Aspect Sentiment Classification with both Word-level and Clause-level Attention Networks

Jingjing Wang1, Jie Li3, Shoushan Li1,* , Yangyang Kang2, Min Zhang1, Luo Si2, Guodong Zhou1
1School of Computer Science and Technology, Soochow University, China
2Alibaba Group, China
3School of Computer Science and Engineering, Southeast University, China
1djingwang@gmail.com, {lishoushan, minzhang, gdzhou}@suda.edu.cn,
3jennyetjieli@gmail.com, {yangyang.kangyy, luo.si}@alibaba-inc.com

Abstract
Aspect sentiment classification, a challenging task in sentiment analysis, has been attracting more and more attention in recent years. In this paper, we highlight the need for incorporating the importance degrees of both words and clauses inside a sentence and propose a hierarchical network with both word-level and clause-level attentions to aspect sentiment classification. Specifically, we first adopt sentence-level discourse segmentation to segment a sentence into several clauses. Then, we leverage multiple Bi-directional LSTM layers to encode all clauses and propose a word-level attention layer to capture the importance degrees of words in each clause. Third and finally, we leverage another Bi-directional LSTM layer to encode the output from the former layers and propose a clause-level attention layer to capture the importance degrees of all the clauses inside a sentence. Experimental results on the laptop and restaurant datasets from SemEval-2015 demonstrate the effectiveness of our proposed approach to aspect sentiment classification.

1 Introduction
The past decade has witnessed an exploding interest in sentiment analysis from natural language processing and data mining communities due to its inherent challenges and wide applications [Pang and Lee, 2007; Liu, 2012]. As a fine-grained sentiment classification task, aspect sentiment classification aims to identify the sentiment polarity for a particular aspect. For example, the sentence “The price was too high but the food was delicious” would be assigned with negative polarity for aspect “price” while with positive polarity for aspect “food”. Early studies typically employ traditional supervised learning algorithms which focus on designing a bag of features such as bag-of-words to train a classifier (e.g., Support Vector Machine, SVM) [Jiang et al., 2011; Pérez-Rosas et al., 2012].

*Corresponding author

Figure 1: An example sentence in the restaurant domain where the entity E and attribute A pair (i.e., E#A) defines the aspect category of the given text.

Recently, neural network approaches have shown promising results on sentiment classification, such as Recursive NN [Socher et al., 2011], Recursive NTN [Socher et al., 2013] and Tree-LSTM [Tai et al., 2015]. However, above neural network based approaches for sentiment classification just make use of the contexts without consideration of the aspect information while the aspect information should be an important factor for judging the aspect sentiment polarity. One possible way to incorporate the aspect information is to distinguish the importance of different texts with respect to a specific aspect.

First, for a specific aspect, the importance degrees of different words are different. For instance, in Figure 1, the words such as “great”, “tasty” contribute much in implying the positive sentiment polarity for the aspect FOOD#QUALITY. While, the words such as “is”, “and” don’t contribute. Therefore, a well-behaved neural network approach should consider the importance degrees of different words for predicting the sentiment polarity of a specific aspect.

Second, for a particular aspect, the importance degrees of different clauses are different. For instance, in Figure 1, the first and second clauses have much stronger information in assisting the prediction of the sentiment polarity for the aspect FOOD#QUALITY. In contrast, the third and fourth clauses are more relevant to the aspect AMBIENCE#GENERAL. Therefore, a well-behaved neural net-
work approach should consider the importance degrees of different clauses for predicting the sentiment polarity of a specific aspect. In particular, we propose a neural architecture, i.e., the Hierarchical Aspect-Specific Attention Network, which leverages both word-level and clause-level attentions to incorporate the importance degrees of both words and clauses in a sentence. First, we adopt a sentence-level discourse segmentation method to segment a sentence into several clauses. Then, we leverage multiple Bi-directional LSTM layers to encode all clauses and propose a word-level attention layer to capture the importance degrees of words in each clause. Third, we leverage another Bi-directional LSTM to encode the output from the former Bi-directional LSTM layers and propose a clause-level attention layer to capture the importance degrees of all clauses. Experimental results on the laptop and restaurant datasets from SemEval-2015 [Pontiki et al., 2015] demonstrate that our proposed approach outperforms a number of competitive baselines and even significantly performs better than the best-performed system Sentiuie in the shared task of SemEval-2015 [Saias, 2015].

