
Effect-Abstraction Based Relaxation for Linear Numeric Planning

Dongxu Li1, Enrico Scala2, Patrik Haslum1,3, Sergiy Bogomolov1

1 The Australian National University
2 Fondazione Bruno Kessler (Italy)

3 CSIRO Data61
dongxu.li@anu.edu.au, enricos83@gmail.com,

patrik.haslum@anu.edu.au, sergiy.bogomolov@anu.edu.au

Abstract
This paper studies an effect abstraction-based re-
laxation for reasoning about linear numeric plan-
ning problems. The effect abstraction decom-
poses non-constant linear numeric effects into ac-
tions with conditional, additive constant numeric
effects. With little effort, on this abstracted ver-
sion, it is possible to use known subgoaling-based
relaxations and related heuristics. The combination
of these two steps leads to a novel relaxation-based
heuristic. Theoretically, the relaxation is proved
tighter than the previous interval-based relaxation
and leading to pruning-safe heuristics. Empirically,
a heuristic developed on this relaxation leads to
substantial improvements for a class of problems
that are currently out of reach of state-of-the-art nu-
meric planners.

1 Introduction
Numeric planning extends classical planning with numeric
state variables. In numeric planning problems, an action’s
applicability and effects may depend on expressions over sev-
eral numeric variables. With this expressiveness many prob-
lems find compact and closer-to-reality representation [Fox
and Long, 2003]. Examples of its application span a vari-
ety of problems, from traffic control [Vallati et al., 2016] to
robotics [Kiam and Schulte, 2017].

However, the introduction of numeric structures makes
the planning task more challenging. Solvability of the nu-
meric planning problem is undecidable in general ([Helmert,
2002]). Therefore, since its introduction efforts have been
made to derive meaningful relaxations, and heuristics, for nu-
meric planning [Hoffmann, 2003; Coles and Coles, 2011].
Because plan validation is still decidable, such heuristics can
make informed systematic forward search algorithms (such
as A? or Greedy Best First Search) effective, and can be used
to guide the solution of even complex control-like problems
[Scala et al., 2016b; Piotrowski et al., 2016]. Relaxations
have been proposed for a severely restricted fragment, known
as “simple” numeric planning, in which actions may only in-
crease/decrease numeric variables by a constant [Scala et al.,

2016a; Piacentini et al., 2018], and for a very general form al-
lowing arbitrary expressions using algebraic and trascenden-
tal functions in conditions and effects of the problem [Scala
et al., 2016b; Aldinger et al., 2015]. However, the support of
such a general class of planning problems comes at the price
of looser relaxations, and consequently weaker heuristics.

In this paper we propose an effect abstraction-based relax-
ation that is particularly suited for a subclass of numeric plan-
ning problems where both conditions and action effects are
made up of linear expressions over numeric state variables.
This class is less expressive than general numeric planning,
but more expressive than simple numeric planning. Our key
contribution is to show that with the right abstraction, it is
possible to transform a linear numeric planning problem into
a relaxed, simple numeric planning problem; by doing so it
becomes possible to apply previous relaxations that are suited
only for the simple numeric case also to defining heuristics
for linear numeric planning.

We show a condition ensuring that the numeric effect
abstraction combined with one relaxation, namely Π1, is
pruning-safe and leads to the development of a heuristic that
proves to be well informed versus other heuristics presented
in literature. We also revisit previous relaxations for simple
numeric planning and analyse their relative pruning power.

2 Numeric Planning
We assume a ground planning formalism equivalent to PDDL
2.1 level 2 [Fox and Long, 2003]. A planning problem con-
sists of propositional (F) and numeric (X) state variables,
actions, an initial state (s0) and a goal (G). A state assigns
a truth value to each proposition in F and a rational num-
ber to each state variable in X . A numeric condition takes
the form ξ D k, where ξ is an arithmetic expression over
X , D ∈ {≤, <,=, >,≥} and k ∈ Q is a constant. Ac-
tion preconditions and the goal are sets (conjunctions) of nu-
meric conditions and propositions. Action effects can assign
boolean variables and/or increase/decrease/assign the value
of numeric variables by a numeric expression. A conditional
effect is a pair 〈c, e〉, where c is a set of (numeric or proposi-
tional) conditions and e is an effect. e is applied only if c is
true in the state where the action is applied. Action a is ap-
plicable in a state s iff its preconditions are satisfied in s and

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4787

the activated numeric or propositional effects do not induce
conflicting assignments. A sequence of actions 〈a0, ..., an−1〉
starting from the initial state s0 brings (deterministically) the
system to a state (sn). If each action is applicable in the state
resulting from the prefix before it and the final state satis-
fies the goal (i.e., sn |= G), the sequence is a valid plan.
Each action ai has a cost λ(ai) ∈ R≥0 and the cost of a
plan π = 〈a0, ..., an−1〉 is

∑
0≤i<|π| λ(ai); the objective is

to minimize plan cost.
Notation. Let s be a state and ξ a numeric expression: [ξ]s

is the value of ξ in s. Given action a, pre(a) and eff(a) are
its preconditions and effects. A numeric effect e is the triple
〈lhs(e), op(e), rhs(e)〉 where lhs(e) is the affected variable,
rhs(e) is a numeric expression and op(e) is an increase, de-
crease, or assign. S(Π) denotes the state space induced by
the planning problem, and Sol(Π) the set of all valid plans.

Definition 1 (Simple Numeric Planning). Let Π be a numeric
planning problem. A numeric condition ξ D k is simple iff ξ
is a linear expression and all variables in ξ are affected only
by constant increase/decrease effects in Π. Π is simple iff all
action preconditions and the goal are simple.

