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Abstract

Person re-identification (REID) is an important task
in video surveillance and forensics applications.
Most of previous approaches are based on a key
assumption that all person images have uniform
and sufficiently high resolutions. Actually, vari-
ous low-resolutions and scale mismatching always
exist in open world REID. We name this kind of
problem as Scale-Adaptive Low Resolution Per-
son Re-identification (SALR-REID). The most in-
tuitive way to address this problem is to increase
various low-resolutions (not only low, but also with
different scales) to a uniform high-resolution. SR-
GAN is one of the most competitive image super-
resolution deep networks, designed with a fixed
upscaling factor. However, it is still not suit-
able for SALR-REID task, which requires a net-
work not only synthesizing high-resolution im-
ages with different upscaling factors, but also ex-
tracting discriminative image feature for judging
person’s identity. (1) To promote the ability of
scale-adaptive upscaling, we cascade multiple SR-
GANs in series. (2) To supplement the ability
of image feature representation, we plug-in a re-
identification network. With a unified formula-
tion, a Cascaded Super-Resolution GAN (CSR-
GAN) framework is proposed. Extensive evalu-
ations on two simulated datasets and one public
dataset demonstrate the advantages of our method
over related state-of-the-art methods.

1 Introduction
Person re-identification (REID) is the task of visually
matching images of the same person, extracted from non-
overlapping camera views in open surveillance spaces [Wang
et al., 2016a]. Since biometric cues, such as face and gait,
are usually unreliable or even infeasible in the uncontrolled
surveillance environment, the appearance of individuals is
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Figure 1: Illustration of person image resolutions with different
scales in the open-space person re-identification. Three images of
the same person are captured in three different camera views in the
3DPES dataset. The resolutions of these images are significantly dif-
ferent. The person image captured by camera b is relatively HR, but
the person images captured by camera c and camera f are relatively
LR. Meanwhile, the resolutions of any pair of these images are dif-
ferent. Intuitively, the LR gallery images should be enlarged to HR,
and then the re-identification process carries on. Due to two differ-
ent LRs, super-resolution (SR) modules with two upscaling factors
are needed.

mainly exploited [Ye et al., 2017; 2016]. In order to over-
come the variations in illumination, occlusion and alignment,
existing methods typically address the REID task by design-
ing feature representation [Liao et al., 2015; An et al., 2015;
Zhang et al., 2016; Zhao et al., 2017] or learning distance
metrics [Chen et al., 2015; Wang et al., 2017b; 2017a;
Yu et al., 2017].

Generally, without regard to various low-resolutions and
scale mismatching, most of these methods make an assump-
tion that all person images have sufficiently high resolutions
(HR), and they resize the images to a uniform scale before
re-identification. However, it is common that the resolution
of surveillance person image varies a lot, due to variations in
the person-camera distance and camera deployment settings.
Taking 3DPES dataset [Baltieri et al., 2011] as an example,
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Figure 1 shows a usual situation in open space REID, that per-
son images are not only low resolution (LR), but also hold-
ing different scales. This gives rise to a more challenging
task that given a HR probe image, the algorithm is expected
to match against LR gallery images with different scales. It
requires to address cross-resolution matching since LR im-
ages contain much less information with discriminative ap-
pearance details largely lost in the image acquisition process.
We name this kind of problem as Scale-Adaptive Low Reso-
lution Person Re-identification (SALR-REID).

Actually, a couple of works [Jing et al., 2015; Li et al.,
2015; Jiao et al., 2018] have paid attention to LR and reso-
lution mismatching problem. They set the probe image as a
LR one, while all the gallery images are typically HR with
a uniform scale. To address the mismatching of two reso-
lutions (LR and HR), they constructed a cross-resolution re-
lationship by a large number of training samples. However,
their assumption is in a relatively ideal condition. In practice,
gallery images are always not only LR, but also holding dif-
ferent scales. They have neglected the variation of LR scales.
Multiple resolution scales require more training samples to
construct relationships, and it cannot be guaranteed that those
relationships work perfectly in matching. The common weak-
ness makes these works inappropriate to address the SALR-
REID problem. So far, to our best knowledge, only one pi-
oneer research [Wang et al., 2016b] investigated the SALR-
REID problem. Instead of recovering the missing discrimina-
tive appearance information of LR images, the method per-
formed multiple resolution representation transformation in a
pre-defined feature space. Hence, the pioneer research does
not inherently solve the information mis-matching challenge,
whose effectiveness still needs promotion.

