
Empirical Analysis of Foundational Distinctions in Linked Open Data

Luigi Asprino1,2, Valerio Basile3, Paolo Ciancarini2 and Valentina Presutti1
1 STLab, ISTC-CNR, Rome, Italy

2 University of Bologna, Bologna, Italy
3 University of Turin, Turin, Italy

luigi.asprino@unibo.it, basile@di.unito.it, paolo.ciancarini@unibo.it, valentina.presutti@cnr.it

Abstract
The Web and its Semantic extension (i.e. Linked
Open Data) contain open global-scale knowledge
and make it available to potentially intelligent ma-
chines that want to benefit from it. Nevertheless,
most of Linked Open Data lack ontological dis-
tinctions and have sparse axiomatisation. For ex-
ample, distinctions such as whether an entity is
inherently a class or an individual, or whether it
is a physical object or not, are hardly expressed
in the data, although they have been largely stud-
ied and formalised by foundational ontologies (e.g.
DOLCE, SUMO). These distinctions belong to
common sense too, which is relevant for many arti-
ficial intelligence tasks such as natural language un-
derstanding, scene recognition, and the like. There
is a gap between foundational ontologies, that often
formalise or are inspired by pre-existing philosoph-
ical theories and are developed with a top-down
approach, and Linked Open Data that mostly de-
rive from existing databases or crowd-based effort
(e.g. DBpedia, Wikidata). We investigate whether
machines can learn foundational distinctions over
Linked Open Data entities, and if they match com-
mon sense. We want to answer questions such as
“does the DBpedia entity for dog refer to a class or
to an instance?”. We report on a set of experiments
based on machine learning and crowdsourcing that
show promising results.

1 Common Sense and Linked Open Data
Common Sense Knowledge is knowledge about the world,
shared by all people. Common sense reasoning is also at the
core of many Artificial Intelligence (AI) tasks such as nat-
ural language understanding, object and action recognition,
and behavior arbitration [Davis and Marcus, 2015], but it is
difficult to teach to those systems. Its importance was as-
sessed back in 1989 by [Hayes, 1989] who argued that AI
needs a “formalization of a sizable portion of commonsense
knowledge about the everyday physical world” (cit.), which,
he says, must have three main characteristics: uniformity,
density, and breadth. The Semantic Web effort has partly
addressed this requirement with Linked Open Data (LOD):

∼150 billion linked facts1, formally and uniformly repre-
sented in RDF and OWL, and openly available on the Web.
Nevertheless, LOD still fails in addressing density (high ra-
tio of facts about concepts) and breadth (large coverage of
physical phenomena). In fact, it is very rich for domains such
as geography, linguistics, life sciences and scholarly publica-
tions, as well as for cross-domain knowledge, but it mostly
encodes this knowledge from an encyclopaedic perspective.
The ultimate goal of our research is to enrich LOD with com-
mon sense knowledge, going beyond the encyclopaedic view.
We claim that an important gap to be filled towards this goal
is: assessing foundational distinctions over LOD entities, that
is to distinguish and formally assert whether a LOD entity in-
herently refers to e.g. a class or an individual, a physical ob-
ject or not, a location, a social object, etc., from a common
sense perspective.

1.1 Foundational Distinctions
High level categorial distinctions (e.g. class vs. instance)
are a fundamental human cognitive ability: “There is nothing
more basic than categorization to our thought, perception, ac-
tion, and speech.” [Lakoff, 1987]. This is also why “the or-
ganisation of objects into categories is a vital part of knowl-
edge representation” [Russell and Norvig, 2009]. Founda-
tional distinctions have been theorised and modelled in foun-
dational ontologies such as DOLCE [Masolo et al., 2003]
and SUMO [Pease and Niles, 2002] with a top-down ap-
proach, but populating and empirically validating them has
been rarely addressed. In this study, we perform a set of ex-
periments to assess whether machines can learn to perform
foundational distinctions, and if they match common sense.
The former issue is investigated by applying machine learn-
ing techniques, the latter is assessed by crowdsourcing the
annotation of the evaluation datasets. We use DOLCE+DnS
UltraLite (DUL)2 as reference foundational ontology to se-
lect the targets of our experiments. We start by focusing on
two very basic but diverse distinctions, which need to be ad-
dressed before approaching all the others: whether a LOD

1http://stats.lod2.eu/, accessed on April 25th 2018
2DOLCE+DnS UltraLite (DUL) http://www.