2.1 The (Additive) Interval-Based Relaxation
The interval-based relaxation is a natural generalisation of
the monotonic relaxation of propositional planning to the
numeric setting ([Hoffmann, 2003; Aldinger et al., 2015;
Scala et al., 2016b]). It has three main elements: (i) a re-
laxed state assigns each numeric variable an interval of pos-
sible values; (ii) for a numeric condition to be satisfied in a re-
laxed state it suffices that the condition holds for some choice
of value for each appearance of numeric variables out of their
respective intervals, independently of other conditions; and
(iii) applying a numeric effect to a variable monotonically ex-
tends its interval to the convex union of its current interval and
the possible values of the effect expression.

The additive interval-based relaxation (AIBR) transforms
assignment effects into equivalent additive effect by a sim-
ple reformulation (x := ξ to x += (ξ − x)), and then ap-
plies the interval-based relaxation to the transformed prob-
lem. We denote this relaxation of a problem Π with Π++.
This simple expedient, combined with the notion of asymp-
totic supporters, allows reachability under AIBR to be com-
puted in polynomial time also for problems with cyclic nu-
meric dependencies [Scala et al., 2016b]. Reachability can
be decided by constructing the so called asymptotic relaxed
planning graph, which applies asymptotic supporters until a
fixpoint is reached (see [Scala et al., 2016b] for details). As a
side-effect, this process also computes for each numeric vari-
able an interval that is guaranteed to contain all reachable val-
ues of the variable.

A relaxation, ΠR is said to be pruning-safe iff Sol(Π) 6=
∅ =⇒ Sol(ΠR) 6= ∅, i.e., the relaxation is unsolvable only
if the original problem is unsolvable. Likewise, we say that
a heuristic is pruning-safe if it reports an infinite value only
for unsolvable states. Π++, and heuristics based on it, are
pruning-safe.

Heuristics built on the principle of interval-based relax-
ation abound in the literature [Hoffmann, 2003; Coles and

Coles, 2011; Coles et al., 2012; 2010]. A simple heuristic
based on AIBR is haibr obtained by first using the asymp-
totic relaxed planning graph construction to decide if the goal
is relaxed reachable, and, in case it is, repeatedly applying
actions until goal is reached; the number of actions applied is
the estimate. The hFFLNF heuristic, from the Metric-FF plan-
ner [Hoffmann, 2003], translates numeric effects into the so
called Linear Normal Form, then combines the construction
of a relaxed planning graph and a greedy algorithm to com-
pute a relaxed plan solving the interval-based relaxation of
the problem. This heuristic is the basis of many state of
the art temporal and numeric planners [Coles et al., 2010;
2012]. However, hFFLNF only supports planning with linear
numeric effects with non-cyclic dependencies.

2.2 The Subgoaling-Based Relaxation
The generality of the interval-based relaxation comes at the
price of not being able to fully exploit the numeric structure
of the problem at hand. The subgoaling-based relaxation tar-
gets one such structure, namely which actions contribute pos-
itively to the achievement of linear numeric conditions, using
the so called m-times-regressor [Scala et al., 2016a]:
Definition 2. Let c =

(∑
x∈X wx,cx

)
+ wn,c D 0, with D ∈

{≤, <,>,≥}, be a simple numeric condition (SC). The m-
times regression cr(a,m) of c through action a is:

cr(a,m) ≡
∑
x∈X

wx,c(kx,am+ x) + wn,c D 0 (1)

where kx,a is the constant additive effect of a on x.
We say that a is a possible achiever of c in a state s if there
exists an m such that s |= cr(a,m). In the case of a simple
numeric condition, all elements of (1) except m are coeffi-
cients extracted from the action model. This results in the
regression being a linear function of time, having a constant
derivative. Thus, which actions are possible achievers can be
detected statically (independent of s). Yet, the number m of
repetitions needed to actually achieve the condition is state-
dependent.

The numeric subgoaling relaxation [Scala et al., 2016a]
uses this notion of possible achiever to over-approximate
reachable numeric conditions recursively. The principle can
be used to derive admissible or inadmissible heuristic esti-
mates. The inadmissible formulation is as follows1:

ĥaddhbd+(s, C) =

0 if s |= C

min
a∈ach(C)

(ĥaddhbd+(s, pre(a)) + λ(a)) C ∈ PCs

min
a∈A,

s|=cr(a,m̂)

∀m̂∈Q≥0

(m̂λ(a) + ĥaddhbd+(s, pre(a))) C ∈ SCs

∑
a∈π′

π′∈Sol(Π(s,C,A)++)

(ĥaddhbd+(s, pre(a))λ(a)) C ∈ HCs

∑
c′⊂C:|c′|=1

ĥaddhbd+(s, c′) |C| > 1

1HCs is the set of non-simple (Hard) numeric Conditions.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4788

We use Π1 to denote the subgoaling relaxation of Π. Π1

has a solution iff ĥaddhbd+ 6= ∞.2 A solution to this relaxation
is a set of multi-set of achievers for each condition to be used
to reach the goal. Π1 is a pruning-safe relaxation.

Theorem 1. Sol(Π) 6= ∅ =⇒ Sol(Π1) 6= ∅

Proof Sketch. Let π be a solution for Π. Each (sub)goal c
in Π is either satisfied in the initial state s0, or there is a se-
quence of actions whose application from s0 makes it true.
From this sequence we can construct possible achievers such
that the regression of c through them is satisfied in s0. There-
fore ĥaddhbd+ <∞.

2.3 Handling Conditional Effects
Π1-based heuristics can support conditional effects by trans-
forming the actions set in a way similar to that presented by
Röger et al. [2014]. For each action a ∈ A and each condi-
tional effect ce : 〈c, e〉 in eff(a) we (i) create a new action a′
where pre(a′) := pre(a) ