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Abstract
The task of Reading Comprehension with Multiple
Choice Questions, requires a human (or machine)
to read a given {passage, question} pair and select
one of the n given options. The current state of the
art model for this task first computes a question-
aware representation for the passage and then se-
lects the option which has the maximum similarity
with this representation. However, when humans
perform this task they do not just focus on option
selection but use a combination of elimination and
selection. Specifically, a human would first try to
eliminate the most irrelevant option and then read
the passage again in the light of this new informa-
tion (and perhaps ignore portions corresponding to
the eliminated option). This process could be re-
peated multiple times till the reader is finally ready
to select the correct option. We propose ElimiNet,
a neural network-based model which tries to mimic
this process. Specifically, it has gates which de-
cide whether an option can be eliminated given the
{passage, question} pair and if so it tries to make
the passage representation orthogonal to this elim-
inated option (akin to ignoring portions of the pas-
sage corresponding to the eliminated option). The
model makes multiple rounds of partial elimination
to refine the passage representation and finally uses
a selection module to pick the best option. We eval-
uate our model on the recently released large scale
RACE dataset and show that it outperforms the cur-
rent state of the art model on 7 out of the 13 ques-
tion types in this dataset. Further, we show that tak-
ing an ensemble of our elimination-selection based
method with a selection based method gives us an
improvement of 3.1% over the best-reported per-
formance on this dataset.

1 Introduction
Reading comprehension is the task of answering questions
pertaining to a given passage. An AI agent which can dis-
play such capabilities would be useful in a wide variety of

∗denotes equal contribution

Passage: One day, I was studying at home. Suddenly, there was
a loud noise...A building in my neighborhood was on fire...A
few people jumped out of the window... Those who were still on
the second floor were just crying for help...Firefighters arrived
at last. They fought the fire bravely. Water pipes were used and
a ladder was put near the second-floor window. Then the people
inside were taken out by the firefighters...Thanks to the firefight-
ers, the people inside were saved and the fire was put out in the
end, but many things, such as desk, pictures and clothes, were
damaged.
Question: How did the people who didn’t jump out of the win-

dow get out of the building?
Option A: They were taken out by the firefighters.
Option B: They climbed down a ladder by themselves.
Option C: They walked out after the fire was put out.
Option D: They were taken out by doctors
Correct Option: A

Figure 1: Example of RC-MCQ from RACE dataset

commercial applications such as answering questions from
financial reports of a company, troubleshooting using prod-
uct manuals, answering general knowledge questions from
Wikipedia documents, etc. Given its widespread applicabil-
ity, several variants of this task have been studied in the lit-
erature. For example, given a passage and a question, the
answer could either (i) match some span in the passage or
(ii) be generated from the passage or (iii) be one of the n
given candidate answers. The last variant is typically used in
various high school, middle school, and competitive exam-
inations. We refer to this as Reading Comprehension with
Multiple Choice Questions (RC-MCQ). There is an increas-
ing interest in building AI agents with deep language under-
standing capabilities which can perform at par with humans
on such competitive tests. For example, recently [Lai et al.,
2017] have released a large scale dataset for RC-MCQ col-
lected from high school and middle school English exam-
inations in China comprising of approximately 28000 pas-
sages and 100000 questions. The large size of this dataset
makes it possible to train and evaluate complex neural net-
work based models and measure the scientific progress on
RC-MCQ. While answering such Multiple Choice Questions
(MCQs) (e.g., Figure 1), humans typically use a combination
of option elimination and option selection. More specifically,
it makes sense to first try to eliminate options which are com-
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pletely irrelevant to the given question. While doing so, we
may also be able to discard certain portions of the passage
which are not relevant to the question (because they revolve
around the option which has been eliminated, e.g., portions
marked in blue and orange, corresponding to Option B and
Option C respectively in Figure 1). This process can then
be repeated multiple times, each time eliminating an option
and refining the passage (by discarding irrelevant portions).
Finally, when it is no longer possible to eliminate any option,
we can pick the best option from the remaining options. In
contrast, the current state of the art models for RC-MCQ fo-
cus explicitly on option selection. Specifically, given a ques-
tion and a passage, they first compute a question aware repre-
sentation of the passage (say dq). They then compute a repre-
sentation for each of the n options and select an option whose
representation is closest to dq . There is no iterative process
where options get eliminated and the representation of the
passage gets refined in the light of this elimination.

