
Functional Partitioning of Ontologies for Natural Language Query Completion in
Question Answering Systems

Jaydeep Sen, Ashish Mittal, Diptikalyan Saha, Karthik Sankaranarayanan
IBM Research AI

jaydesen@in.ibm.com, arakeshk@in.ibm.com, diptsaha@in.ibm.com, kartsank@in.ibm.com

Abstract

Query completion systems are well studied in the
context of information retrieval systems that han-
dle keyword queries. However, Natural Language
Interface to Databases (NLIDB) systems that focus
on syntactically correct and semantically complete
queries to obtain high precision answers require a
fundamentally different approach to the query com-
pletion problem as opposed to IR systems. To the
best of our knowledge, we are first to focus on
the problem of query completion for NLIDB sys-
tems. In particular, we introduce a novel concept
of functional partitioning of an ontology and then
design algorithms to intelligently use the compo-
nents obtained from functional partitioning to ex-
tend a state-of-the-art NLIDB system to produce
accurate and semantically meaningful query com-
pletions in the absence of query logs. We test the
proposed query completion framework on multiple
benchmark datasets and demonstrate the efficacy of
our technique empirically.

1 Introduction
The omnipresence of mobile devices coupled with recent
advances in natural language processing capabilities has
resulted in a growing number of natural language inter-
faces [Popescu et al., 2003; Li and Jagadish, ; Saha et al.,
2016] enabling naive users to interact with the data without
the need of knowing technical query languages such as SQL
or even the exact schema of the data.

Query completion systems seek to provide intelligent sug-
gestions to complete partial queries as a user is typing her
query. Typical users can view these query suggestions while
typing on the fly and can either select one of these sugges-
tions or simply keep typing. Such a feature has several prac-
tical benefits. Firstly, the user does not need to type the rest
of the query if she finds her intended query in one of the op-
tions. Secondly, such auto-completions provide confidence to
the user that the system will be able to answer those complete
queries since these suggestions are generated by the system it-
self. This becomes even more important for NLIDB systems
because they are domain specific applications and often the

end user may not be completely aware of the domain schema
to write complete queries.

While the problem of query completion has been stud-
ied very well in the context of IR systems working with
keyword queries[Baeza-Yates et al., 2004; Cao et al., 2008;
Bhatia et al., 2011], for NLIDB systems the aim is quite dif-
ferent. Going beyond just keyword queries, here query com-
pletion requires generating semantically correct and complete
queries which must be answerable in that domain. To the
best of our knowledge, for the first time we are designing and
evaluating a query completion framework in the context of
NLIDB systems. Most often NLIDB systems are deployed
in BYOD (Bring Your Own Data) settings to enable users to
search their own data. Therefore, here we consider the prob-
lem of query completion for NLIDB systems without assum-
ing the availability of any query logs.

In this paper, we present an ontology-driven approach
for query completion where we build our system on top
of a state-of-the-art domain-specific NLIDB system called
ATHENA [Saha et al., 2016]. The contribution of this paper
is as follows:

• We present a novel ontology-based query completion al-
gorithm for NLIDB systems.

• We propose a novel ontology partitioning technique
called functional partitioning which can be employed to
find semantically close and most relevant queries.

• We are the first to measure the performance of (any)
query completion on NLIDB systems with relevant met-
rics and subsequently demonstrate the efficacy of our
technique on 6 varied benchmarks.

2 Background and Motivation
In this section we first present a background on ontology and
ontology driven interpretation building. Next, we also de-
scribe the common challenges associated with query sugges-
tion on NLIDB systems as a motivation for our present work.

2.1 Notations
We follow the W3C OWL standard definition for ontologies
[W3C, 2009] where an ontology defines a set of represen-
tational primitives with which to model a domain of knowl-
edge. We denote the set of classes or concepts as C, the set of

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4331

Investor Investment Investee

InvesteeCompany Security

Lender
Commitment

LoanAgreement

Borrower Company

PublicCompany

Education

Person

Employment

Transaction

Insider

InsiderCompany InsiderPerson

isA

isA

isA

isA

isA

isA

unionOf

unionOf

unionOf

unionOf

for

for

by

by

from

on

issuedBy

borrowedBy

has

lentBy
loan

Education

of

Transaction

Investment

Figure 1: Partial Finance Ontology with Functional Partitioning

properties as P, and the set of relationships as R. A relation-
ship (or a relation, in short) defines a association between a
pair of classes rk = (ci,c j) ∈ R. A semantic graph G = (V,E)
is a directed graph constructed from an ontology where V =C
and E = R i.e. edges exist between concepts taking part in
a relation. One such graph (along with components as dis-
cussed in Section 3.1) is shown in Figure 1 corresponding to a
fragment of financial domain ontology commonly used in the
industry. As can be seen in Figure 1, the relations are of three
types, namely membership, inheritance, and functional. For
membership and inheritance, the edge direction is from par-
ent concept to child (or member) concept. Examples include
Company→ Lender or Insider→ InsiderCompany etc.. For
a functional relation, the direction of edges is from concept
with cardinality n to a concept with cardinality 1. For exam-
ple, Commitment → Lender implies one lender can perform
multiple commitments and thus the edge direction is from
Commitment to Lender. For relationships like employment
which is an m : n relationship between Person and Company,
the semantic graph contains an intermediate concept generat-
ing two 1 : n type relationship as Employment → Company
and Employment→ Person.

2.2 Ontology-driven NLQ Interpretation
We take a state-of-the-art NLIDB system ATHENA[Saha et
al., 2016] as a reference to discuss the general algorithm for
ontology-driven natural language query (NLQ) interpretation
which forms the basis of many existing approaches [Popescu
et al., 2003; Li and Jagadish,].

The algorithm first produces evidence that one or more on-
tology elements (concept, relation, property) have been refer-
enced in the input NLQ. Formally, an evidence vi : ti 7→ Ei
maps a token ti (a word in the NLQ text) to a set of on-
tology elements Ei ⊆ {C ∪ R ∪ P} called candidates. In
general a token can match multiple elements in the ontol-
ogy. For example, the token “year” is mapped to properties
Transaction.purchase year and
LoanAgreement.period of report year amongst others.

Next a set of selected sets is computed from the Evi-
dence Set V . A selected set (SS) is formally defined as
SS = {(ti 7→ ei) | ∀ (ti 7→ Ei) ∈V, ∃ ei ∈ Ei}, and formed
by iterating over all evidences (ti 7→ Ei) in V and collecting a
single ontology element (ei) from each evidence’s candidates
(Ei). Thus selected set (SS) generated from an Evidence Set V
stands for a specific mapping from a token to a single ontol-
ogy element. For each selected set typical approaches [Tata
and Lohman, 2008; Saha et al., 2016] use Steiner Tree based
algorithms to generate the most compact subgraph connect-
ing all the elements in the selected set in the ontology graph
and thus producing a single interpretation per selected set.
Along with ontology-based interpretation, any NLIDB sys-
tem such as ATHENA also employs annotators to tag tokens
for clauses such as SELECT, WHERE, GROUP BY, ORDER
BY etc.. The interpretation and annotations together produce
a unique target SQL query.

2.3 Challenges in Query Completion on a NLIDB
system

Given a partial query, a possible way to suggest completions
is to build the semantic graph corresponding to the ontology
element matches from the partial query and then extend the
semantic graph by including more ontology elements. The
major challenge here is to select which elements to include
to expand the partial query semantic graph. This challenge is
illustrated using the example with Figure 2.

Figure 2: Query suggestion from Partially Typed User Query

For the partial query “Show me Citibank” (see Figure 2),
the token “Citibank” maps to Company.Name and its many
other child concepts’ Name property. Using the map from
”Citibank” to Lender.name, concepts like LoanAgreement,
LoanCommitment can be reached which can be used to extend
the partial query subgraph for a possible query completion
Show me Citibank’s loans to Caterpillar. Similarly, it is also
possible to generate queries like Show me Citibank employees
degrees by exploring the path Company- Compensation-
Person- Education. However, this is more complex query
involving a sub-query to know Citibank’s Employees first be-
fore knowing their degrees. Even though both the queries
involve exactly 4 concepts and 3 edges, they differ in their
inherent complexity. This explains why just a simple graph
traversal to include new concepts within a certain number of
edges is not good enough for identifying complexity levels
of suggested queries and motivates the use of partitioning the
ontology to identify exploration boundaries dynamically.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4332

Figure 3: Examples for conditional Merge rule

Algorithm 1: Finding Functional Partition
Input: Semantic Graph
Output: P = {Ci, . . . ,Cn}

1 Initialize P = RF
2 // Computation of Base components
3 foreach ci ∈ConceptSet do
4 // apply merge rule Merge (ci,c j),(ci,ck) to Ci if {(ci,c j),(ci,ck)} ⊆ RF

5 while(some change in P)
6 // apply conditional merge rule foreach ci ∈ConceptSet do
7 Add {(ci,c j)} to Cn, if ∀ck ,(ck ,ci) ∈ Cn.

