies in the POI-specific geographical influ-
ence. For user/item preference, we model each check-in as a
process of selecting one target POI from all candidate POIs,
avoiding the bias caused by directly modeling the number of
visiting frequency as a numeric quantity. Next, we describe
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Variable Description

U, I Set of users, POIs
loni, lati Longitude and latitude of POI i
dij Physical distance between POI i and j
cui Number of times that user u visited POI i
wui A scaled version of cui
Hu User u’s check-in history ({i|cui > 0})
~tu Preference vector of user u
~zi Preference vector of POI i
~gi Geo-influence vector of POI i
~hi Geo-susceptibility vector of POI i

Table 1: Notations in this paper.

Name Form Pre-learning

Power-law function f(x) = a ∗ xb Yes

Power-law function f(x) = a ∗ xb No

Exponential function f(x) = a ∗ xb ∗ ecx No

Hyperbolic function f(x) = a
x−b No

Table 2: Four types of geographical influence function.

the POI-specific geographical influence and the modeling of
user preference.

4.1 POI-Specific Geographical Influence
For a target POI j, we consider the geographical influence
from each POI i in the check-in history Hu of user u. As
illustrated in Figure 1, users prefer to visit neighboring POIs,
and meanwhile different POIs have their own characteristics
that are not well explained by physical distance. To capture
the high variation of geographical influence across POIs, we
model the geographical influence yij from POI i to POI j as

yij = ~gTi
~hj × f(dij). (1)

Here, the vector ~gi captures the geo-influence of POI i, i.e.,
a POI’s capacity to spread its visitors to other POIs; the vec-
tor ~hj reflects the geo-susceptibility of POI j, i.e., a POI’s
propensity of receiving visitors from other POIs; dij is the
physical distance between POI i and POI j.

The rationales behind Eq. (1) are as follows:
• First, f(dij) reflects the probability that two POIs are

visited by the same user given their physical distance
dij . In this paper, we consider four types of functions,
shown in Table 2. In general, f(dij) decreases with
the increase of dij , capturing the phenomenon that a
user prefers to visit geographically neighboring POIs.
Moreover, the parameters of f(dij) could be pre-trained
before training the POI recommendation model, or are
trained together with the training of the POI recommen-
dation model.
• We model the interaction between a visited POI i and

a target POI j as ~gTi ~hj . In this way, geographical influ-
ence between POIs is asymmetric, offering the flexibility

to capture the high variation of geographical influence
across POIs. Moreover, instead of directly modeling the
POI-specific geographical influence using a POI inter-
action matrix, our model represents geographical influ-
ence by two low-dimensional vectors for each POI, sig-
nificantly reducing the number of free parameters. Thus,
our model is appropriate for POI recommendation which
suffers from severe data sparsity issue.

• The POI-specific geographical influence yij essentially
captures the joint effect from both the physical distance
and the intrinsic characteristics of two POIs. For a tar-
get POI j, a geographically neighboring and influencing
POI would result in a high y, while a distant but influ-
encing POI (or a neighboring but less influencing POI)
would result in a relatively smaller y. The influence
score y also depends on the intrinsic characteristics ~h
of the target POI as well. This makes y different for dif-
ferent target POIs, given the same visited POI i. In other
words, the influence score in our model is POI-specific
in terms of the POIs involved.

Given the set Hu of visited POIs of user u and Eq. (1), we
consider the impact from all these visited POIs and model the
overall geographical influence of Hu on a target POI j as

1

|Hu|
∑
i∈Hu

yij =
1

|Hu|
∑
i∈Hu

~gTi
~hj × f(dij). (2)

4.2 Preference Modeling and Recommendation
To infer a user’s preference to a target POI, we consider the
impact from both user preference and geographical influence.
Specifically, we denote user u’s preference to POI j as suj ,
which is given as

suj = ~tTu~zj +
1

|Hu|
∑
i∈Hu

~gTi
~hj × f(dij), (3)

where ~tu and ~zj are used to model the interaction between
user u’s preference and POI j’s preference, following the
practice of matrix factorization method.

Note that users’ check-ins records their visit frequencies at
POIs, which is a kind of implicit user preference. Thus, dif-
ferent from traditional recommendation that directly fit cuj ,
we model each check-in as a process of selecting one target
POI from all candidate POIs. In this way, our model avoids
the bias caused by directly modeling the number of visiting
frequency as a numeric quantity. Specifically, the probability
puj that user u prefers POI j is modeled as

puj =
exp(suj)∑
k∈I exp(suk)

, (4)

where I is the set of POIs and the denominator is a normal-
ization over all POIs for a given user u.

It is observed from Eq. (4) that for a given user u, {puj}
serves as a set of parameters for a multinomial distribution.
Accordingly, the behavior that user u visits POI j is modeled
as the outcome of a decision-making process, where the user
picks one POI j out of all the candidates. Check-ins can be
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then conveniently interpreted as samples drawn from a user’s
preference distribution {puj}.

We maximizes the log-likelihood of observing users’
check-ins:
L =

∑
u∈U

∑
j∈I

cuj log puj =
∑
u∈U

∑
j∈I

cuj

log

(
exp(~tTu~zj +

1
|Hu|

∑
i∈Hu

f(dij)× ~gTi ~hj)∑
k∈I exp(~t

T
u~zk +

1
|Hu|

∑
i∈Hu

f(dik)× ~gTi ~hk)

)
.

(5)
Since the check-in count cuj often shows a very skewed

distribution, the interactions with a few popular POIs may
dominate the log likelihood. We thus replace cuj by a scaled
version wuj to alleviate the problem. Specifically, we adopt
a log-form function [Lian et al., 2014], which is given by
wuj = 1+log(1+cuj×10ε), where ε is a scaling parameter.
For unvisited POIs, we simply set wuj = 0.

Finally, given a user u, we recommend unvisited POIs ac-
cording to the probability puj that the user visits a POI j.
Each user’s recommendation list is composed of the top n
POIs with the highest probability puj among the unvisited
POIs.

4.3 Optimization
We now present the optimization of four types of latent fac-
tors, including ~tu, ~zj , ~gi, ~hj and parameters in the geograph-
ical function.

We adopt the approach of negative sampling proposed in
[Mikolov et al., 2013] to maximize the log likelihood L. For
each visited POI, we sample K negative check-ins according
to some noisy distribution. Specifically, we use the following
objective function to substitute L

L =
∑
u∈U

∑
j∈I

wuj
∑

l∈{j}∪NEG(j)p{
δlj log[σ(sul)] + (1− δlj) log[1− σ(sul)]

}
, (6)

where NEG(j) represents the set of negative POIs relative
to POI j. δlj is an indicator which equals to 1 if l = j and 0
otherwise, and σ(·) is the sigmoid function.

We adopt the stochastic gradient ascent (SGA) algorithm
to optimize the new objective function. In each iteration,
we randomly sample a mini-batch of the pair set by a ratio
ζ to optimize. The sampling probability is proportional to the
scaled check-in count, i.e., wuj . If the pair (u, j) is sampled,
the latent vectors will be updated as follows:

~tu = ~tu + ηwuj
∑

l∈{j}∪NEG(j)

[δlj − σ(sul)]~zl, (7)

~zl = ~zl + ηwuj [Mij − σ(sul)]~tu, (8)

~gi = ~gi + ηwuj
∑

l∈{j}∪NEG(j)

[δlj − σ(sul)]
1

|Hu|
f(dij)~hj

(9)
~hl = ~hl + ηwuj [δlj − σ(sul)]

1

|Hu|
∑
i∈Hu

f(dil)~gi, (10)

where i ∈ Hu, l ∈ j ∪NEG(j), and η is the learning rate.