We propose a model which tries to mimic the human pro-
cess of answering MCQs. Similar to the existing state of
the art method [Dhingra et al., 2017], we first compute a
question-aware representation of the passage (which essen-
tially tries to retain portions of the passage which are only
relevant to the question). We then use an elimination gate
(depending on the passage, question and option) which takes
a soft decision as to whether an option needs to be eliminated
or not. Next, akin to the human process described above, we
would like to discard portions of the passage representation
which are aligned with this eliminated option. We do this
by subtracting the component of the passage representation
along the option representation (similar to Gram-Schmidt or-
thogonalization). The amount of orthogonalization depends
on the soft decision given by the elimination gate. We re-
peat this process multiple times, during each pass doing a soft
elimination of the options and refining the passage represen-
tation. At the end of a few passes, we expect the passage
representation to be orthogonal (hence dissimilar) to the ir-
relevant options. Finally, we use a selection module to select
the option which is most similar to the refined passage rep-
resentation. We refer to this model as ElimiNet. Note that
such a model will not make sense in cases where the options
are highly related. For example, if the question is about life
stages of a butterfly and the options are four different order-
ings of the words butterfly, egg, pupa, caterpillar then it does
not make sense to orthogonalize the passage representation to
the incorrect option representations. However, the dataset that
we focus on in this work does not contain questions which
have such permuted options.

We evaluate ElimiNet on the RACE dataset and compare
it with Gated Attention Reader (GAR) [Dhingra et al., 2017],
the current state of the art model on this dataset. We show that
of the 13 question types in this dataset our model outperforms
GAR on 7 question types. We also visualize the soft elimina-
tion probabilities learnt by ElimiNet and observe that it indeed
learns to iteratively refine the passage representation and push
the probability mass towards the correct option. Finally, we
show that an ensemble model combining ElimiNet with GAR
gives an accuracy of 47.2% which is 3.1% (relative) better
than the best-reported performance on this dataset.The code

for our model is publicly available1.

2 Related Work
Over the last few years, the availability of large scale datasets
has led to an increasing interest in the task of Reading Com-
prehension. These datasets cover different variations of the
Reading comprehension task. For example, SQuAD [Ra-
jpurkar et al., 2016], TriviaQA [Joshi et al., 2017], NewsQA
[Trischler et al., 2016], MS MARCO [Nguyen et al., 2016],
NarrativeQA [Kociský et al., 2017], etc. contain {passage,
question, answer} where the answer matches a span of the
passage or it has to be generated. On the other hand,
CNN/Daily Mail [Hermann et al., 2015], Children’s Book
Test (CBT) [Hill et al., 2015] and Who Did What (WDW)
dataset [Onishi et al., 2016] offer cloze-style RC where the
task is to predict a missing word/entity (from the passage) in
the question. Some other datasets such as MCTest [Richard-
son et al., 2013], AI2 [Khashabi et al., 2016] and RACE con-
tain RC with multiple choice questions (RC-MCQ) where the
task is to select the right answer.

The advent of these datasets and the general success of
deep learning for various NLP tasks, has led to a prolifera-
tion of neural network based models for RC. For example,
the models proposed in [Xiong et al., 2016; Seo et al., 2016;
Wang et al., 2017; Hu et al., 2017] address the first variant of
RC requiring span prediction as in the SQuAD dataset. Simi-
larly, the models proposed in [Chen et al., 2016; Kadlec et al.,
2016; Cui et al., 2017; Dhingra et al., 2017] address the sec-
ond variant of RC requiring cloze-style QA. Finally, [Lai et
al., 2017] adapt the the models proposed in [Chen et al., 2016;
Dhingra et al., 2017] for cloze-style RC and use them to ad-
dress the problem of RC-MCQ. Irrespective of which of the
three variants of RC they address, these models use a very
similar framework. Specifically, these models contain com-
ponents for (i) encoding the passage (ii) encoding the ques-
tion (iii) capturing interactions between the question and the
passage (iv) capturing interactions between question and the
options (for MCQ) (v) making multiple passes over the pas-
sage and (vi) a decoder to predict/generate/select an answer.
The differences between the models arise from the specific
choice of the encoder, decoder, interaction functions and iter-
ation mechanism. Most of the current state of the art models
can be seen as special instantiations of the above framework.

The key difference between our model and existing mod-
els for RC-MCQ is that we introduce components for (soft-
)eliminating irrelevant options and refining the passage repre-
sentation in the light of this elimination. The passage repre-
sentation thus refined over multiple (soft-)elimination rounds
is then used for selecting the most relevant option. To the best
of our knowledge, this is the first model which introduces the
idea of option elimination for RC-MCQ.