8 // Computation of derived components
9 foreach C ∈ P do

10 C ′ = C
11 while no change in C ′ do
12 foreach (p,c) ∈ RI ,(ck , p) ∈ C ′ do
13 C ′ = C ′ ∪{(p,c)}

14 foreach (u,m) ∈ RM ,(ck ,m) ∈ C ′ do
15 C ′ = C ′ ∪{(u,m)}

16 P = P∪{C ′}

3 Proposed System and Algorithms
Our proposed system is based on a novel concept of func-
tional partitioning of ontology introduced in this paper. In
this section, first we focus on formally defining functional
partitioning and then we show how to use it in doing query
completions for NLIDB systems.

3.1 Definition of Functional Partitioning
We start with defining the basics over which the notion
of functional partitioning is formally defined and then we
present the algorithm for computing such a partition.
Definition 3.1 Uniquely Identifies(ui): The Relation
“uniquely identifies (ui)” is defined on an ordered pair of
concept C1 and C2, where ui(C1,C2) is true iff a unique
instance of C2 can be inferred from any instance of C1.

This is typically the case if C1 and C2 is having a n : 1 rela-
tionship, where an instance of C1 can uniquely identify the
corresponding related instance of C2. Therefore, following
the convention from Section 2.1, ui(C1,C2) is equivalent to
(C1,C2) ∈ RF .
Corollary 3.0.1 Relation ui is transitive.
This follows from the definition.
Corollary 3.0.2 Transitive closure of ui produces a partition
in RF where the components may not be disjoint.
This can be seen in Figure 3(c) where the transitive closure
from concept C2 is {C2,C1,C4} and the transitive closure
from concept C3 is {C3,C1,C4}, which are not disjoint. Next
we formally define functional partitioning with specific rules.

A functional partition P divides the functional relations RF
of an ontology into disjoint sets, called components, subject
to the following criteria:

• Merge rule: All outgoing functional relationship of
a concept belong to the same component. Formally,
{(ci,ck),(ci,c j)} ⊆C, {(ci,ck),(ci,c j)} ∈ RF .

• Conditional merge rule: If all incoming functional re-
lationship of a concept belong to the same component
then its outgoing functional relationships are also in the
same component. Formally, (ci,c j) ∈C, if {ck|(ck,ci) ∈
RF}= {cl |(cl ,ci) ∈C}.

• Minimality: Component size should be minimal. In
other words, maximal number of components should be
formed based on the above rules.

As seen in Figure 1, functional partitioning produces dif-
ferent components for each of the 6 domain functionalities
viz. “Loans”, “Employment”, “Investments”, “Transactions”,
“Security” and “Education’, while each has its own disjoint
set of functional relations.
Merge rule: As mentioned earlier, a component is formed
by taking related functionalities together. The decision of in-
cluding the relations (ci,c j) and (ci,ck) into a single compo-
nent follows from the fact that an instance of ci can uniquely
identify instances of both c j and ck, so they must be re-
lated. The two functional relationships between Commitment,
LoanAgreement, Lender in Figure 1 is such an example.
Conditional merge rule: Conditional merge rule considers
incoming functional relationships to see which of the com-
ponents can be merged. It states if the incoming functional
relationships are all in the same component C then the out-
going functional relationships should also be in C. There
can be different possible instances of this rule as shown in
Figure 3. In the first case (a), there is only single incom-
ing edge and therefore (c2,c1) and (c1,c4) are in the same
component. In our running example, this is seen for relation-
ships between Commitment, LoanAgreement, and Borrower.
The second case in Figure 3(b) also makes the incoming rela-
tionship component same as the outgoing relationship’s com-
ponent. The third case (c) considers the general case where
there are multiple incoming edges. If both the incoming re-
lationships are not in the same component the outgoing re-
lationship’s component cannot be merged with either of the
incoming relationship’s component.

Consider the relationships between Employment, Person,
and Education. Both the relationships cannot be put to the
same component by either of the above rules. And therefore,
because of the minimality constraint, they are kept in the dif-
ferent component. The intuition again follows the uniqueness
criteria. In this case, an instance of Person can be related
to multiple instances of Employment and Education. Thus
one instance of Employment can not uniquely identify the
instances of Education or vice versa.

Note that the merge rule and conditional merge rule work
on the functional relationship. The parent (or union) concept
are not part of same components. This is intuitive too as each
child concept is involved in a specialized functionality that
applies exclusively to itself and not with its parent. Our al-
gorithm first identifies a set of components, called base com-
ponents, following the rules presented above on the semantic
graph. Then for each base component, a derived component

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4333

Algorithm 2: Generating Suggestions using Functional
Partitioning

Input: Partial Query pQ, Ontology O, Annotations A : ti 7→ OQLclause, Partition
P = C1, . . . ,Cn

Output: Qs = {Qs1,Qs2, ...,Qsn}
1 //Initialize the set of suggestions QSs = {}
2 //generate evidence set form Partial Query
3 Evidence Set V = {(ti 7→ Ei) | ti ∈ pQ,Ei ∈ O}
4 //generate selected sets from the tokens in partially typed query

SS = {(ti 7→ ei) | ∀ (ti 7→ Ei) ∈V, ∃ ei ∈ Ei}
5 Component [] targetComponents = {}
6 // compute the set of target base components for level I completion of pQ
7 foreach selected set ss ∈ SS do
8 if ∃ti such that Annotation (ti) = Queryselect then
9 foreach Component Ci ∈ P do

10 if ei ∈Ci then
11 targetComponents = targetComponents+Ci

12 else
13 targetComponents = {(Ci ∈ P) | ∀ ei ∈ ss,∃Ci s.t. ei ∈Ci}

14 foreach Component Ci ∈ targetComponents do
15 foreach Concept C ∈Ci do
16 foreach Property p ∈C do
17 if p is of semanticType Year then
18 ss = ss + p
19 Annotation(p)←{Query.groupBy,Query.where}

20 if p is namedProperty then
21 ss = ss + p
22 Annotation(p)←{Query.groupBy,Query.where}

23 if p is measureProperty then
24 ss = ss + p
25 Annotation(p)←{Query.select}

26 Default:
27 ss = ss + p
28 Annotation(p)←{Query.select}

29 InterpretationTree ITreess← Generate Interpretation(ss)
30 foreach AnnotaionMap am of ei ∈ ss do
31 oql← Generate OQL using ITreess and annotation map am
32 query← Generate a natural language query using am on ITree
33 Qs = Qs+query

34 return Qs

is formed by additionally including inheritance and member-
ship relations from parent to child.

The algorithm for finding a functional partition is presented
in Algorithm 1. Initially, each functional relationship can
be considered as a single component. The algorithm is es-
sentially a fixed point algorithm which iteratively applies the
rules till there is no change found in the partition.Note that
the merge rule can be applied only once for each concept as
its repeated application will not change the partition. That
optimization is performed in the first step of the algorithm
in Lines 3-4. As the application of conditional merge rule
merges two partitions it has to applied repeatedly until there
is no change in the partition (Lines 5-7). Finally, each base
component, identified by the last step, is extended to include
the is-a or membership edges to include the child concepts.
The process ends when no more is-a or membership edges
can be added (Lines 9-16).

The time complexity of the algorithm is O(|RF |2). As al-
ready described, functional partitioning purely depends on
the ontology structure and so is not affected by poor database
design.

Algorithm 3: Finding set of related components for gen-
erating multi level query completions

Input: Partial Query pQ, Ontology O, Annotations A : ti 7→ Queryclause, Partition
P = C1, . . . ,Cn

Output: QS1,QS2, ...,QSn
1 Component [] targetComponents = Get target base components from Algorithm 2
2 Component[] expandedTargetComponents = {}
3 foreach Component c ∈ targetComponents do
4 Component[] derivedComponents =

{DC ∈ P,DC is a dervied component| DC∩ c 6= φ}
5 foreach Derived Component dc ∈ DC do
6 foreach Base Component bc ∈ P do
7 if dc∩bc 6= φ ‖ c∩bc 6= φ then
8 expandedTargetComponents =

expandedTargetComponents+{bc}

9 foreach Interpretation Tree Itree built across components in
expandedTargetComponents do

10 Q = Build Query from ITree
11 Assign level of Q← number of components involved in Itree
12 Qs = Qs + {Q}

3.2 Query Completion
In this section, we first propose the criteria of a good query
completion system on NLIDB that can address the challenges
mentioned in Section 2.3. Then we formally design func-
tional partition based algorithms to meet the criterion. Below
we capture the criteria of desired query completions.

Multi Level Query Completions:
We formally define the complexity level of a query as the
number of additional components needed to complete the
query beyond the components needed to capture the partial
query. By this definition, for the partial query “show me
Citibank”, both the query completions “Show me Citibank
Loans” and “Show me Citibank Employees” are in level I
involving only a single component of Loans and Employ-
ment respectively. Whereas “Show me Citibank employ-
ees degrees” is in level II spanning two components of
Employment, Education. Moreover, the complexity level of
a query completion is defined over the partial query entered.
So the same query completion “Show me Citibank employees
degrees” will actually be in level I for the partial query “Show
me Citibank employees”. Thus for a given partial query, the
idea of Multi-level query completion is to divide the complete
set of possible query completions into different levels as per
their complexity and then provide query completions only till
a certain level to address the challenge of generating only a
precise and relevant set of query completions among combi-
natorially huge number of possible completions.

Algorithm 2 presents the approach that uses functional
partitioning to make level I query completions for a partial
query. Line 3- 13 analyzes the evidence sets (as described
in Sec 2.2) from the partial query to identify the components
referred by the partial query. Note that, if the partial query
already includes an evidence with select annotation, that ev-
idence alone is used to find the right component for the par-
tial query(Line 11). The identified components are used to
find ontology elements to extend the semantic graph obtained
from the partial query. The domain semantics captured in
the ontology are used to assign most likely annotations for

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4334

Partition Characteristics
Ontology #Base #derived Time(in ms) #Unique #Across
FIN 48 72 32.3 68(91%) 7(9%)
MAS 11 11 5.7 71(36%) 125(64%)
IMDB 10 18 4.5 101(79%) 27(21%)
Yelp 3 3 2.3 115(88%) 16(12%)
Software 38 50 38.1 50(94%) 4(6%)
Institution 37 49 19.2 49(92%) 4(8%)

Table 1: Summary statistics

the extended elements (Line 17- 28). For example, a prop-
erty having semantic type “year” can be used in queries as
Where conditions e.g. in 2011 or they can also be used in
GroupBy clause e.g. by year. The interpretation tree obtained
from the extended semantic graph together with the assigned
annotations produces a unique query interpretation(Line 31).
Finally, Line 32 translates each interpretation to produce nat-
ural language query completions.

While Algorithm 2 presents an approach to suggest only
level I queries, Algorithm 3 extends it further to suggest query
completions spanning across multiple partitions and thus be-
longing to Level II and so on. The key part here is to use
derived components (Line 4-Line 8) to find possible com-
mon join concepts between two disjoint base components.
So queries like “show me investments in Companies hav-
ing loans from Citibank” can now be produced by combining
Loans and Investments via Company as the join concept.

4 Experiments
In this section, we experiment with 6 publicly available on-
tologies to test the efficacy of functional partitioning based
approach for query completion. The chosen ontologies are
(1)FIN (2)MAS (3)YELP (4)IMDB (5)Software (6)Institu-
tion. Among the chosen ontologies FIN, MAS, IMDB, YELP
have already been widely used in previous NLIDB papers
such as NALIR [Li et al., 2005], ATHENA [Saha et al.,
2016], SQLizer [Yaghmazadeh et al., 2017]. In addition to
that, we chose two other publicly available ontologies Insti-
tution [ins, 2014] and Software [sof, 2012]. The set is so cho-
sen that it includes complex ontologies like FIN, Software,
Institution with a much richer set of relationships including
multiple isA and union and also relatively simple ontologies
like IMDB, Yelp or MAS. For each of the ontologies, we em-
ploy a set of query workload answerable over the ontology.
For existing datasets like FIN, MAS, IMDB, Yelp we used
the same publicly available query workload as was used in
their respective publications [Saha et al., 2016; Li et al., 2005;
Yaghmazadeh et al., 2017], whereas, for Software and Insti-
tution we asked a group of users familiar with ontology to
create answerable queries for that domain. Table 1 tabulates
the time taken for computing partitions and also other impor-
tant statistics we obtain while applying functional partitioning
for each of the ontologies and their query workloads.