2 Related Work

2.1 Aspect Sentiment Classification

In the literature, aspect sentiment classification is typically regarded as a text classification problem. Therefore, text classification approaches, such as SVM [Jiang et al., 2011], can be naturally applied to solve the aspect sentiment classification task without consideration of the mentioned aspect. Traditional machine learning approaches mainly focus on feature engineering to train a sentiment classifier [Jiang et al., 2011; Pérez-Rosas et al., 2012] and unable to discover the discriminative or explanatory factors of data. To solve this problem, [Dong et al., 2014] transfer a dependency tree of a sentence into a target-specific recursive structure, and get higher level representation based on that structure. [Vo and Zhang, 2015] use rich features including sentiment-specific word embedding and sentiment lexicons. [Guan et al., 2016] propose a novel deep learning framework for review sentiment classification which employs prevalently available ratings as weak supervision signals. [Tang et al., 2016b] propose a neural based approach that determines sentiment towards a target word based on its position.

2.2 Aspect Sentiment Classification with Neural Networks

Recently, neural network approaches have shown promising results on sentiment classification, such as Recursive NN [Socher et al., 2011], Recursive NTN [Socher et al., 2013] and Tree-LSTM [Tai et al., 2015]. However, the neural network based approaches just make use of the contexts without consideration of aspects which also make great contributions to judging the sentiment polarity of aspect.

Therefore, in order to incorporate aspects into a model, [Wang et al., 2016] design deep memory networks which consist of multiple computational layers to integrate the target information. [Chen et al., 2017] also propose a deep memory network to integrate the target information, but the results of multiple attentions are non-linearly combined with a recurrent neural network. [Ma et al., 2017] propose an interactive learning approach, which interactively learns attentions in the contexts and targets.

Although above deep neural network models have achieved great success on aspect sentiment classification, they all ignore the incorporating knowledge of clause-level information in the model architecture. To the best of our knowledge, we are the first to address aspect sentiment classification with both word-level and clause-level attentions.

3 Hierarchical Aspect-specific Attention Network

In this section, we first introduce a clause recognition method to segment a sentence into several clauses. Then, we propose a hierarchical aspect-specific attention model which can concentrate on both the informative words and clauses corresponding to a given aspect in detail. Figure 2 shows the overview of the proposed approach to aspect sentiment classification.

Clause recognition is a non-trivial problem. Fortunately, in the literature, the clause recognition could be seen as a sub-problem of discourse segmentation which has been well-studied in the NLP community. Specifically, discourse segmentation is the task of breaking a given text into non-overlapping segments called elementary discourse units (EDUs) [Carlson et al., 2001]. Each EDU could be seen as a clause. In this study, we employ sentence-level discourse segmentation, which aims to segment a sentence into EDUs [Soricut and Marcu, 2003]. There exist several kinds of discourse theories and each of them has its own specificities in terms of segmentation guidelines and size of units. In this study, we adopt Rhetorical Structure Theory (RST) [MANN,
1988] due to its well-defined EDUs and perform sentence-level discourse segmentation to detect EDUs as clauses. For instance, after the sentence-level discourse segmentation, the example in Figure 1 is segmented into four non-overlapping clauses, i.e., $1A, 1B, 1C$ and $1D$, as shown in E1.

E1: [The food is great and tasty]1A [and the hot dogs are especially top notch]1B [but the setting space is too small]1C [and I don’t like the ambience]1D.

In the following, we introduce our hierarchical aspect-specific attention model to extract both the informative words and clauses corresponding to the specific aspect. Figure 3 shows the overall architecture of this approach which mainly consists of two components, i.e., a word-level aspect-specific attention module and a clause-level aspect-specific attention module. We will describe the details of the two modules as follows.