Intuitively, we employ super-resolution (SR) techniques
to alleviate the resolution mismatch problem. During the
process of super-resolving, SR methods [Dong et al., 2016;
Johnson et al., 2016; Jiang et al., 2017] supplement and re-
cover the missing appearance information (Figure 1), so that
LR gallery images and the HR probe image can be treated
equally. The generative adversarial network (GAN) for image
SR [Ledig et al., 2016], i.e., SR-GAN, offers an effective so-
lution to image SR, and is also one of the most competitive SR
approaches. Nevertheless, (1) a fixed SR module is not suit-
able for the scale-adaptive LR scenario. SR-GAN can only
increase the resolution with a fixed upscaling factor, while the
SALR-REID problem requires to synthesize HR images with
multiple upscaling factors. (2) Generic-purpose SR methods
are designed to improve image visual sense rather than the
re-identification performance. The ability of SR-GAN to cap-
ture inter-image similarity is limited as it is defined based on
perceptually intra-image differences. A direct connection be-
tween super resolution and re-identification may suffer from
suboptimal compatibility.

In this paper, we address the SALR-REID problem by ex-
ploring re-identification and multiple cascaded SR-GANs in
series with a unified framework. We name the new frame-
work as Cascaded Super-Resolution GAN (CSR-GAN). The
contributions are as follows: (1) We cascade multiple SR-
GANs in series, which is capable of super-resolving LR im-
ages with scale-adaptive upscaling. As far as we know,

we are the first to propose a cascaded super-resolution deep
network for scale-adaptive low resolutions. (2) The pro-
posed CSR-GAN improves the integration compatibility be-
tween scale-adaptive super-resolution and re-identification,
and consequently enhances the similarity of LR-HR pair dur-
ing SR process. (3) For LR-HR intra-image pair, we design a
common-human loss to make the super-resolved image look
more like human. For LR-HR inter-image pair, we introduce
the unique-human loss to make person image representation
discriminative. Together with generator and discriminator
losses, a joint loss function is optimized in a hybrid network
architecture. Experimental results on SALR-REID datasets
show the superiority of our CSR-GAN approach.

2 Revisit SR-GAN
As we know, GAN [Goodfellow et al., 2014] provides a pow-
erful framework for generating plausible-looking natural im-
ages with high perceptual quality. SR-GAN [Ledig et al.,
2016] proposes a very deep ResNet [He et al., 2016] archi-
tecture using the concept of GAN for photo-realistic image
super-resolution. It sets a new state-of-the-art for image SR
with a fixed upscaling factor (4×). Following [Goodfellow et
al., 2014], it tries to solve the adversarial min-max problem
as Eq. 1. The general idea behind this formulation is that it
allows one to train a generator model GθG with the goal of
fooling a differentiable discriminator DθD that is trained to
distinguish super-resolved images from real images [Ledig et
al., 2016].

min
θG

max
θD

EÎ∼ptrain(Î)
[logDθD (Î)]+

EI∼pG(I)[log(1−DθD (GθG(I)))].
(1)

In this formulation, Î stands for the real HR image, while
I stands for the LR image to be super-resolved 1. The gen-
erator function GθG is parametrized by θG, and the discrim-
inator function DθD is parametrized by θD. Generally, the
target of previous supervised SR algorithms is commonly
the minimization of the mean squared error (MSE) [Wang
and Bovik, 2009] between the recovered HR image and the
ground truth. Besides the MSE loss, SR-GAN also defines
a perceptual loss using high-level feature maps of the VGG
network [Simonyan and Zisserman, 2014], which makes the
super-resolved image and HR reference image perceptually
similar. However, to address the SALR-REID task, two more
functionalities need to be annexed.

• To promote the ability of scale-adaptive upscaling, it
requires combining multiple SR-GANs, so that scale-
adaptive LR images can be enlarged to a uniform HR.

• To supplement the ability of discriminative person rep-
resentation extracting, it requires plugging in the re-
identification network, so that identity appearance infor-
mation can be captured during SR.