3 Proposed Model
Given a passage D = [wd

1 , w
d
2 , . . . , w

d
M ] of word-length M ,

a question Q = [wq
1, w

q
2, . . . , w

q
N ] of word-length N and

n options Zk = [wz
1 , w

z
2 , . . . , w

z
Jk
] where 1 6 k 6 n

1https://github.com/sohamparikh94/ElimiNet
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Figure 2: A simplistic diagram of the proposed model

and each option is of word-length Jk, the task is to predict
a conditional probability distribution over the options (i.e.,
to predict P (Zi|D,Q)). We model this distribution using
a neural network which contains modules for encoding the
passage/question/options, capturing the interactions between
them, eliminating options and finally selecting the correct op-
tion. We refer to these as the encoder, interaction, elimination
and selection modules as shown in Figure 2. Among these,
the main contribution of our work is the introduction of a
module for elimination. Specifically, we introduce a mod-
ule to (i) decide whether an option can be eliminated (ii) re-
fine the passage representation to account for eliminated/un-
eliminated options and (iii) repeat this process multiple times.
In the remainder of this section, we describe the various com-
ponents of our model.

Encoder Module: We first compute vectorial representa-
tions of the question and options. We do so by using a bidi-
rectional recurrent neural network which contains two Gated
Recurrent Units (GRU) [Chung et al., 2014], one which reads
the given string (question or option) from left to right and the
other which reads the string from right to left. For example,
given the question Q = [wq

1, w
q
2, . . . , w

q
N ], each GRU unit

computes a hidden representation for each time-step (word)
as:

−→
hqi =

−−−−→
GRUq(

−−→
hqi−1, e(w

q
i ))

←−
hqi =

←−−−−
GRUq(

←−−
hqi−1, e(w

q
i ))

where e(wq
i ) ∈ Rd is the d-dimensional embedding of the

question word wq
i . The final representation of each question

word is a concatenation of the forward and backward repre-
sentations (i.e., hqi = [

←−
hqi ,
−→
hqi ]). Similarly, we compute the

bi-directional representations for each word in each of the
k options as hzki = [

←−
hzki ,
−→
hzki ]. Just to be clear, hzki is the

representation of the i-th word in the k-th option (zk). We
use separate GRU cells for the question and options, with
the same GRU cell being used for all the n options. Note

that the encoder also computes a representation of each pas-
sage word as simply the word embedding of the passage word
(i.e., hdi = e(wd

i )). Later on in the interaction module we use
a GRU cell to compute the interactions between the passage
words.

Interaction Module: Once the basic question and passage
word representations have been computed, the idea is to allow
them to interact so that the passage words’ representations
can be refined in the light of the question words’ representa-
tions. This is similar to how humans first independently read
the passage and the question and then read the passage mul-
tiple times, trying to focus on the portions which are relevant
and ignoring portions that are irrelevant (e.g., portion marked
in red in Figure 1) to the question. To achieve this, we use
the same multi-hop architecture for iteratively refining pas-
sage representations as proposed in Gated Attention Reader
[Dhingra et al., 2017]. At each hop t, we use the following
set of equations to compute this refinement:

αt
i = softmax(QT dti)

where, Q ∈ RN×l is a matrix whose columns are
hq1, h

q
2, ..., h

q
N as computed by the encoder. αt

i ∈ RN such
that each element j of αt

i essentially computes the importance
of the j-th question word for the i-th passage word during
hop t. At the 0-th hop, d0i = hdi = e(wd

i ) ∈ Rl is simply
the embedding of the i-th passage word. The goal is to refine
this embedding over each hop based on interactions with the
question. Next, we compute,

q̃ti = Qαt
i

where q̃ti ∈ Rl computes the importance of each dimension
of the current passage word representation and is then used as
a gate to scale up or scale down different dimensions of the
passage word representation.

d̃ti = dti � q̃ti
We now allow these refined passage word representations to
interact with each other using a bi-directional recurrent neural
network to compute d(t+1)

i for the next hop.
−−−→
d
(t+1)
i =

−−→
GRU(t+1)

D (
−−−→
d
(t+1)
i−1 , d̃

(t)
i )

←−−−
d
(t+1)
i =

←−−
GRU(t+1)

D (
←−−−
d
(t+1)
i−1 , d̃

(t)
i )

d
(t+1)
i = [

←−−−
d
(t+1)
i ,

−−−→
d
(t+1)
i ]