ontologydesignpatterns.org/ont/dul/DUL.owl is derived from
DOLCE. DUL inherits most of DOLCE’s distinctions by providing
a more intuitive terminology and simplified axiomatisation. It has
been widely adopted by the Semantic Web community.
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entity e.g. dbr:Rome3, (i) inherently refers to a class or
an instance, and whether it (ii) refers to a physical object or
not. The first distinction (class vs. instance) is fundamental in
formal ontology, as evidenced by upper-level ontologies (e.g.
SUMO and DOLCE), and showed its practical importance in
modelling and meta-modelling approaches in computer sci-
ence, e.g. the class/classifier distinction in Meta Object Fa-
cility4. It is also at the basis of LOD knowledge representa-
tion formalisms (RDF and OWL) for supporting taxonomic
reasoning (e.g. inheritance). Automatically learning whether
a LOD entity is a class or an instance – from a common sense
perspective – impacts on the behaviour of practical applica-
tions relying on LOD as common sense background knowl-
edge. Examples include: question answering, knowledge ex-
traction, and more broadly human-machine interaction. In
fact, many LOD datasets that are commonly used for sup-
porting these tasks (especially general purpose datasets e.g.
DBpedia, Wikidata, BabelNet) only partially, and often in-
correctly, assert whether their entities are classes or instances,
and this has been proved to be a source of many inconsisten-
cies and error patterns [Paulheim and Gangemi, 2015].

The second distinction (physical object or not) is essential
to represent the physical world. In fact, only physical objects
can move in space or be the subject of axioms expressing
their expected (naive) physical behaviour (e.g. gravity). We
refer to the definition of Physical Object provided by DUL:
“Any Object that has a proper space region. The prototypical
physical object has also an associated mass, but the nature of
its mass can greatly vary based on the epistemological status
of the object (scientifically measured, subjectively possible,
imaginary)”.

1.2 Contribution
In the reminder of this paper we describe an automated way
of making these distinctions emerge empirically. We present
and discuss a set of experiments, conducted on a sample of
LOD, involving manual inspection, ontology alignment, ma-
chine learning, and crowdsourcing. The obtained results are
promising, and motivate us to extend them to a much larger
scale, in line with a recent inspiring talk “The Empirical
Turn in Knowledge Representation”5 by van Harmelen, who
suggests that LOD is a unique opportunity to “observe how
knowledge representations behave at very large scale”.

In summary, the contribution of this research includes:

• a novel method that leverages supervised machine learn-
ing and crowdsourcing to automatically assess founda-
tional distinctions over LOD entities (cf. Section 3), ac-
cording to common sense;

• four reusable datasets, based on a sample of DBpedia,
separately annotated by experts and by the crowd with
class/instance and physical object classification, for each
entity (cf. Section 4). The crowdsourced task designs
are on their turn reusable;

3dbr: stands for http://dbpedia.org/resource/
4https://www.omg.org/spec/MOF/
5https://goo.gl/BDSGY1

• a set of reproducible experiments targeting two founda-
tional distinctions: class vs. instance and physical ob-
ject vs. not a physical object, showing that machines
can learn them by using a same set of features, and that
they match common sense (cf. Section 5).

2 Related Work

Only a few studies focus on typing entities based on foun-
dational distinctions. To the best of our knowledge, our
research is the first to test the hypothesis that machines can
learn foundational distinctions that match common sense, by
using web resources. The closest work to ours in approach
and scale is [Gangemi et al., 2012], which produced a dataset
of DBpedia entities annotated with DUL classes, using on-
tology learning. We reuse this dataset and compare our re-
sults against it. The work by [Miller and Hristea, 2006] ad-
dresses the problem of distinguishing classes from instances
in WordNet [Fellbaum, 1998] synsets, through purely man-
ual annotation. This approach is inappropriate to test our
research questions due to its lack of scalability. Over the
years, a number of common sense knowledge bases have
been proposed for supporting diverse tasks spanning from au-
tomated reasoning to natural language processing. We de-
cided to use the English DBpedia6 [Bizer et al., 2009] in our
experiments. Besides being very popular, it is the de facto
main hub of LOD, with its 4.58 million entities7. There are
other resources that either target common sense, or encode
potentially relevant knowledge for common sense reasoning.
However they lack explicit assertions of foundational dis-
tinctions, and show very sparse coverage distribution. Two
of them are relevant in this context, and we plan to inves-
tigate how to leverage them in future experiments that we
plan to perform at a much larger scale: ConceptNet8 [Liu and
Singh, 2004] is a large-scale semantic network that integrates
other existing resources, mostly derived from crowdsourced
resources, expert-created resources, and games with a pur-
pose. We found it unsuitable for reuse at this stage of our
study: only a very small portion of it is linked to LOD, and
its representation is bound to linguistic expressions instead of
formalised concepts. OpenCyC9 [Lenat, 1995] includes an
ontology and a knowledge base of common sense knowledge
organised in modular theories, released as part of the long-
standing CyC project. OpenCyC has been mainly developed
with a top-down approach by ontology engineering experts. It
is a potentially valuable resource to compare with, but it uses
a proprietary representation language, which makes it hard to
work with, currently. There is a plan to make it available to
the scientific community as linked data, although apparently
inaccessible at the time of our experiment.

6http://dbpedia.org
7http://wiki.dbpedia.org/about/facts-figures, accessed on April

25th 2018
8http://conceptnet5.media.mit.edu/
9http://www.opencyc.org/
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3 Automatic Classification of Foundational
Distinctions

We want to answer the following research questions: (RQ1)
Do foundational distinctions match common sense? (RQ2)
Does the (Semantic) Web provide an empirical basis for sup-
porting foundational distinctions over LOD entities, accord-
ing to common sense? and (RQ3) what ensemble of features,
resources, and methods works best to make machines learn
foundational distinctions over LOD entities?

Our objective is to test all the distinctions formalised in
DUL. Nevertheless, for each of them we need to create a set
of reference datasets (cf. Section 4) in order to train and
evaluate the proposed method, which requires a significant
amount of work. For this reason, as anticipated in Section
1, we start focusing on two distinctions: between class and
instance, and between what is a physical object and what is
not. These are two of the most basic, but very diverse distinc-
tions in knowledge representation and formal ontology. The
former applies at a very high level, and is usually modelled
by means of logical language primitives (e.g. rdf:type,
rdfs:subClassOf). The latter concerns the identifica-
tion of those entities that constitute the physical world, hence
highly relevant and primitive as far as common sense about
physics is concerned. We argue that by investigating these
two distinctions, given their diverse character, we can assess
the feasibility of a larger study based on the proposed method,
and get an indication of its generalisability. We use DBpe-
dia (release 2016-10) in our study as most LOD datasets link
to it. We approach this problem as a classification task, us-
ing two classification approaches: alignment-based (cf. Sec-
tion 3.1) and machine learning-based (cf. Section 3.2). Since
no established procedure exists, we tested different families
of methods in an exploratory way. This led us to reuse – or
compare to – existing work, which provides us with a base-
line, which includes Tı̀palo [Gangemi et al., 2012] as well
as other relevant alignments between DBpedia and lexical re-
sources (cf. Section 3.1).

3.1 Alignment-based Classification
Alignment-based methods exploit the linking structure of
LOD, in particular the alignments between DBpedia, founda-
tional ontologies, and lexical linked data, i.e. LOD datasets
that encode lexical/linguistic knowledge. The advantage of
these methods is their inherent unsupervised nature. Their
main disadvantages are the need of studying the data models
for designing suitable queries, and the potential limited cover-
age and errors that may accompany the alignments. We have
developed SENECA (Selecting Entities Exploiting Linguis-
tic Alignments), which relies on existing alignments in LOD,
to make an automatic assessment of the foundational distinc-
tions asserted over DBpedia entities. A graphical description
of SENECA is depicted in Figure 1.
Class vs. Instance. As far as this distinction is concerned,
SENECA works based on the hypothesis that common nouns
are mainly classes and they are expected to be found in dic-
tionaries, while it is less the case for proper nouns, that
usually denote instances. This hypothesis was suggested
by [Miller and Hristea, 2006], who manually annotated in-
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(a) The alignment paths followed by SENECA for selecting can-
didate classes among DBpedia entities. It identifies as classes all
DBpedia entities aligned via BabelNet to a WordNet synset, an
OmegaWiki synset or a Wiktionary page, and all DBpedia entities
typed as owl:Class in Tı̀palo.
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(b) The alignment paths used by SENECA for identifying candi-
date Physical Objects among DBpedia entities. It navigates the
YAGO taxonomy that via OntoWordNet links DBpedia entities to
dul:PhysicalObject or Tı̀palo that links DBpedia entities to
dul:PhysicalObject.

Figure 1: SENECA approach for assessing whether a DBpedia en-
tity is a class or an instance (Figure 1a) and whether it is a physical
object or not (Figure 1b).

stances in WordNet, information that SENECA reuses when
available. A good quality alignment between the main LOD
lexical resources and DBpedia is provided by BabelNet [Nav-
igli and Ponzetto, 2012]10. SENECA exploits these align-
ments and selects all the DBpedia entities that are linked to
an entity in WordNet11, Wiktionary12 or OmegaWiki13. With
this approach, 63,620 candidate classes have been identified,
as opposed to WordNet annotations that only provide 38,701
classes. In order to further increase the potential coverage,
SENECA leverages the typing axioms of Tipalo [Gangemi et
al., 2012], broadening it to 431,254 total candidate classes.
All the other DBpedia entities are assumed to be candidate
instances. SENECA criteria for selecting candidate classes
among DBpedia entities are depicted in Figure 1a.
Physical Object. Almost 600,000 DBpedia entities are only
typed as owl:Thing or not typed at all. However, each
DBpedia entity belongs to at least one Wikipedia category.
Wikipedia categories have been formalised as a taxonomy of
classes (i.e. by means of rdfs:subClassOf) and aligned
to WordNet synsets in YAGO [Suchanek et al., 2007]14.
WordNet synsets are in turn formalised as an OWL ontology

10We use BabelNet 3.6, which is aligned to WordNet 3.1
11http://wordnet-rdf.princeton.edu/, we use WordNet 3.0 and its

alignments to WordNet 3.1, to ensure interoperability with the other
resources

12https://www.wiktionary.org/
13http://www.omegawiki.org/
14We use YAGO 3, aligned to WordNet 3.1
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in OntoWordNet [Gangemi et al., 2003]15. OntoWordNet is
based on DUL, hence it is possible to navigate the taxonomy
up to the DUL class for Physical Object. SENECA looks up
the Wikipedia category of a DBpedia entity and follows these
alignments. Additionally, it uses Tı̀palo, which includes type
axioms of DBpedia entities based on DUL classes. SENECA
uses these paths of alignments and taxonomical relations, as
well as the automated inferences that enable to assess whether
a DBpedia entity is a Physical Object or not. With this ap-
proach, graphically summarised in Figure 1b, 67,005 entities
were selected as candidate physical objects.