1In this paper, if image Î has a hat, it means that the image is
a real image. Otherwise, image I without a hat means that it is a
super-resolved image.
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Figure 2: The architecture of of the proposed CSR-GAN. The CSR-GAN consists of three cascaded SR-GANs, and a re-identification net-
work. Each SR-GAN includes a generator network, which enlarges the input image with a double upscaling factor (2×), and a corresponding
discriminator network. The pixel-wise and adversarial loss are designed to make the output image of generator network to be a real image.
The VGG loss is designed for perceptual similarity. These three kinds of losses form the generator network losses. The discriminator losses
are designed to distinguish super-resolved images from real images. At the last SR-GAN, a common-human loss is designed by the output
of VGG network, which tries to make the super-resolved image look more like human. Finally, a unique-human loss is for the plugged-in re-
identification network, which makes the extracted features of the same person similar. (For simplicity, we do not draw the details in SR-GAN
1 and SR-GAN 2.)

3 Our Approach
We propose the Cascaded Super-Resolution GAN (CSR-
GAN) framework in a unified architecture. Figure 2 shows
the architecture. Suppose that all person images have the
same weight-to-height ratio. W and H respectively denote
the weight and height of the original HR image. To make
the architecture easy to follow, we use a three-cascaded SR-
GANs to enlarge the LR person image, whose resolution is
lower than W

2 ∗
W
2 . Each generator network can enlarge the

input image with a double upscaling factor. That is to say,
W
8 ∗

W
8 , W4 ∗

W
4 and W

2 ∗
W
2 are respectively image shapes

input to three generator networks. Here, we denote Ik as the
input image of each generator Gk, and Ik+1 = GθGk

(Ik)

as the output image of the generator, where k ∈ [0, 2] is the
scale index of input image and the ID of sub SR-GAN. Îk+1

denotes the real image, which has the same scale as the super-
resolved imageGθGk

(Ik) or Ik+1. We set rk standing for the
scale ratio of LR image to HR image, then the resolution of
image Ik is described as rkH ∗ rkW . The scale ratios are
respectively r0 = 1/8, r1 = 1/4, r2 = 1/2, and r3 = 1.

Our goal is not only to train generator functions {Gk} that
estimate the corresponding HR counterpart Îk+1 for a given
LR input image Ik, but also to train re-identification func-
tion F that extracts feature for the final HR image. Follow-
ing [Ledig et al., 2016], we train the generator networks with
pixel-wise loss, VGG loss, and adversarial loss, which to-
gether form the generator network loss lSRGen. For super reso-
lution, we also train the discriminator networks with loss lSRDis
from the perspectives of game theory, and boost the genera-
tor networks indirectly. In addition, a common-human loss
lCom is designed to make person image looks better. The
re-identification network is trained with unique-human loss
lUni. Finally, all losses are combined together as Eq. 2.

ltotal = lSRGen + lSRDis + lCom + lUni. (2)

For simplify, we balance the weights of these losses
equally. The details of losses are described in the following
subsections.

3.1 Generator Network Loss
The generator network loss is critical for the performance of
our generator network. In general, super-resolution is com-
monly modeled based on the pixel-wise MSE [Dong et al.,
2016]. In particular, we introduce the adversarial loss for
each generator network k, and exploit the VGG loss for per-
ceptual similarity as [Ledig et al., 2016] did. The pixel-wise
loss lSRk

MSE , the VGG loss lSRk

V GG, and the adversarial loss lSRk

Adv
are demonstrated as follows.

Pixel-wise loss. The pixel-wise MSE loss is calculated as:

lSRk

MSE =
1

r2k+1WH

rk+1W∑
x=1

rk+1H∑
y=1

(Îk+1
x,y −GθGk

(Ik)x,y)
2.

(3)
This is the most widely used optimization target for image
super-resolution on which many state-of-the-art approaches
rely [Shi et al., 2016].

VGG loss. Furthermore, a VGG loss based on the ReLU
activation layers of the pre-trained 19 layer VGG network, de-
scribed in [Simonyan and Zisserman, 2014], is exploited for
perceptual similarity, measuring on higher semantical level
which a naive MSE loss is unable to handle. It should be
mentioned that the VGG losses are adopted in all the VGG
networks, who share common parameters. We denote φi,j as
the feature map obtained by the j-th convolution before the
i-th maxpooling layer within the VGG19 network. The VGG
loss is calculated as the Euclidean distance between the fea-
ture representations of a super-resolved image GθGk

(Ik) and
its corresponding HR image Îk+1. Here, Wi,j and Hi,j de-
scribe the dimensions of the respective feature maps with the
VGG network.
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lSRk

V GG =
1

Wi,jHi,j

Wi,j∑
x=1

Hi,j∑
y=1

(φi,j(Î
k+1)x,y−φi,j(GθGk

(Ik))x,y)
2.