As seen in Table1 FIN being the largest ontology with 75
concepts produces 48 base components and 72 derived com-
ponents, followed by Software and Institution which are the
next two biggest ontologies. For all the ontologies except
MAS, most of the queries are within a unique single partition,
which implies that they can be suggested as Level I queries

itself. The only exception MAS has a number of queries on
join tables between multiple components, resulting in com-
paratively poor coverage with single components.

4.1 Experimental Setup
We generate partial queries from each of the queries in the
query workloads across ontology by considering prefixes at
different positions. The prefix positions are varied in three
levels viz P1: Prefix query with only the first evidence key-
word, Pn: Prefix query with all the evidence keywords ex-
cept the last one and Pmid: Prefix query with more keywords
than P1 but less than Pn. For each partial query, we treat the
complete queries as the target query that the auto-completion
should be able to suggest.

To evaluate functional partitioning based query completion
(hereafter called as QC1), we compare it with a baseline ap-
proach (hereafter called QC2) that is motivated by the exist-
ing works on ontology based query expansion [Wu et al.,
2011] in IR domain where the common idea is to use ontol-
ogy edges for extending the semantic graph. Because QC2 is
unaware of any partition boundaries, it uses a distance thresh-
old to choose candidate ontology elements for extending the
semantic graph. For QC1, as already defined, the number of
components needed for the complete query defines the level
for query completion. To have a fair comparison with QC1,
the level for QC2 is defined as follows: if the distance be-
tween farthest nodes in a query completion qc from QC2 is
less than the average component size for that ontology, qc is
considered as the level I query for QC2, distance less than
twice the average component size is level II and so on.

Evaluation Results
We first define the most relevant metrics to evaluate auto-
completion in NLIDB system and then compare QC1 and
QC2 with respect to each of them. The common setup for all
the defined metrics has a partial query qp and a query com-
pletion system like QC1 or QC2 suggests a set of query com-
pletions with that partial query as prefix i.e. QSc = {qc |qc has
qp as prefix}. The metrics are all defined on QSc.

Recall: Given a partial query qp, if QSc contains the ac-
tual query intended by the user, the query completion system
generating QSc has a recall value 1 for that partial query qp,
otherwise 0. The recall value of the benchmark dataset can
be computed as the average recall value over the set of bench-
mark partial queries created for that domain.

The recall values presented in Figure 4 are computed con-
sidering P1 as the prefix query. The task of suggesting query
completions from P1 is most challenging because P1 with
only the first evidence keyword has the least available infor-
mation about the intended query. As seen in Figure 4, for all
the ontologies Level I recall is higher for QC1 than QC2 and
also most of the queries can be recalled in Level I queries it-
self. Although the recall value is seen to increase from level I
to level III, it is equally important to compute the total num-
ber of suggestions that the system had to make to the user in
order to produce the correct one. So next we compute the
Average Suggestion Rank for both QC1, QC2.

Average Suggestion Rank: Given a partial query qp and
the actual intended query from the user being qi, suggestion

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4335

Figure 4: Recall Values

rank for qi is the position of qi in the set of suggested query
completions QSc. Average suggestion rank for a data set of
queries is defined as the average taken over suggestion rank
values found for all possible partial queries generated from
queries in the dataset.

Average Suggestion Rank is key to differentiate between
two query completion systems both having a good recall but
only one of them making more relevant and precise sugges-
tions, while the other may suggest all possible queries.

As seen in Figure 5 QC1 always has a significantly lesser
number of suggestion count than QC2 for all datasets and re-
call levels. However, the average suggestion count at recall
level 2 for QC1 is around 14, much higher than the recall
level 1 average which was 4. For a general system with arbi-
trarily large ontology, the difference can even increase more.
Thus it is only fair for a query completion system to work
only with recall level 1.