The above process is repeated for T hops wherein each hop
takes d(t)i , Q as the input and computes a refined represen-
tation d̃(t+1)

i . After T hops, we obtain a fixed-length vector
representation of the passage by combining the passage word
representations using a weighted sum.

mi = softmax(d̃(T )
i Watth

q
N )

x =
M∑
i=1

mid̃
(T )
i (1)

wheremi computes the importance of each passage word and
x is a weighted sum of the passage representations.
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Elimination Module: The aim of the elimination module is
to refine the passage representation so that it does not focus on
portions which correspond to irrelevant options. To do so we
first need to decide whether an option can be eliminated or not
and then ensure that the passage representation gets modified
accordingly. For the first part, we introduce an elimination
gate to enable a soft-elimination.

ei = sigmoid(Wex+ Veh
q + Ueh

zi)

Note that this gate is computed separately for each option i.
In particular, it depends on the final state of the bidirectional
option GRU (hzi = hziJi

). It also depends on the final state
of the bidirectional question GRU (hq = hqN ) and the refined
passage representation (x) computed by the interaction mod-
ule. We, Ve, Ue are parameters which will be learned.

Based on the above soft-elimination, we want to now refine
the passage representation. For this, we compute xei which is
the component of the passage representation (x) orthogonal to
the option representation (hzi ) and xri which is the component
of the passage representation along the option representation.

ri =
< x, hzi > hzi

|x|2

xei = x− ri (2)
xri = x− xei (3)

The elimination gate then decides how much of xei and xri
need to be retained.

x̃i = ei � xei + (1− ei)� xri
If ei = 1 (eliminate, e.g., portions corresponding to Option
D in Figure 1) then the passage representation will be made
orthogonal to the option representation (akin to ignoring por-
tions of the passage relevant to the option) and ei = 0 (don’t
eliminate, e.g., portions marked in green, corresponding to
Option A in Figure 1) then the passage representation will be
aligned with the option representation (akin to focusing on
portions of the passage relevant to the option).

Note that in equations (2) and (3) we completely subtract
the components along or orthogonal to the option representa-
tion. We wanted to give the model some flexibility to decide
how much of this component to subtract. To do this we intro-
duce another gate, called the subtract gate,

si = sigmoid(Wsx+ Vsh
q + Ush

zi)

where Ws, Vs, Us are parameters that need to be learned. We
then replace the RHS of Equations 2 and 3 by x− si� ri and
x−si�xei respectively. Thus the components ri and r⊥i used
in Equation (2) and (3) are gated using si. One could argue
that ei itself could encode this information but empirically we
found that separating these two functionalities (elimination
and subtraction) works better.

For each of the n options, we independently compute rep-
resentations x̃1, x̃2, ..., x̃n. These are combined to obtain a
single refined representation for the passage.

bi = vTb tanh(Wbx̃i + Ubh
zi)

βi = softmax(bi)

x̃ =
n∑

i=1

βix̃i (4)

Note that x̃1, x̃2, ..., x̃n represent the n option-specific pas-
sage representations and βi’s give us a way of combining
these option specific representations into a single passage rep-
resentation. We repeat the above process for L hops wherein
the m-th hop takes x̃m−1, hq and hzi as input and returns a
refined x̃m computed using the above set of equations.

Selection Module Finally, the selection module takes the
refined passage representation x̃L after L elimination hops
and computes its bilinear similarity with each option repre-
sentation.

score(i) = x̃LWatth
zi

where x̃L and hzi are vectors and Watt is a matrix which
needs to be learned. We select the option which gives the
highest score as computed above. We train the model using
the cross entropy loss by normalizing the above scores (using
softmax) first to obtain a probability distribution.

4 Experimental Setup
In this section, we describe the dataset used for evaluation,
the hyperparameters of our model, training procedure and
state of the art models used for comparison.

Dataset: We evaluate our model on the RACE dataset
which contains multiple choice questions collected from high
school and middle school English examinations in China.
The high school portion of the dataset (RACE-H) contains
62445, 3451 and 3498 questions in train, validation, and test
sets respectively. The middle school portion of the dataset
(RACE-M) contains 18728, 1021 and 1045 questions for
train, validation, and test sets respectively.
This dataset contains a wide variety of questions of varying
degrees of complexity. For example, some questions ask
for the most appropriate title for the passage which requires
deep language understanding capabilities to comprehend the
entire passage. There are some questions which ask for the
meaning of a specific term or phrase in the context of the
passage. Similarly, there are some questions which ask for
the key idea in the passage. Finally, there are some standard
Wh-type questions. Given this wide variety of questions,
we wanted to see if there are specific types of questions
for which an elimination module makes more sense. To do
so, with the help of in-house annotators, we categorize the
questions in the test dataset into the following 13 categories
using scripts with manually defined rules: (i) 6 Wh-question
types, (ii) questions asking for the title/meaning/key idea
of the passage, (iii) questions asking whether the given
statement is True/False, (iv) questions asking for a quantity
(e.g., how much, how many) (v) fill-in-the-blanks questions.
We were able to classify 91.26% of questions in the test
set into these 12 categories and the remaining 8.74% of
questions were labeled as miscellaneous. The distribution of
questions belonging to each of these categories in RACE-H
and RACE-M are shown in Figure 3.

Training Procedures: We try two different ways of train-
ing the model. In the first case, we train the parameters of all
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Figure 3: Distribution of different question types in the RACE-Mid
(top) and RACE-High (bottom) portions of the dataset

the modules (encoder, interaction, elimination, and selection)
together. In the second case, we first remove the elimination
module and train the parameters of the remaining modules.
We then fix the parameters of the encoder and interaction
module and train only the elimination and selection module.
The idea was to first help the model understand the document
better and later focus on elimination of options (in other
words, ensure that the entire learning is focused on the
elimination module). Of course, we also had to learn the
parameters of the selection module from scratch because it
now needs to work with the refined passage representations.
Empirically, we find that this pre-training step does not
improve over the performance obtained by end-to-end
training. Hence, we report results only for the first case (i.e.,
end-to-end training).

Hyperparameters: We restrict our vocabulary to the
top 50K words appearing in the passage, question, and
options in the dataset. We use the same vocabulary for the
passage, question, and options. We use the same train, valid,
test splits as provided by the authors. We tune all our models
based on the accuracy achieved on the validation set. We
initialize the word embeddings with 100 dimensional Glove
embeddings [Pennington et al., 2014]. We experiment with
both fine-tuning and not fine-tuning these word embeddings.
The hidden size for BiGRU is the same across the passage,
question, and option and we consider the following sizes

:{64, 128, 256}. We experiment with {1, 2, 3} hops in the
interaction module and {1, 3, 6} passes in the elimination
module. We add dropout at the input layer to the BiGRUs
and experiment with dropout values of {0.2, 0.3, 0.5}. We
try both Adam and SGD as the optimizer. For Adam, we set
the learning rate to 10−3 and for SGD we try learning rates
of {0.1, 0.3, 0.5}. In general, we find that Adam converges
much faster. We train all our models for upto 50 epochs as
we do not see any benefit of training beyond 50 epochs.

Models Compared: We compare our results with the
current state of the art model on RACE dataset, namely,
Gated Attention Reader [Dhingra et al., 2017]. This model
was initially proposed for cloze-style RC and is, in fact, the
current state of the art model for cloze-style RC. The authors
of RACE dataset adapt this model for RC-MCQ by replacing
the output layer with a layer which computes the bilinear
similarity between the option and passage representations.

5 Results and Discussions
In this section, we discuss the results of our experiments.

Figure 4: Performance of ElimiNet and Gated Attention Reader
(GAR) on different question categories in RACE-Full (top), RACE-
Mid (mid) and RACE-High (bottom). The categories in which our
model outperforms GAR are marked with *.
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5.1 Performance of Individual Models
We compare the accuracy of different models on RACE-Mid
(middle school), RACE-High (high school) and full RACE
test-set comprising of both RACE-Mid and RACE-High. For
each dataset, we compare the accuracy for each question type.
These results are summarized in Figure 4. We observe that
on RACE-Mid ElimiNet performs better than Gated Atten-
tion Reader (GAR) on 9 out of 13 categories. Similarly, on
RACE-High ElimiNet performs better than GAR on 6 out of
13 categories. Finally, on RACE-full, ElimiNet performs bet-
ter than GAR on 7 out of 13 categories. Note that, overall on
the entire test set (combining all question types) our model
gives a slight improvement over GAR. The main reason for
this is that the dataset is dominated by fill in the blank style
questions and our model performs worse by only 2% on such
questions. However, since nearly 50% of the questions in the
dataset are fill in the blank style questions even a small drop
in the performance on these questions, offsets the gains that
we get on other question types.

5.2 Ensemble of Different Models
Since ElimiNet and GAR perform well on different question
types we believe that taking an ensemble of these models
should lead to an improvement in the overall performance.
For a fair comparison, we also want to see the performance
when we independently take an ensemble of n GAR models
and n ElimiNet models. We refer to these as GAR-ensemble
and ElimiNet-ensemble models. Each model in the ensemble
is trained using a different hyperparameter setting and we use
n = 6 (we do not see any benefit of using n > 6). The results
of these experiments are summarized in Table 1. ElimiNet-
ensemble performs better than GAR-ensemble and the final
ensemble gives the best results. We observe the ElimiNet-
ensemble performs significantly better on RACE-Mid dataset
than the GAR-ensemble and gives almost the same perfor-
mance on the RACE-High dataset. Overall, by taking an en-
semble of the two models we get an accuracy of 47.2% which
is 3.1% (relative) better than GAR and 1.3% (relative) better
than GAR-ensemble.

5.3 Effect of Subtract Gate
We wanted to see if the subtract gate enables the
model to learn better (by performing partial orthogonaliza-
tion/alignment). For this, we compared the accuracy with
and without the subtract gate (we set the subtract gate to a
vector of 1s). We observed that the accuracy of our model
drops from 44.33% to 42.58% and we outperformed the GAR
model only in 3 out of 13 categories. This indicates that the
flexibility offered by the subtract gate does help the model.

5.4 Visualizing Shift in Probability Scores
If the elimination module is indeed learning to eliminate op-
tions and align/orthogonalize the passage representation w.r.t
the uneliminated/eliminated options then we should see a
shift in the probability scores as we do multiple passes of
elimination. To visualize this, in Figure 5, we plot the prob-
abilities of the correct option and the incorrect option with
the highest probability before passing through elimination

Model RACE-
Mid

RACE-
High

RACE-
Full

SA Reader 44.2 43.0 43.3
GA Reader (GAR) 43.7 44.2 44.1
ElimiNet 44.4 44.5 44.5
GAR Ensemble 45.7 46.2 45.9
ElimiNet Ensemble 47.7 46.1 46.5
GAR + ElimiNet (ensem-
ble of above 2 ensembles)

47.4 47.4 47.2

Table 1: Performance of individual and ensemble models

Figure 5: Change in the probability of correct option and incorrect
option (initially predicted with highest score) over multiple passes of
the elimination module. The two figures correspond to two different
examples from the test set.

module for two different test instances. We observe that as we
do multiple passes of elimination, the probability mass shifts
from the incorrect option (blue curve) to the correct option
(green curve). This indicates that the elimination module is
learning to align the passage representation with the correct
option (hence, increasing its similarity) and moves it away
from the incorrect option (hence, decreasing its similarity).

6 Conclusion
We focus on the task of Reading Comprehension with Mul-
tiple Choice Questions and propose a model which mimics
how humans approach this task. Specifically, the model uses
a combination of elimination and selection to arrive at the
correct option. This is achieved by introducing an elimina-
tion module which takes a soft decision as to whether an op-
tion should be eliminated or not. It then modifies the passage
representation to either align it with uneliminated options or
orthogonalize it to eliminated options. The amount of orthog-
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onalization or alignment is determined by two gating func-
tions. This process is repeated multiple times to iteratively
refine the passage representation. We evaluate our model on
the recently released RACE dataset and show that it outper-
forms current state of the art models on 7 out of 13 question
types. Finally, using an ensemble of our elimination-selection
approach with a state of the art selection approach, we get an
improvement of 3.1% over the best reported performance on
RACE dataset. As future work, instead of soft elimination we
would like to use reinforcement learning techniques to learn
a policy for hard elimination.
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KyungHyun Cho, and Yoshua Bengio. Empirical evalua-
tion of gated recurrent neural networks on sequence mod-
eling. CoRR, abs/1412.3555, 2014.

[Cui et al., 2017] Yiming Cui, Zhipeng Chen, Si Wei, Shi-
jin Wang, Ting Liu, and Guoping Hu. Attention-over-
attention neural networks for reading comprehension. In
ACL (1), pages 593–602. Association for Computational
Linguistics, 2017.

[Dhingra et al., 2017] Bhuwan Dhingra, Hanxiao Liu, Zhilin
Yang, William W. Cohen, and Ruslan Salakhutdinov.
Gated-attention readers for text comprehension. In ACL
(1), pages 1832–1846. Association for Computational Lin-
guistics, 2017.

[Hermann et al., 2015] Karl Moritz Hermann, Tomás Ko-
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