(4)
Adversarial loss. Besides the losses for image content de-

scribed above, we add a generative component. Along with
the losses for deceiving the discriminator networks, the ad-
versarial loss is defined based on the probabilities of the dis-
criminator over all training samples. It is denoted as:

lSRk

Adv = − logDθDk
(GθGk

(Ik)), (5)

where DθDk
(GθGk

(Ik)) is the probability that the super-
resolved image GθGk

(Ik) is a real image. For better gradi-
ent behavior we minimize − logDθDk

(GθGk
(Ik)) instead of

log[1−DθDk
(GθGk

(Ik))] [Goodfellow et al., 2014].
At last, we formulate the generator network loss lSRGen as

the weighted sum of afore-mentioned three kinds of losses 2:

lSRGen =
2∑
k=0

lSRk

MSE + α
2∑
k=0

lSRk

V GG + β
2∑
k=0

lSRk

Adv , (6)

where α and β respectively denote the weights for the VGG
loss and the adversarial loss.

3.2 Discriminator Network Loss
The discriminator network loss is defined based on the prob-
abilities of the discriminator over all training images and
super-resolved images. The discriminator should distinguish
super-resolved images from real ones. Hence, the loss of Dk

needs to be minimized when judging a real image Îk+1 to be
positive or a super-resolved image GθGk

(Ik) to be negative.
Then, the total loss is calculated as:

lSRDis = −
2∑
k=0

logDθDk
(Îk+1) +

2∑
k=0

logDθDk
(GθGk

(Ik)),

(7)
where DθDk

(GθGk
(Ik)) is the probability that the super-

resolved image GθGk
(Ik) is a real image, and DθDk

(Îk+1)

is the probability that the original image Îk+1 is a real image.
For better gradient behavior we minimize − logDθDk

(Îk+1)

instead of log[1−DθDk
(Îk+1)] [Goodfellow et al., 2014].

3.3 Common-human Loss
Generally, the output of VGG network [Simonyan and Zisser-
man, 2014] is the category of input image. Suppose that the
VGG network is able to judge each real image Î3 as a human
category. To make the super-resolved I3 look like a human,
we design a common-human loss to constrain its category re-
sults to be the same as that of Î3. The common-human loss is

2In this paper, if no otherwise specified, following [Ledig et al.,
2016], we set α = 2 ∗ 10−6 and β = 1 ∗ 10−3.
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Figure 3: The evaluation process. The re-identification network is
used to extracted feature. Different from the HR probe image, scale-
adaptive LR gallery images are assigned to different stages of the
cascaded generator network, based on their resolution scale ratio.
After the cascaded generator networks, all gallery images are en-
larged to the uniform HR.

calculated as the Euclidean distance between category results
of Î3 and I3. It is defined as below:

lCom =
1

1000

1000∑
c=1

(ψc(Î
3)− ψc(I3))2, (8)

where c denotes the dimension index, and ψc is possibility
that an image is assigned to the c-th category. The total num-
ber of categories is 1000.

3.4 Unique-human Loss
Given an original image Î3 or an super-resolved image I3, the
output of re-identification network is z = [z1, z2, ..., zM ] ∈
RM , where M is the number of person IDs. So the predicted
probability of each ID label m is calculated as: p(m|I3) =

exp(zm)∑M
i=1 exp(zm)

. To simplify the equation, we omit the correla-

tion between m and I3. The cross entropy of identification
loss is formulated as below:

lUni = −
M∑
m=1

log(p(m))q(m). (9)

Let y be the ground-truth ID label, so that q(y) = 1, and
q(m) = 0 for all m 6= y. In this case, minimizing the iden-
tification loss is equivalent to maximizing the possibility of
being assigned to the ground-truth class.

4 Implementation Details
The training process includes the following three steps: (1)
We first initialize the re-identification network separately. We
choose ResNet-50 [He et al., 2016] as the base. The ResNet-
50 is pre-trained with ImageNet [Russakovsky et al., 2015],
and then fine-tuned with the Market-1501 [Zheng et al., 2015]
dataset. (2) The cascaded generator networks are initialized
with MSE losses. (3) The whole network is trained simulta-
neously with all the losses. For each sub SR-GAN, the set-
tings of strides and feature maps are the same as [Ledig et
al., 2016].