As the recall level depends also on the partial
query(Section 3.2), we study the effect of a partial query in
generating query completion suggestions in Figure 6. There
we tabulate the Average Suggestion Rank values for recall
level I by varying the prefix from P1 to Pn. An important
observation from Figure 6 is that as the user keeps typing
more keywords, QC1 becomes more precise and suggests
lesser number completions to the user.

Usability Score: This metric is aimed at measuring the user

Figure 5: Average Suggestion Count across multiple Recall Levels

Figure 6: Average Suggestion Count across Multiple Prefix

perception in terms of how much a query completion men-
tions the complete intent explicitly and unambiguously. The
usability score for a query completion qc from a partial query
qp is defined as either 1 or 0 depending on if qc explicitly
mentions values for all the filters applicable to that specific in-
tent of the query. For example, considering the partial query
qp as “show me Citibank”, a query completion q1

c = “show
me Citibank’s loans to caterpillar in last 5 years” can have us-
ability score as 1 but not query completions like q2

c = “show
me Citibank’s loans” or q3

c = “show me Citibank’s loans in
last 5 years”. Because this metric is more subjected to user
perception, the scores to compare QC1 and QC2 are collected
by doing a user survey, while a set of users scored each of the
suggested query completion as 0 or 1 depending on their per-
ception of complete and unambiguous suggestion of queries.

Table 2 shows Usability Score is also higher for QC1 than
QC2. QC1 being aware of component boundaries can provide
complete suggestions for each component.

Both QC1 and QC2 uses an interpretation over the ontol-
ogy graph to suggest a query completion. Therefore, every
suggestion has some associated meaning in domain ontology
and so a valid query. Thus precision although is an important
metric for query completion in IR systems, is not a differen-
tiator between QC1 and QC2.

The results demonstrate that our query completion system
can suggest precise query completions and in most cases can
retrieve the intended query by the user. Also the number of
provided suggestions are reasonably low to make the system
practically usable.

5 Related Work
In this section, we discuss related works mainly along two
categories (i) Query suggestions (ii) Ontology Partitioning

Usability Scores
Ontology |QC1| |QC2|
FIN 0.91 0.83
MAS 0.64 0.36
IMDB 0.88 0.67
Yelp 0.79 0.32
Software 0.98 0.94
Institution 0.92 0.42

Table 2: Usability Score the experimental ontologies

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4336

Query suggestion While query auto-completion and query
suggestion is a well-studied problem in information retrieval,
most of the existing works tend to fall into two categories.
They either rely on a history of query logs to generate these
suggestions [Baeza-Yates et al., 2004; Cao et al., 2008]
or they attempt to build a model of queries by analyzing
a corpus in the domain of interest [Bhatia et al., 2011;
Meij et al., 2009]. Some recent work tries to do ontology
based query suggestion. While [Song, 2015] suggests manu-
ally building a grammar from the ontology to guide the query
suggestion process, [Franconi et al., 2010] use drill-down like
intelligent UI features to explore all possible queries, disre-
garding the ranking problem altogether.
Ontology Partitioning In the existing literature, ontology
partitioning is utilized to achieve the goal of modulariza-
tion and help with maintenance, validation, publication, and
processing of large ontologies. Thus are mostly focused
on analyzing structural similarities to infer possible parti-
tions. Most prominent works try to partition the ontol-
ogy graph by analyzing the connection densities[Michel and
Stuckenschmidt, 2004; Schlicht and Stuckenschmidt, 2007].
Other approaches considering structural similarity, linguis-
tic features include [Ahmed et al., 2015; Zhang et al., 2011;
Etminani et al., 2010].

6 Summary and Future Work
In this paper, we present a novel ontology partitioning ap-
proach called functional partitioning and use it to build a
query completion framework on top of a state-of-the-art on-
tology based NLIDB system ATHENA. We experimentally
demonstrate that functional partitioning leads to precise and
accurate query completions for NLIDB systems even in the
absence of query logs.

There are two separate directions of future work - one in-
volving the functional partitioning based mechanism to ob-
tain follow up query recommendations and other involving
utilization of query logs (when available) to further improve
on the query completion system proposed in this work.