3.2 Machine Learning-based Classification
Within machine learning, classification is the problem of pre-
dicting which category an entity belongs to, given a set of
examples, i.e. a training set. The training set is processed by
an algorithm in order to learn a predictive model based on the
observation of a number of features, which can be categori-
cal, ordinal, integer-valued or real-valued. We have designed
our target distinctions in the form of two binary classifica-
tions. We have experimented with eight classification algo-
rithms: J48, Random Forest, REPTree, Naive Bayes, Multi-
nomial Naive Bayes, Support Vector Machines, Logistic Re-
gression, and K-nearest neighbours classifier. We have used
WEKA16 for their implementation.
Features. The classifiers were trained using the following
four features.

Abstract. Considering that DBpedia entities are all as-
sociated with an abstract providing a definitional text, our
assumption is that these texts encode useful distinctive pat-
terns. Hence, we retrieve DBpedia entity abstracts, and rep-
resent them as 0-1 vectors (bags of words). We built a dic-
tionary containing the 1000 most frequent tokens found in all
the abstracts of the dataset. The dictionary is case-sensitive,
since the tokens are not normalised. The resulting vector has
a value 1 for each token mentioned in the abstract, 0 for the
others. By inspecting a good amount of abstracts, we noticed
that very frequent words, such as conjunctions and determin-
ers, are used in a way that can be informative for this type of
classifications. For example, most of class definitions begin
with “A” (“A knife is a tool...”). For this reason, we did not
remove stop-words.

URI. We notice that the ID part of URIs is often as infor-
mative as a label, and often follows conventions that may be
discriminating especially for the class vs. instance classifica-
tion. In DBpedia, the ID of a URI reflects an entity name (it
is common practice in order to make the URI more human-
readable), and it always starts with an upper case letter. If the
entity’s name is a compound term and the entity denotes an
instance, each of its components starts with a capital letter.
We have also noticed that DBpedia entity names are always
mentioned at the beginning of their abstract and, for most of
the instance entities, they have the same capitalisation pattern
as the URI ID. Moreover, instances tend to have more terms
in their ID than classes. These observations were captured by
three numerical features: (i) number of terms in the ID start-

15OntoWordNet is aligned to WordNet 3.0
16https://www.cs.waikato.ac.nz/ml/weka/

ing with a capital letter, (ii) number of terms in the ID that are
also found in the abstract, and (iii) number of terms in the ID.

Incoming and Outgoing Properties. As part of our ex-
ploratory approach, we want to test the ability of LOD to
show relevant patterns leading to foundational distinctions.
Given that triples are the core tool of LOD, we model a
feature based on ongoing and outgoing properties of a DB-
pedia entity. An outgoing property of a DBpedia entity
is a property of a triple having the entity as subject. On
the contrary, an incoming property is a property of a triple
having the entity as object. For example, considering the
triple dbr:Rome :locatedIn dbr:Italy, the prop-
erty :locatedIn is an outgoing property for dbr:Rome
and an incoming property for dbr:Italy. For each DBpe-
dia entity, we count its incoming and outgoing properties, per
type. For example, properties such as dbo:birthPlace or
dbo:birthDate are common outgoing properties of an in-
dividual person, hence their presence suggests that the entity
is an individual.

Outcome of SENECA. Following an exploratory ap-
proach, we decided to use the output of SENECA as a bi-
nomial feature (taking value “yes” or “no”) for the classifiers
(excluding Multinomial Naive Bayes classifier).

4 Reference Datasets for Classification
Experiments

In order to perform our experiments and evaluate the results
of our approach (cf. Section 3), we have created two datasets
for each of the foundational distinctions under study: one an-
notated by experts, and another one annotated by the crowd.
In this way we can get an indication whether foundational
distinctions match common sense (cf. RQ1). The resulting
datasets include a sample of annotated DBpedia entities and
are available online 17.
Selecting DBpedia Entities. The first step to build the
datasets is to select a sample of DBpedia entities to be sub-
mitted for annotations. It is not straightforward to select a
balanced number of classes and instances from DBpedia. A
random selection would cause a strong unbalance towards in-
stances because DBpedia contains a larger number of named
individuals – e.g. Rome or Barack Obama – than concepts.
A possible solution could be to manually select a sufficient
equal number of DBpedia instances and classes, however this
may inject a bias in the datasets. We have opted for a com-
promise solution by following the intuition that if entities are
represented as vectors, their neighbour vectors would include
classes and instances with a more balanced ratio than the ran-
dom choice. As for minimising the bias, we only manually
select an arbitrarily small (i.e. 20) number of seeds (equally
distributed). We leverage NASARI [Camacho-Collados et
al., 2016], a resource of vector representations for BabelNet
synsets and Wikipedia entities. For each vector correspond-
ing to a seed entity, we retrieve its 100 nearest neighbours18.
After cleaning off duplicated entities (e.g. Wikipedia redi-
rects), entities without abstracts, disambiguation pages, etc.,