During the evaluation process (as Figure 3 shows), a reso-
lution detection module is used to assign the LR gallery im-
ages to different stages of cascaded generator networks. The
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(a) SALR-VIPeR (b) SALR-PRID (c) CAVIAR

Figure 4: Example image pairs from three datasets. Each column
shows two images of the same identity from two different cameras
with different resolutions, where images in the bottom row are LR.
(a) the SALR-VIPeR dataset; (b) the SALR-PRID dataset; (c) the
CAVIAR dataset.

assignment depends on the scale ratio r of LR to HR. When
a LR image is assigned to the generator network k, it will
be resized to the input shape of corresponding generator net-
work rkH ∗ rkW . After cascaded SR, the super-resolved
gallery images and the HR probe image are put into the re-
identification network to extract features. Finally, features
are used for person re-identification.

5 Experiments
5.1 Experimental Datasets and Settings
Following [Wang et al., 2016b], the evaluation is run on two
simulated person datasets SALR-VIPeR and SALR-PRID,
which are based on the VIPeR dataset [Gray et al., 2007] and
the PRID450S dataset [Roth et al., 2014] respectively, and
the public CAVIAR dataset [Cheng et al., 2011].

SALR-VIPeR. The widely used VIPeR dataset [Gray et
al., 2007] contains 1264 outdoor images obtained from two
views of 632 persons. All images of individuals are normal-
ized to a size of 128 ∗ 48 pixels. To construct the SALR-
VIPeR dataset, we set images from camera A as the HR
probe set, whose resolution remains unchanged. While im-
ages from camera B are set as the LR gallery set, which are
down-sampled randomly to different scales. The scale ratios
range from 0.1 to 0.25. Some example images are shown in
Figure 4(a).

SALR-PRID. The PRID450S [Roth et al., 2014] is a chal-
lenge dataset, particularly there is camera characteristics vari-
ation. It contains 450 single shot image pairs captured over
two spatially disjoint camera views. All images are normal-
ized to 168 ∗ 80 pixels. We construct SALR-PRID dataset
following the way of constructing SALR-VIPeR. Some ex-
ample images are shown in Figure 4(b).

CAVIAR. The CAVIAR dataset [Cheng et al., 2011] con-
tains images of 72 individuals captured from 2 cameras in
a shopping mall. This dataset is suitable for testing SALR-
REID, as the resolution of images captured from the sec-
ond camera is much lower than that in the first camera (Fig-
ure 4(c)). Among the 72 people, 18 were only captured in a
single camera view with no low resolution images, and they
were thus removed. The remaining persons were used in our
experiments, where a HR image of each person is selected to
form the probe set, and a LR image of each person is selected
to form the gallery set.

1 2 3

4 5 6

7 8 9

10 11 12

Figure 5: Some subjective results for scale-adaptive SR. We show 12
groups of results for 12 LR images. Image 1-6 are selected from the
SALR-VIPeR dataset, and image 7-12 are selected from the SALR-
PRID dataset. For each group, from left to right, four images are
respectively a LR image, a SR image by bicubic, a SR image by
CSR-GAN without common-human loss, and a SR image by CSR-
GAN with common-human loss.

Settings. Following [Wang et al., 2016b], all datasets
are randomly divided into training set and testing set. Per-
sons for training and testing are respectively 532 and 100
(SALR-VIPeR), 400 and 50 (SALR-PRID), and 44 and 10
(CAVIAR). The probe set consists of all HR images per per-
son. LR images are randomly downsampled and selected to
construct the gallery set. Cumulative Matching Characteristic
(CMC) curves [Wang et al., 2007] were used to calculate the
average performance, and the value of CMC@k indicates the
percentage of the real match ranked in the top k.

5.2 Evaluation on Scale-Adaptive SR
In this subsection, we prove that the proposed method is ap-
plicable for scale-adaptive SR. In Figure 5, we show some
subjective results on scale-adaptive LR images. The SR re-
sults are generated respectively by bicubic, CSR-GAN with-
out common-human loss, and CSR-GAN with common-
human loss. Here, we choose images from SALR-VIPeR and
SALR-PRID as examples. From the figure, we can find that
CSR-GAN is effective for scale-adaptive SR, and the effec-
tiveness varies with different LR scales. We can also find that
the generated result by CSR-GAN with common-human loss
looks better than without common-human loss. For exam-
ple, for image 2, the SR image without common-human loss
drops out its human shape a little. For the SR images 7, 10,
11 and 12, there are less noises in the image background with
common-human loss, where we guess that CSR-GAN pays
more attention to the human body and additional informa-
tion for the background are smoothed. Hence, the common-
human loss is every useful for person image SR.