5 Experiment
5.1 Datasets
We use two real-world datasets from Foursquare [Cho et al.,
2011] and Gowalla [Yuan et al., 2013] for evaluation. We pre-
process check-ins in Foursquare by removing users who have
visited fewer than 10 POIs, and POIs which are visited by
fewer than 10 users. In Gowalla the threshold for elimination
is set as 40. After preprocessing, there are 172,961 check-ins
generated by 6,118 users over 88,193 POIs in the Foursquare
dataset and 115,890 check-ins generated by 1,624 users over
3,585 POIs in the Gowalla dataset. Each POI in both datasets
is associated with its longitude and latitude. Additionally, in
the Foursquare dataset, each POI is marked by 8 categories
and 240 subcategories. For each user u, we sort his/her check-
ins chronologically, and take the early 70% of her check-ins
as training data, the next 15% as validation data, and the last
15% as testing data.

5.2 Evaluation Metrics
We adopt two widely-used metrics for evaluation [Lian et al.,
2014; Liu et al., 2017], namely, precision@n and recall@n,
where n is the number of POIs in the recommendation list.

precision@n =
1

|U |

|U |∑
u=1

|Pnu ∩ Tu|
|Pnu |

, (11)

recall@n =
1

|U |

|U |∑
u=1

|Pnu ∩ Tu|
|Tu|

, (12)

where Pnu is the set of top n POIs in user u’s recommendation
list, and Tu is user u’s ground truth set of POIs. |x| denotes
the cardinality of set x. For each metric, we consider 7 values
(i.e., 1, 2, 3, 5, 10, 15, 20) of n in our experiments.

5.3 Methods in Comparison
For convenience, we use GeoIE as the name of the proposed
POI recommendation method. We evaluate the performance
of GeoIE by comparing it with the following representative
POI recommendation methods:
• UCF+G [Ye et al., 2011]: It uses a power-law function

to capture check-in probability with distance, and then
combines a user-based collaborative filtering method.
• MGM+PFM [Cheng et al., 2012]: It uses a multi-center

Gaussian model to capture a user’s check-in distribution
and then combines a probabilistic factor model.
• GeoMF [Lian et al., 2014]: It extends MF by augment-

ing original users’ and POIs’ latent factors with users’
activity regions and POIs’ influence areas.
• RankGeoFM [Li et al., 2015]: It is a ranking-based

MF model which includes the geographical influence by
considering the attraction of neighboring POIs. Accord-
ing to the recent review for POI recommendation [Liu
et al., 2017], RankGeoFM is one of the top-performing
methods and serves as one of the state-of-the-art POI
recommendation methods.
• Geo-Teaser [Zhao et al., 2017]: It combines a temporal

POI embedding model and a geographically hierarchical
pairwise ranking method.
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Figure 2: Performance of GeoIE in four types of geographical functions on the Foursquare dataset.
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Figure 3: Performance of GeoIE in four types of geographical functions on the Gowalla dataset.

5.4 Experimental Setting
We set the scaling parameter ε as 10. We place a L2 regu-
larization term for each latent vector when performing opti-
mization, and the regularization coefficient is set as 0.02. The
number of dimension of latent vectors is 32. The number of
negative samples K is 10, the sampling ratio ζ as 0.2 and
learning rate as 0.001 in each iteration.

Before comparing our method with baselines, we first eval-
uate the performance of our method with four different ge-
ographical functions, as described in Table 2. The corre-
sponding GeoIE are named as GeoIE-PL-PRE, GeoIE-PL,
GeoIE-EXP, and GeoIE-HB. Figure 2 and Figure 3 show the
performance of four variants of GeoIE on the Foursquare
dataset and the Gowalla dataset respectively. It can be ob-
served in both two figures that exponential function achieves
the best performance, which implies that exponential function
is the best choice for depicting the relationship between geo-
graphical influence and distance on both two datasets used in
this paper. The superiority of the exponential function is at-
tributed to that the exponential funciton has more parameters,
and thus is flexible to capture the high variation of geograph-
ical influence. By comparing GeoIE-PL-PRE and GeoIE-
PL, we find that they achieve similar performance. However,
what needs to be pointed out is that optimizing parameters of
geographical function with other latent factors in our model
would lead to a faster convergence rate.