17https://github.com/fdistinctions/ijcai18
18We observed that by picking 100 nearest neighbour entities the

cosine similarity is always above a threshold of 0.6
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we still assessed (through expert annotations) an unbalance
towards instances. In the light of a broader usage of the
same dataset to also annotate the distinction between phys-
ical objects and not physical objects, we enriched the sam-
ple with class entities representing physical locations (a good
source of physical objects). In order to select only physical
location classes from DBpedia, we used the corresponding
DBpedia category dbc:Places and the SUN database19,
a computer vision-oriented dataset containing a collection of
annotated images, covering a large variety of environmental
scenes, places, and the objects within. We retrieved DBpedia
entities whose labels match SUN locations or that belong to
the category dbc:Places, and added a number of them to
the sample that would suffice to improve the balance. As a
result, a total number of 4502 entities were collected in the
newly created dataset.
CIE Dataset: Class vs. Instance Annotation Per-
formed by Experts. Two authors of the paper have man-
ually and independently annotated all entities by indicat-
ing whether they were instances or classes, using the as-
sociated DBpedia abstract as reference description. Their
judgements showed an agreement of 93,6%: they only
disagreed on 286 entities. From a joint second inspec-
tion, they agreed on additional 281 entities that were ini-
tially misclassified by one of the two. Examples of mis-
classified entities are: dbr:Select Comfort (a U.S.
manufacturer) that was erroneously annotated as class;
dbr:Catawba Valley Pottery (a kind of pottery) an-
notated as instance instead of class. Among the remain-
ing entities, five are polysemous cases, where the entity
and its description point to both types of referents, e.g.
dbr:Slide Away Bed is a trademark commonly used also
to refer to a type of beds. The authors decided to annotate
these entities as classes. As a result, the CIE annotated dataset
contains 1983 classes and 2519 instances, which is reasonable
balanced (44% classes, 56% instances).
CIC Dataset: Class vs. Instance Annotation Performed
by Crowd. The same dataset was then crowdsourced: each
worker was asked to indicate whether an entity is a class or
an instance based on its name, abstract, and its corresponding
Wikipedia article. We want to assess the agreement between
the experts and the crowd, which indicates whether founda-
tional distinctions match common sense or not (cf. RQ1).
The task was executed on Figure Eight 20 by English speak-
ers with high trustworthiness. The quality of the contributors
has been assessed with 51 test questions with a tolerance of
only 20% of errors. We collected 22,510 judgments from 117
contributors: each entity was annotated by at least 5 different
workers. For each entity e, we computed the level of agree-
ment on each class c, weighted by the trustworthiness scores

agreement(e, c) =
SumOfTrust(e, c)

SumOfTrustOfWorkers(e)
(1)

where SumOfTrust(e, c) is the sum of the trustworthiness
scores of the workers that annotated entity e with class c;
and SumOfTrustOfWorkers(e) is the sum of the trust-

19https://groups.csail.mit.edu/vision/SUN/
20https://www.figure-eight.com/

Agreement # Class # Instance Total
≥ 0.5 1934 2568 4502
≥ 0.6 1884 2495 4379
≥ 0.8 1631 2330 3961

Table 1: CIC dataset crowd-based annotated dataset of classes and
instances. The table provides an insight of the dataset per level of
agreement. Agreement values computed according to Formula 1.

worthiness scores of all the workers that annotated the en-
tity e. Table 1 reports the results of the task indicating
the distribution of classes and instances per level of agree-
ment. The average agreement of the crowd is 95.76% .
We compared crowd’s annotations (with agreement greater
than 0.5) against experts’ ones. The judgements of the
crowd workers diverge from the experts’ only on 193 enti-
ties, i.e. agreement is 95,7%, suggesting that the instance
vs. class foundational distinction matches common sense
(cf. RQ1 applied to this distinction). Some of those enti-
ties (61) also caused a disagreement between experts, hence
denoting ambiguous cases. Examples include polysemic enti-
ties such as dbr:Zeke the Wonder Dog or music genres
(e.g. dbr:Ragga).
POE Dataset: Physical Object Annotation Performed by
Experts. Two authors of the paper further annotated (inde-
pendently) the dataset by indicating for each entity whether
it referred to a physical object (PO) or not (NPO), using
its DBpedia abstract as reference description. They only
disagreed on 272 entities, showing an agreement of 93,9%.
By means of a joint second inspection, they agreed that
the disagreement was caused by errors in the classification,
some of which were borderline cases e.g.: communities (e.g.
dbr:Desert Lake, California), wrongly interpreted
as society instead of neighbourhood, trademarked materials
(e.g. dbr:Waxtite) and entities with complex description
(e.g. dbr:Cabaña pasiega). The resulting POE anno-
tated dataset contains 3055 POs and 1447 NPOs.
POC Dataset: Physical Object Annotation Performed by
Crowd. We also crowdsourced the annotations of physical
objects vs. not a physical object: the workers were asked to
perform this task by using the entity’s name, its abstract, and
Wikipedia page as reference descriptions. The quality of the
workers has been assessed with 49 test questions, used to ex-
clude contributors that scored an accuracy lower than 80%
We collected 25,776 judgments from 173 workers. Each en-
tity has been annotated by at least 5 different English speak-
ers. Table 2 summarises the level of agreement associated
with the distribution of PO vs. NPO annotations. The average
agreement of the crowd’s annotations is 85.48% . The agree-
ment between the crowd and the experts is 85,69%, suggest-
ing that the PO vs NPO foundational distinction also matches
common sense (cf. RQ1 applied to this distinction).

5 Experiments Results and Discussion
The results of the performed experiments are expressed in
terms of precision, recall and F1 measure, computed for each
classification and for each target class (class vs. instance and
physical object vs. ¬ physical object). The average F1 score
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Agreement # Physical Object # ¬ Physical Object Total
≥ 0.5 3601 901 4502
≥ 0.6 3448 641 4089
≥ 0.8 2989 335 3324

Table 2: POC dataset: crowd-based annotated dataset of physical
objects. The table provides an insight of the dataset per level of
agreement. Agreement values computed according to Formula 1.

Dataset PC RC FC
1 PI RI FI

1 F1
CIE .919 .693 .796 .753 .939 .836 .813
CIC .935 .731 .818 .778 .945 .853 .836

Dataset PPO RPO FPO
1 PNPO RNPO FNPO

1 F1
POE .877 .247 .385 .561 .965 .713 .548
POC .954 .247 .393 .567 .988 .721 .557

Table 3: Results of SENECA on the Class vs. Instance and Phys-
ical Object classifications compared against the reference datasets
described in Section 4. P*, R* and F*

1 indicate precision, recall and
F1 measure on Class (C), Instance (I), Physical Object (PO) and
complement of Physical Object (NPO). F1 is the average of the F1
measures.

is also provided. We compare the results of the methods, de-
scribed in Section 3, against the reference datasets CIE, CIC,
POE and POC, described in Section 4. As for CIC and POC,
we only include the annotations having agreement ≥ 80%.

5.1 Alignment-based Methods: SENECA

Class vs. Instance. Table 3 shows SENECA’s performance
on the class vs. instance classification, by comparing its re-
sults with CIE and CIC. SENECA shows very good perfor-
mance with best avg F1 = .836, when compared with CIC.
Considering that SENECA is unsupervised, and is based on
existing alignments in LOD, this result suggests that LOD
may better reflect common sense than the expert’s perspec-
tive, an interesting hint for further investigation on this spe-
cific matter.
Physical Object. Table 3 shows the performance of
SENECA on the Physical Object classification task computed
by comparing its results with POE and POC (cf. Section 4).
We observe a significant drop in the best average F1 score
(.557) as compared to the class vs. instance classification
task (.836). On one hand, this may suggest that the task is
harder. On the other hand, the alignment paths followed in
the two cases are different, since for classifying Physical Ob-
jects more alignment steps are required. In the first case (class
vs. instance), BabelNet directly provides the final alignment
step (cf. Figure 1a), while in the second case (PO vs. NPO),
three more alignment steps are required: DBpedia Category
→ YAGO → WordNet (cf. Figure 1b). It is reasonable to
think that this implies a higher potential of error propaga-
tion along the flow. This hypothesis is partly supported by
[Gangemi et al., 2012], who report a similar drop when they
add an automatic disambiguation step followed by an align-
ment step to DUL classes (including Physical Object). Also
for this distinction, SENECA better matches the judgements
of the crowd than the experts’.