3.1 Word-level Aspect-specific Attention

Word Encoding Layer. Assume that a sentence has been segmented into C clauses c_i and each clause contains N_i words. I_{ij} represents the j-th word in the i-th clause. Given a clause c_i with the word I_{ij}, the vector representation $w_{ij} \in \mathbb{R}^{d_w+d_p}$ of word I_{ij} consists of its word embedding and position embedding [Zeng et al., 2014], which is calculated as $w_{ij} = E_w \cdot I_{ij} \oplus E_p \cdot I_{ij}$ where $E_w \in \mathbb{R}^{d_w \times |V|}$ is word embedding matrix and $E_p \in \mathbb{R}^{d_p \times |V'|}$ is position embedding matrix.

An aspect category consists of an entity and an attribute [Pontiki et al., 2015]. Specifically, the entity string e_{entity} of length L_1 is represented as $\{x_1, ..., x_{L_1}\}$ where $x_n \in \mathbb{R}^{d'}$ is the d'-dimensional vector of the n-th word in the entity string. The attribute string $e_{attribute}$ is represented as $\{z_1, ..., z_{L_2}\}$. Since the common word embedding representations exhibit linear structure that makes it possible to meaningfully combine words by an element-wise addition of their vector representations, we use the sum of the entity and attribute embeddings to obtain a more compact aspect representation, i.e.,

$$e_{aspect} = e_{entity} + e_{attribute} = \frac{1}{L_1} \sum_{n=1}^{L_1} x_n + \frac{1}{L_2} \sum_{n=1}^{L_2} z_n$$

Then, inspired by [Tang et al., 2016a], we append the aspect representation to the embedding of each word to form an aspect-augmented embedding for each word j, i.e.,

$$\hat{w}_{ij} = w_{ij} \oplus e_{aspect}; \quad \hat{w}_{ij} \in \mathbb{R}^{d + d'}, \quad i \in [1, C], \quad j \in [1, N_i]$$

where \oplus denotes the concatenate operator. C is the number of clauses and N_i is the number of words in the clause c_i. Noted that the dimension of \hat{w}_{ij} is $(d + d')$.

Then, we use a Bi-directional LSTM (namely, Bi-LSTM) [Graves et al., 2013], which can efficiently make use of past features (via forward states) and future features (via backward states) for a specific time frame, to get annotations of words by summarizing information from both directions for words. The Bi-LSTM contains the forward LSTM \overrightarrow{h}_{ij} which reads the clause c_i from the word $I_{i,1}$ to I_{i,N_i} and a backward LSTM \overleftarrow{h}_{ij} which reads from I_{i,N_i} to $I_{i,1}$:

$$\overrightarrow{h}_{ij} = \text{LSTM}(\hat{w}_{ij}); \quad i \in [1, C], \quad j \in [1, N_i]$$

$$\overleftarrow{h}_{ij} = \overline{\text{LSTM}}(\hat{w}_{ij}); \quad i \in [1, C], \quad j \in [N_i, 1]$$

We obtain an annotation for a given word I_{ij} by concatenating the forward hidden state \overrightarrow{h}_{ij} and backward hidden state \overleftarrow{h}_{ij} as follows:

$$h_{ij} = \overrightarrow{h}_{ij} \oplus \overleftarrow{h}_{ij}$$

which summarizes the information of the whole clause centered around the word I_{ij}.

Figure 3: The overall architecture of our proposed hierarchical aspect-specific attention approach
Word Attention Layer. Traditional LSTM model cannot capture the information about which words are important to the meaning of the clause. In order to address this problem, we design an attention mechanism which drives the model to concentrate on such words in the clause with respect to a specific aspect and aggregate the representation of those informative words to form a clause vector.

Figure 3(a) shows the details of the word-level attention module. Specifically, the following formulas are applied to compute the attention weight \(\alpha_{ij} \) (similarity or relatedness) between each word annotation \(h_{ij} \) and the aspect representation \(e_{aspect} \):

\[
u_{ij} = \tanh(W_w \cdot [h_{ij}; e_{aspect}] + b_w)
\]

\[
\alpha_{ij} = \text{softmax}(u_{ij}) = \frac{\exp(u_{ij})}{\sum_{t=1}^{N} \exp(u_{it})}
\]

where \([h_{ij}; e_{aspect}]\) denotes the vertical concatenation of \(h_{ij} \) and \(e_{aspect} \), \(1 \leq j \leq N_i \), \(W_w \) is an intermediate matrix and \(b_w \) is an offset value. \(\alpha = [\alpha_{i1}, \alpha_{i2}, ..., \alpha_{iN_i}] \) are the weight vector of all words.