5.5 Effectiveness of GeoIE
We select GeoIE-EXP as the representative of our method
and compare it with state-of-the-art methods. Performance
comparison on Foursquare dataset and Gowalla dataset are
respectively illustrated in Figure 4 and Figure 5. It is ob-

served that GeoIE-EXP consistently outperforms the compet-
ing baseline methods.

Figure 4 shows MGM+PFM performs better than UCF+G
on Foursquare. On Gowalla, however, UCF+G outperforms
MGM+PFM except when k = 1, as shown in Figure 5. They
assume different geographical functions and achieve good
performance on two datasets respectively. Different from
UCF+G and MGM+PFM which fuse two separate models
by linear interpolation, GeoMF integrates user preference and
geographical influence into one unified model. Latent factors
can be mutually influenced in its parameter learning process,
leading to a better performance. However, GeoMF factorizes
users’ zero check-ins, besides non-zeros check-ins. This may
weaken its performance to a certain extent.

RankGeoMF considers geographical influence of neigh-
boring POIs, and utilizes a ranking-based method to explore
negative samples. It outperforms GeoMF on both datasets.
However, neighboring POIs’ attraction cannot be directly
taken as target POI’s capacity of attracting users. Geo-Teaser
integrates representation learning-based method and a geo-
graphically hierarchical pairwise ranking method by linear
interpolation. We can observe that it is slightly better than
RankGeoMF.

In sum, experimental results clearly demonstrate that POI-
specific geographical influence improves POI recommenda-
tion. The superiority of POI-specific geographical influence
over other methods that exploits geographical method offers
us two key implications: (1) Geographical influence for POI
recommendation is too noisy to be amenable to quantification
using a simple function, e.g., power law function or expo-
nential function; (2) The introduction of two additional vec-
tors to characterize POI-specific geographical influence could
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Figure 4: Performance of our method and state-of-the-arts methods on the Foursquare dataset.
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Figure 5: Performance of our method and state-of-the-arts methods on the Gowalla dataset.
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Figure 6: Geo-influence and geo-susceptibility of POIs with differ-
ent categories on the Foursquare dataset.

gain remarkable improvement, although POI recommenda-
tion suffers from data sparsity issue.

5.6 POI’s Geo-Influence and Geo-Susceptibility
To capture POI-specific geographical influence, we intro-
duce two latent vectors, i.e., the geo-influence and the geo-
susceptibility for each POI. In what follows, we study the at-
tribute strength of different categories of POIs. Due to the
limited space, we just select one subcategory from each cat-
egory for case study. Specifically, we calculate the average
norm of the two types of latent vectors for each subcategory,
and divide these norm by the largest one to scale them be-
tween 0 to 1. We present these norms in Figure 6.

It can be observed that the Bus station has the largest geo-
influence, suggesting its powerful ability to spread users to
other POIs. However, the geo-susceptibility of this influen-
cial subcategory is not the largest. Meanwhile, both of the

two attributes of the Bar and the Art Gallery are in a low po-
sition, which indicates that they are not important places in
users’ travel choices. These observations implies each POI
has specific geo-influence and the geo-susceptibility, which
are also asymmetric. This also verifies our assumption that
it’s necessary to model POI-specific geographical influence.

6 Conclusions
In this paper, we exploit POI-specific geographical influ-
ence to improve POI recommendation. We model the ge-
ographical influence between two POIs using three factors:
the geo-influence of POI, the geo-susceptibility of POI, and
their physical distance. Geo-influence captures POI’s capac-
ity at exerting geographical influence to other POIs, and geo-
susceptibility reflects POI’s propensity of being geographi-
cally influenced by other POIs. Our model naturally capture
the asymmetric geographical influence between POIs, offer-
ing high flexibility to capture the high variation of geograph-
ical influence across POIs. As future work, it is promising to
directly learn a manifold for geographical influence from the
interaction between POIs.
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