References
[Ahmed et al., 2015] Soraya Setti Ahmed, Mimoun Malki,

and Sidi Mohamed Benslimane. Ontology partitioning:
Clustering based approach. In I.J. ITCS, pages 1–11, 2015.

[Baeza-Yates et al., 2004] Ricardo Baeza-Yates, Carlos Hur-
tado, and Marcelo Mendoza. Query recommendation us-
ing query logs in search engines. EDBT’04, pages 588–
596, Berlin, Heidelberg, 2004. Springer-Verlag.

[Bhatia et al., 2011] Sumit Bhatia, Debapriyo Majumdar,
and Prasenjit Mitra. Query suggestions in the absence of
query logs. SIGIR ’11, pages 795–804, New York, NY,
USA, 2011. ACM.

[Cao et al., 2008] Huanhuan Cao, Daxin Jiang, Jian Pei,
Qi He, Zhen Liao, Enhong Chen, and Hang Li. Context-
aware query suggestion by mining click-through and ses-
sion data. In KDD, KDD ’08, pages 875–883, New York,
NY, USA, 2008. ACM.

[Etminani et al., 2010] K. Etminani, A. Rezaeian Delui, and
M. Naghibzadeh. Overlapped ontology partitioning based
on semantic similarity measures. In 5th International Sym-
posium on Telecommunications (IST), 2010, pages 1013–
1018, 2010.

[Franconi et al., 2010] Enrico Franconi, Paolo Guagliardo,
and Marco Trevisan. Quelo: A nl-based intelligent query
interface. 622, 01 2010.

[ins, 2014] InstituteOntology. http://www.isibang.ac.
in/˜bisu/ontology/instOntology.owl, 2014.

[Li and Jagadish,] Fei Li and H. V. Jagadish. Constructing
an Interactive Natural Language Interface for Relational
Databases. VLDB,2014.

[Li et al., 2005] Yunyao Li, Huahai Yang, and H. V. Ja-
gadish. NaLIX: An Interactive Natural Language Interface
for Querying XML. In ACM SIGMOD, 2005.

[Meij et al., 2009] Edgar Meij, Marc Bron, Laura Hollink,
Bouke Huurnink, and Maarten Rijke. Learning semantic
query suggestions. ISWC ’09, pages 424–440, 2009.

[Michel and Stuckenschmidt, 2004] Klein Michel and
Heiner Stuckenschmidt. Structure-based partitioning of
large concept hierarchies. ISWC, 2004.

[Popescu et al., 2003] Ana-Maria Popescu, Oren Etzioni,
and Henry Kautz. Towards a Theory of Natural Language
Interfaces to Databases. In IUI, 2003.

[Saha et al., 2016] Diptikalyan Saha, Avrilia Floratou,
Karthik Sankaranarayanan, Umar Farooq Minhas,
Ashish R. Mittal, and Fatma Özcan. Athena: An
ontology-driven system for natural language query-
ing over relational data stores. Proc. VLDB Endow.,
9(12):1209–1220, August 2016.

[Schlicht and Stuckenschmidt, 2007] Anne Schlicht and
Heiner Stuckenschmidt. Criteria-based partitioning
of large ontologies. In International Conference on
Knowledge Capture, K-CAP ’07, 2007.

[sof, 2012] SoftwareOntology. http://se-on.org/, 2012.
[Song, 2015] Dezhao Song. Tr discover: A natural language

question answering system for interlinked datasets. In In-
ternational Semantic Web Conference, 2015.

[Tata and Lohman, 2008] Sandeep Tata and Guy M.
Lohman. SQAK: Doing More with Keywords. In ACM
SIGMOD, 2008.

[W3C, 2009] W3C. http://www.w3.org/TR/
owl-guide/, 2009.

[Wu et al., 2011] Jiewen Wu, Ihab F. Ilyas, and Grant E.
Weddell. A study of ontology-based query expansion.
2011.

[Yaghmazadeh et al., 2017] Navid Yaghmazadeh, Yuepeng
Wang, Isil Dillig, and Thomas Dillig. 2017.

[Zhang et al., 2011] Liang Zhang, Kun Liu, Xue Qin, and
Shengqun Tang. Extracting module from owl-dl ontology.
In ICSEM, volume 1, pages 176–179, Oct 2011.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4337