Then we compute the clause vector \(c_i \) as a weighted sum of the word annotations based on the weights, i.e.,

\[
c_i = \sum_{i=1}^{N_i} \alpha_{ij} \cdot h_{ij}
\]

3.2 Clause Encoding Layer

Clamp Clause-level Aspect-specific Attention

Clause Encoding Layer. Given the clause vectors \(c_i \), we also use a Bi-LSTM to encode the clauses in order to incorporate the contextual information in the annotations, i.e.,

\[
\overrightarrow{h}_i = \text{LSTM}(c_i); \quad i \in [1, C]
\]

\[
\overleftarrow{h}_i = \text{LSTM}(c_i); \quad i \in [C, 1]
\]

Similarly, we obtain an annotation for the clause \(c_i \) by concatenating \(\overrightarrow{h}_i \) and \(\overleftarrow{h}_i \) as follows:

\[
h_i = \overrightarrow{h}_i \oplus \overleftarrow{h}_i
\]

which summarizes the information of the whole sentence centered around the clause \(c_i \).

Clause Attention Layer. Figure 3(b) shows the details of the clause-level attention module. In this figure, \([h_1, h_2, ..., h_C]\) are annotation vectors for the clauses. With these context representation, we compute the attention weight \(\alpha_i \) between each clause annotation \(h_i \) and the aspect representation \(e_{aspect} \) as follows:

\[
m_i = \tanh(W_e \cdot [h_{ij}; e_{aspect}] + b_c)
\]

\[
\alpha_i = \text{softmax}(m_i) = \frac{\exp(m_i)}{\sum_{l=1}^{C} \exp(m_l)}
\]

where \(1 \leq i \leq C, W_e \) is an intermediate matrix, \(b_c \) is an offset value. In addition, \(e_{aspect} \) is the same as that in Equation (6), which is also calculated according to Equation (1).

After computing the clause annotation weights, we can get the sentence representation \(s \) based on the attention vectors \(\alpha_i \) by:

\[
s = \sum_{i=1}^{C} \alpha_i \cdot h_i
\]

Softmax Layer. To perform aspect sentiment classification, we feed the sentence representation \(s \) to a softmax classifier, i.e.,

\[
o = W_i \cdot s + b_i
\]

where \(o \in \mathbb{R}^K \) is the output, \(W_i \) is the weight matrix and \(b_i \) is the bias. Then, the probability of labeling sentence with sentiment polarity \(k \in [1, K] \) is computed by:

\[
p_k = \frac{\exp(o_k)}{\sum_{i=1}^{K} \exp(o_i)}
\]

where \(\theta \) denotes all parameters. Finally, the label with the highest probability stands for the predicted sentiment polarity of the aspect.

3.3 Model Training

We use cross-entropy loss function to train our model end-to-end given a set of training data \(x_t, c_t, y_t \), where \(x_t \) is the \(t \)-th text to be predicted, \(c_t \) is the corresponding aspect and \(y_t \) is one-hot representation of the ground-truth sentiment polarity for aspect \(c_t \) and text \(x_t \). We represent this model as a blackbox function \(\phi(x, c) \) whose output is a vector representing the probability of sentiment polarity. The goal of training is to minimize the loss function:

\[
J(\theta) = - \sum_{i=1}^{M} \sum_{k=1}^{K} y_{ik} \cdot \log \phi(x_t, c_t) + \frac{l}{2}||\theta||_2^2
\]

where \(M \) is the number of training samples; \(K \) is the category number and \(l \) is a \(L_2 \) regularization to bias parameters.

In the above equation, the model parameters are optimized using Adagrad [Duchi et al., 2011]. All the matrix and vector parameters are initialized with uniform distribution in \([-\sqrt{6}/(r + c'), \sqrt{6}/(r + c')]\), where \(r \) and \(c' \) are the numbers of rows and columns in the matrices [Glorot and Bengio, 2010]. The dropout strategy is used in the Bi-directional LSTM layer in order to avoid over-fitting.