5.2 Machine Learning Methods

We performed a set of experiments with eight classifiers: J48,
Random Forest, REPTree, Naive Bayes, Multinomial Naive
Bayes, Support Vector Machines, Logistic Regression, and
K-Nearest Neighbors (cf. Section 3.2). We used a 10-fold
cross validation strategy using the reference datasets (cf. Sec-
tion 4). Before training the classifiers, the datasets were ad-
justed in order to balance the samples of the two classes. The
CIE and POE datasets were balanced by randomly removing
a set of annotated entities. CIC and POC were balanced by re-
moving entities associated with lower agreement (which con-
stitute weak examples for the classifiers). Each classifier was
trained and tested with all four features, described in Section
3.2, both individually and in all possible combinations, with
and without performing feature selection. We found that per-
forming feature selection makes the results worse. Having
two datasets for each classification (i.e. annotated by the ex-
perts and by the crowd) enables multiple configurations of
the training set. When we train the classifiers with samples
from CIE and POE, they all have the same weight = 1. Dif-
ferently, when the samples come from CIC and POC, they
are weighted according to their associated agreement score
agreement(e, c), computed with Formula 1 (cf. Section 4). As
previously studied by [Aroyo and Welty, 2015], this diverse
weighing allows a classifier to learn richer information, in-
cluding ambiguity and consequent entities that may belong to
an “unknown” class, which better represent human cognitive
behaviour. Due to space limits, we only report the results of
the best performing algorithm21, which is Support Vector Ma-
chine, without feature selection, trained and tested on samples
associated with an agreement score ≥ 80%. We report on all
combinations of features, but D alone (i.e. SENECA’s out-
put).
Class vs. Instance. Table 4 shows the results of Support Vec-
tor Machine, trained on and tested against CIE and CIC. The
best average performance is obtained with CIC by combining
all features. Combining all features is also the best config-
uration for each individual classification (i.e. Class (C) and
Instance (I)). When CIE is used there is a slight drop in per-
formance, although the quality of the classification remains
high. A possible cause of this result may be the agreement-
based weighing provided by CIC.
Physical Object. Table 4 also shows the results of the Sup-
port Vector Machine algorithm trained on and tested against
POE and POC. Similarly to the behaviour of SENECA, sta-
tistical approaches worsen their overall performance as com-
pared to the case of the class vs. instance classification. We
also observe a different behaviour of the individual features.
The best average performance with POE is achieved by com-
bining all the feature, while the best average performance
with POC is achieved by combining the abstract (A), the out-
going/incoming properties (E), and SENECA output (D). In
a sense, this confirms that conventions used for creating URI
IDs are informative mainly for the class vs. instance distinc-
tion.

21The results of all experiments are available online at https:
//github.com/fdistinctions/ijcai18
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Results compared against CIE Results compared against CIC Results compared against POE Results compared against POC
A U E D PC RC FC

1 PI RI FI
1 F1 PC RC FC

1 PI RI FI
1 F1 PPO RPO FPO

1 PNPO RNPO F NPO
1 F1 PPO RPO FPO

1 PNPO RNPO FNPO
1 F1

.927 .921 .924 .921 .927 .924 .924 .958 .965 .961 .965 .957 .961 .961 .828 .814 .821 .817 .832 .824 .823 .879 .837 .858 .844 .884 .864 .861

.881 .933 .906 .929 .873 .909 .903 .908 .970 .938 .967 .902 .933 .936 .615 .822 .703 .732 .485 .584 .644 .596 .863 .705 .751 .413 .533 .619

.854 .975 .911 .971 .834 .897 .904 .886 .983 .932 .981 .874 .924 .928 .786 .865 .824 .857 .764 .805 .814 .782 .886 .831 .868 .752 .806 .818

.928 .935 .932 .935 .928 .931 .932 .966 .971 .968 .971 .966 .968 .968 .831 .829 .838 .833 .832 .831 .831 .851 .811 .831 .819 .857 .838 .834

.939 .943 .941 .943 .939 .941 .941 .971 .976 .974 .976 .971 .973 .974 .869 .867 .868 .867 .870 .868 .868 .912 .853 .882 .862 .918 .889 .885

.934 .927 .939 .928 .934 .931 .931 .966 .964 .965 .964 .966 .965 .965 .849 .829 .835 .831 .843 .837 .836 .865 .834 .849 .839 .869 .854 .852

.919 .968 .943 .966 .914 .939 .941 .961 .982 .971 .981 .963 .979 .971 .816 .852 .833 .845 .808 .826 .832 .802 .889 .842 .875 .777 .823 .833

.881 .939 .909 .935 .873 .903 .906 .908 .973 .939 .971 .902 .935 .937 .659 .761 .707 .718 .607 .658 .682 .951 .243 .387 .565 .987 .719 .553

.859 .978 .915 .975 .846 .903 .909 .889 .987 .935 .985 .877 .928 .932 .928 .735 .826 .788 .943 .854 .837 .966 .762 .852 .803 .973 .886 .866

.942 .946 .944 .945 .942 .944 .944 .973 .981 .976 .980 .973 .976 .976 .865 .866 .866 .866 .865 .865 .865 .927 .847 .885 .859 .933 .894 .891

.939 .933 .936 .934 .939 .937 .936 .968 .969 .968 .969 .968 .968 .968 .831 .824 .828 .826 .833 .829 .828 .878 .831 .855 .838 .876 .856 .853

.945 .949 .943 .941 .946 .943 .943 .973 .976 .975 .976 .973 .975 .975 .867 .862 .864 .863 .868 .865 .865 .922 .879 .899 .884 .923 .903 .901

.926 .967 .946 .966 .922 .944 .945 .964 .981 .973 .981 .964 .972 .973 .933 .736 .823 .782 .947 .857 .843 .962 .759 .849 .801 .975 .877 .863

.946 .949 .947 .948 .946 .947 .947 .981 .982 .982 .982 .981 .982 .982 .871 .877 .871 .879 .872 .871 .871 .905 .866 .886 .872 .909 .895 .888

Table 4: Results of the Support Vector Machine classifier on Class vs. Instance and Physical Object classification task against the reference
datasets described in Section 4. The first four columns indicate the features used by the classifier: A is the abstract, U is the URI, E are
incoming and outgoing properties, D are the results of the alignment-based methods. P*, R*, F*

1 indicate precision, recall and F1 measure on
Class (C), Instance (I), Physical Object (PO) and the complement of Physical Object (NPO). F1 is the average of the F1 measures.