Meanwhile, we performed a Mean Opinion Score (MOS)
test to quantify the ability of scale-adaptive super resolution.
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(a) SALR-VIPeR
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(b) SALR-PRID
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(c) CAVIAR
Figure 6: Experimental results on three datasets for SALR-REID problem. For each dataset, we compare the proposed method (CSR-GAN)
with a popular person re-identification method (LOMO), a basic person image descriptor method (Color) and the state-of-the-art method for
SALR-REID problem (SDF). (a) the SALR-VIPeR dataset; (b) the SALR-PRID dataset; (c) the CAVIAR dataset.

Dataset r nearest bicubic CSR-GAN
SALR-VIPeR (0, 1

8 ] 1.05 1.12 1.98
( 18 ,

1
4 ] 2.14 2.25 3.78

SALR-PRID (0, 1
8 ] 1.05 1.20 2.05

( 18 ,
1
4 ] 2.30 2.55 3.83

CAVIAR ( 14 ,
1
2 ] 3.10 3.25 4.20

Table 1: The MOS test results on the testing images of three different
datasets. We compared the proposed CSR-GAN method with the
nearest and the bicubic methods.

Specifically, we asked 5 raters to assign an integral score
from 1 (bad quality) to 5 (excellent quality) to the super-
resolved images. Each rater rated all the testing images of
three datasets. We found no significant differences between
the ratings of the identical images. As images with different
resolution scales will go to different process of CSR-GAN,
all the images are divided into different groups depending on
their scale ratio. The experimental results of the conducted
MOS tests are summarized in Table 1. As can be seen, the
proposed method outperforms the general SR methods (near-
est and bicubic) in all the scale ratio groups. It should be
mentioned that we did not compared with the other super-
vised learning SR methods, because most of those methods
just enlarge the image with a fixed upscaling factor.

5.3 Evaluation on SALR-REID Datasets
In this subsection, we prove that the proposed method is suit-
able for the SALR-REID problem. We evaluated the effec-
tiveness of the proposed method by comparing with one of the
most popular person re-identification method LOMO [Liao
et al., 2015], a basic person image descriptor method with
RGB color, and the state-of-the-art method SDF [Wang et al.,
2016b], on the SALR-VIPeR, SALR-PRID and the CAVIAR
datasets, respectively. In particular, when we used LOMO
and Color to extract features, all the scale-adaptive LR gallery
images were resized to the uniform HR with bicubic. The
obtained results are shown in Figure 6. As can be seen,
the general person re-identification method LOMO is almost
no effect, even performs worse than the basic color descrip-
tor. Consequently, general descriptors are not suitable for the
SALR-REID problem. Meanwhile, we can also find that our
approach has improvements on all the three datasets, com-

rank@1 rank@5 rank@10 rank@20
JUDEA 26.0 55.1 69.2 82.3
SLD2L 20.3 44.0 62.0 78.2
SDF 9.52 38.1 52.4 68.0
SING 33.5 57.0 66.5 76.6
CSR-GAN 37.2 62.3 71.6 83.7

Table 2: Comparing with state-of-the-art LR person re-identification
methods on MLR-VIPER. The 1st/2nd best results are indicated in
red/blue.

pared with LOMO, Color and SDF. The promotions are sig-
nificant on the SALR-VIPeR and SALR-PRID dataset, where
the scale-adaptive LR problem is serious.

5.4 Comparison with State-of-the-art LR Methods
Recently, some approaches have paid attention to LR prob-
lem, and proposed algorithms to address the resolution
mismatching problem, such as JUDEA [Li et al., 2015],
SLD2L [Jing et al., 2015] and SING [Jiao et al., 2018]. These
methods assume that all gallery images are HR, and probe
images are LR with a fixed down-sampling factor. For ex-
ample, MLR-VIPeR [Jiao et al., 2018] was constructed by
down-sampling images with a ratio picked from { 12 ,

1
3 ,

1
4}.