4 Experimentation

4.1 Experimental Settings

- **Data Settings:** We conduct experiments on two datasets (i.e., one from the laptop domain and the other from the restaurant domain) from SemEval-2015 Task 12\(^1\) [Pontiki et al., 2015] to validate the effectiveness of our approach. Each dataset consists of many customers reviews and each review contains a list of aspects and corresponding sentiment polarities, i.e., *positive, neutral or negative*. We also set aside 10% from the training set as the development data which is used to tune algorithm parameters.

\(^1\) The detailed introduction of this task is available at http://alt.qcri.org/semeval2015/task12/
• **Word Representations:** (1) **PTE:** This is a word embedding resource built by ourselves with PTE which is a semi-supervised representation learning tool proposed by [Tang et al., 2015]\(^2\). This tool could leverage both labeled and unlabeled data to build a large-scale heterogeneous network and use the network to train the word vectors. In our implementation, on one hand, the labeled data is collected from Amazon by [McAuley et al., 2015]. Specifically, we pick the domains, i.e., *Books, CDs, Clothing, Electronics, Restaurant* and *Health* and each review is automatically assigned with a positive category if its rating score is 4 or 5 and a negative category if its rating score is 1 or 2. On the other hand, the unlabeled data is the data from SemEval-2015 Task, as introduced above. The vocabulary size is about 1.2 million and the dimensionality of word vector is 300. (2) **Position Embeddings:** Inspired by [Zeng et al., 2014], we use position embeddings to specify the aspect words, i.e., entity and attribute words (if available, in the sentence). The position embedding corresponds to the relative distance from current word to the aspect word. For instance, in Figure 1, the relative distance from the word “great” to the aspect word “food” is 3. In our experiments, the relative distance is mapped to a vector of dimension 100.

• **EDU:** We run EDU splitting with the Discourse Segmenter Tool\(^1\) on all the datasets.

• **Hyper-parameters:** In our experiments, the word embedding and position embedding are optimized during training. All out-of-vocabulary words are initialized by sampling from the uniform distribution \(U(-0.01, 0.01)\). The dimensions of attention vectors and LSTM hidden states are set to be 300. The other hyper-parameters are tuned according to the development data. Specifically, the initial learning rate is 0.1. The regularization weight of the parameters is \(10^{-5}\), and the dropout rate is set to 0.25.

• **Evaluation Metrics:** The performance is evaluated using **Accuracy** and **Macro-F1** \(F\) which is calculated as \(F = \frac{2PR}{P+R}\), where the overall precision \(P\) and recall \(R\) are averaged on the precision/recall scores of all categories.

Table 1: Accuracy on aspect sentiment classification about both the restaurant and laptop domains

<table>
<thead>
<tr>
<th>Model</th>
<th>Restaurant (Accuracy)</th>
<th>Laptop (Accuracy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Majority</td>
<td>0.537</td>
<td>0.570</td>
</tr>
<tr>
<td>LSTM [Wang et al., 2016]</td>
<td>0.735</td>
<td>0.734</td>
</tr>
<tr>
<td>TC-LSTM [Tang et al., 2016a]</td>
<td>0.747</td>
<td>0.745</td>
</tr>
<tr>
<td>ATAE-LSTM [Wang et al., 2016]</td>
<td>0.752</td>
<td>0.747</td>
</tr>
<tr>
<td>RAM [Chen et al., 2017]</td>
<td>0.767</td>
<td>0.759</td>
</tr>
<tr>
<td>IAN [Ma et al., 2017]</td>
<td>0.755</td>
<td>0.753</td>
</tr>
<tr>
<td>Sentie [Saias, 2015]</td>
<td>0.787</td>
<td>0.793</td>
</tr>
<tr>
<td>Hierarchical Bi-LSTM</td>
<td>0.763</td>
<td>0.767</td>
</tr>
<tr>
<td>Word-Level ATT</td>
<td>0.789</td>
<td>0.785</td>
</tr>
<tr>
<td>Clause-Level ATT</td>
<td>0.783</td>
<td>0.779</td>
</tr>
<tr>
<td>Word&Clause-Level ATT</td>
<td>0.809</td>
<td>0.816</td>
</tr>
</tbody>
</table>