5.3 Remarks and Discussion

We claim that the performed experiments show promising re-
sults as far as our research questions are concerned (cf. Sec-
tion 3). Given the diversity and the basic nature of the two
distinctions that we have analysed, and the positive results
obtained in both cases by applying the same methods with
the same configurations, we claim that the proposed methods
can be generalised to other foundational distinctions.
RQ1: Do foundational distinctions match common sense? As
anticipated in Section 4 the high agreement observed among
workers that participated in the crowdsourcing tasks, as well
as the high agreement between the crowd and the experts,
suggest that the foundational distinctions that we have tested
do actually match common sense.
RQ2: Does the (Semantic) Web provide an empirical basis
for supporting foundational distinctions over LOD entities,
according to common sense? We claim that the high aver-
age value of F1 measure associated with all experiments in-
dicates that the Web, and in particular LOD, implicitly en-
codes foundational distinctions. We also think that, more in
general, this is a hint that the Web is a good source for com-
mon sense knowledge extraction. We find particularly inter-
esting to observe that the feature E (i.e. ongoing/incoming
properties) has always a positive impact, in all features com-
binations, on the classifier’s performance (cf. Table 4), for
both tasks. This motivates us in conducting further inves-
tigations (i) towards identifying and testing additional fea-
tures based on LOD, e.g. more sophisticated use of asser-
tions and axioms from LOD as well as (ii) to analyse LOD at
a much larger scale (e.g. by using LOD Laundromat [Beek
et al., 2016]) with an empirical science perspective: look-
ing for emerging patterns that may encode relevant pieces
of common sense knowledge [Gangemi and Presutti, 2010].
Our promising results open a number of possible research
directions: besides replicating these experiments at a larger
scale, we plan a follow up study concerning the application
of the same approach to distinguishing physical objects that
can act as locations for other physical objects. This is par-
ticularly relevant in order to extract knowledge about where
things are usually located in, whether a location is appro-
priate for an object in terms of its size, etc. Another rele-
vant distinction to be investigated with priority is the one be-
tween physical and social objects (e.g. organisations), which

is often prone to systematic polysemy [Pustejovsky, 1998],
i.e. objects that have a same linguistic reference, but dif-
ferent (disjoint) types of referents. For example, the term
National Library is used to refer both to an organisation (a
social object) taking care of the library’s collections, and
of the related administrative and organisational issues, and
to the buildings (physical objects) where the organisational
staff works and the collections are located in. Besides cover-
ing foundational distinctions, we aim to extend our approach
to learn or discover relational knowledge such as the one
modelled and encoded in terms of frames [Fillmore, 1982;
Gangemi et al., 2016].
RQ3: What ensemble of features, resources, and methods
works best to make machines learn foundational distinctions
over LOD entities? According to our results, statistical meth-
ods perform better than alignment-based methods. We use
supervised learning and crowdsourcing to test two very di-
verse foundational distinctions, both very basic in knowledge
representation and foundational ontologies. It emerges that
two features show the same ability to positively impact on
the methods’ performance, for both distinctions: A (a text
describing the entity) and E (entity’s outgoing and incoming
properties). Both features convey the semantic description of
an entity: the former by means of natural language, which
characterises a huge portion of the web, the latter by means
of LOD triples, which characterise the semantic web. Based
on these observations, we argue that the method can be gen-
eralised, even if each specific distinction may benefit from a
specialised extension of the feature set. In our case, the U
feature (i.e. URI ID) clearly shows effectiveness for the class
vs. instance rather than for PO vs. NPO.
A question is whether DBpedia text is special because of its
“standardised” style of writing. Our experiments and results
do not cover this issue, which needs to be assessed in order
to provide a stronger support to our claim of generalisability.
A similar doubt can be raised as far as outgoing and incom-
ing links are concerned. DBpedia properties mainly come
from infoboxes, which also follow, and are influenced by the
standardised way of writing Wikipedia pages. Nevertheless,
for this feature we argue that the doubt does not apply, since
incoming and outgoing properties include links to and from
LOD datasets that are outside DBpedia, hence independent
from the standardised content of Wikipedia.
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6 Conclusion
This study reports a set of experiments for assessing whether
the Web, and in particular Linked Open Data, provides an em-
pirical basis to extract foundational distinctions, and if they
match common sense. For testing the former, we adopt and
compare two approaches, namely alignment-based methods
and machine learning methods. For the latter we use crowd-
sourcing and compare the judgements of the crowd with those
of experts’. For both questions we observe promising results
and define a method that can be generalised to investigate ad-
ditional distinctions. We plan experiments on other founda-
tional distinctions (e.g. types of locations, objects that can
serve as locations or containers, etc.) and with additional
methods. Our ultimate goal is to advance the state of the art
of AI tasks requiring common sense reasoning by designing
a methodological framework that enables mass-production of
common sense knowledge, and its injection into LOD.
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