To evaluate the ability of addressing resolution mismatching,
we compared our method with these methods on the MLR-
VIPeR dataset. Table 2 shows the results. From the table,
we can see that although our method is proposed for SALR-
REID problem, it outperforms related state-of-the-art meth-
ods on fixed the resolution mismatching problem with a big
margin.

6 Conclusion
This paper focuses on a new issue, i.e., scale-adaptive low
resolution person re-identification. To promote the ability
of scale-adaptive upscaling and image feature extracting, we
propose a new framework CSR-GAN. Besides generator net-
work and discriminator network losses, a common-human
loss and a unique-human loss are introduced, and optimized
in a hybrid network architecture. Using extensive experi-
ments, we have confirmed that CSR-GAN is capable of super-
resolving person images with adaptive upscaling, achieves a
considerable promotion on SALR-REID datasets, and outper-
forms state-of-the-art LR person re-identification methods.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3896



Acknowledgments
This work was supported by JST CREST Grant Number JP-
MJCR1686, Japan.

References
[An et al., 2015] Le An, Mehran Kafai, Songfan Yang, and Bir

Bhanu. Person re-identification with reference descriptor. IEEE
Trans. Circuits Syst. Video Technol., 2015.

[Baltieri et al., 2011] Davide Baltieri, Roberto Vezzani, and Rita
Cucchiara. 3dpes: 3d people dataset for surveillance and foren-
sics. In Joint ACM workshop on Human gesture and behavior
understanding, 2011.

[Chen et al., 2015] Jiaxin Chen, Zhaoxiang Zhang, and Yunhong
Wang. Relevance metric learning for person re-identification by
exploiting listwise similarities. IEEE Trans. Image Proc., 2015.

[Cheng et al., 2011] Dong Seon Cheng, Marco Cristani, Michele
Stoppa, Loris Bazzani, and Vittorio Murino. Custom pictorial
structures for re-identification. In BMVC, 2011.

[Dong et al., 2016] Chao Dong, Chen Change Loy, Kaiming He,
and Xiaoou Tang. Image super-resolution using deep convolu-
tional networks. IEEE Trans. Pattern Anal. Mach. Intell., 2016.

[Goodfellow et al., 2014] Ian Goodfellow, Jean Pouget-Abadie,
Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial
nets. In NIPS, 2014.

[Gray et al., 2007] Douglas Gray, Shane Brennan, and Hai Tao.
Evaluating appearance models for recognition, reacquisition, and
tracking. In IEEE International Workshop on Performance Eval-
uation for Tracking and Surveillance (PETS), 2007.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. Deep residual learning for image recognition. In CVPR,
2016.

[Jiang et al., 2017] Junjun Jiang, Jiayi Ma, Chen Chen, Xinwei
Jiang, and Zheng Wang. Noise robust face image super-
resolution through smooth sparse representation. IEEE Trans.
Cybern., 2017.

[Jiao et al., 2018] Jiening Jiao, Wei-Shi Zheng, Ancong Wu, Xia-
tian Zhu, and Shaogang Gong. Deep low-resolution person re-
identification. In AAAI, 2018.

[Jing et al., 2015] Xiao-Yuan Jing, Xiaoke Zhu, Fei Wu, Xinge
You, Qinglong Liu, Dong Yue, Ruimin Hu, and Baowen Xu.
Super-resolution person re-identification with semi-coupled low-
rank discriminant dictionary learning. In CVPR, 2015.

[Johnson et al., 2016] Justin Johnson, Alexandre Alahi, and Li Fei-
Fei. Perceptual losses for real-time style transfer and super-
resolution. In ECCV, 2016.

[Ledig et al., 2016] Christian Ledig, Lucas Theis, Ferenc Huszár,
Jose Caballero, Andrew Cunningham, Alejandro Acosta, An-
drew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al.
Photo-realistic single image super-resolution using a generative
adversarial network. arXiv preprint arXiv:1609.04802, 2016.

[Li et al., 2015] Xiang Li, Wei-Shi Zheng, Xiaojuan Wang, Tao Xi-
ang, and Shaogang Gong. Multi-scale learning for low-resolution
person re-identification. In ICCV, 2015.

[Liao et al., 2015] Shengcai Liao, Yang Hu, Xiangyu Zhu, and
Stan Z Li. Person re-identification by local maximal occurrence
representation and metric learning. In CVPR, 2015.

[Roth et al., 2014] Peter M Roth, Martin Hirzer, Martin Köstinger,
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