Table 2: Macro-F1 on aspect sentiment classification about both the restaurant and laptop domains

<table>
<thead>
<tr>
<th>Model</th>
<th>Restaurant (Macro-F1)</th>
<th>Laptop (Macro-F1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Majority</td>
<td>0.233</td>
<td>0.242</td>
</tr>
<tr>
<td>LSTM [Wang et al., 2016]</td>
<td>0.617</td>
<td>0.608</td>
</tr>
<tr>
<td>TC-LSTM [Tang et al., 2016a]</td>
<td>0.634</td>
<td>0.622</td>
</tr>
<tr>
<td>ATAE-LSTM [Wang et al., 2016]</td>
<td>0.641</td>
<td>0.637</td>
</tr>
<tr>
<td>RAM [Chen et al., 2017]</td>
<td>0.645</td>
<td>0.639</td>
</tr>
<tr>
<td>IAN [Ma et al., 2017]</td>
<td>0.639</td>
<td>0.625</td>
</tr>
<tr>
<td>Sentie [Saias, 2015]</td>
<td>0.660</td>
<td>0.634</td>
</tr>
<tr>
<td>Hierarchical Bi-LSTM</td>
<td>0.647</td>
<td>0.632</td>
</tr>
<tr>
<td>Word-Level ATT</td>
<td>0.662</td>
<td>0.646</td>
</tr>
<tr>
<td>Clause-Level ATT</td>
<td>0.659</td>
<td>0.647</td>
</tr>
<tr>
<td>Word&Clause-Level ATT</td>
<td>0.685</td>
<td>0.667</td>
</tr>
</tbody>
</table>

4.2 Experimental Results

In this subsection, we give some baseline approaches for comparison in order to comprehensively evaluate the performance of our proposed approach. Note that all these learning approaches employ the same representations, i.e., word PTE embedding together with the position embedding.

• **Majority:** This approach is a basic baseline approach, which assigns the majority sentiment polarity in the training set to each sample in the test set.

• **LSTM:** This approach only uses one LSTM network to model the context. After that, the average value of all the hidden states is fed to a softmax function to estimate the probability of each sentiment label [Wang et al., 2016].

• **TC-LSTM:** This approach extends LSTM by taking into account of the aspect information where two LSTM networks, a forward one and backward one towards the aspect, are adopted. This is a state-of-the-art approach to aspect sentiment classification proposed by [Tang et al., 2016a].

• **ATAE-LSTM:** This approach models the context words via attention-based LSTM and appends the aspect embeddings with each word embedding vector. This is a state-of-the-art approach proposed by [Wang et al., 2016].

• **RAM:** This approach captures importance of context words for a specific aspect with a deep memory network and the results of multiple attentions are non-linearly combined with a recurrent neural network. This is a state-of-the-art approach proposed by [Chen et al., 2017].

• **IAN:** This approach is an interactive learning approach, which firstly models the contexts and aspects via LSTM and then interactively learns attentions in the contexts and aspects. This is another state-of-the-art approach proposed by [Ma et al., 2017].

• **Sentie:** This is the best-performed system in SemEval-2015 Task 12 [Saias, 2015]. It employs a MaxEnt classifier with n-gram features, POS features, lexicon features and achieves the best accuracy scores in both the domains laptop and restaurant.

• **Hierarchical Bi-LSTM:** Our approach which employs neither the word-level nor clause-level attention.
the food is \textcolor{red}{great} and \textcolor{green}{tasty}, and the hot dogs are especially \textcolor{blue}{top notch}, but the sitting space is too \textcolor{blue}{small}, and I do \textcolor{blue}{n’t} like the ambiance.

(a) the aspect of this sentence: \textsc{Food#Quality}

the food is \textcolor{red}{great} and \textcolor{green}{tasty}, and the hot dogs are especially \textcolor{blue}{top notch}, but the sitting space is too \textcolor{blue}{small}, and I do \textcolor{blue}{n’t} like the ambiance.

(b) the aspect of this sentence: \textsc{Ambience#General}

Figure 4: The attention visualizations for a sentence including two different aspects, i.e., \textsc{Food#Quality} and \textsc{Ambience#General}.
References

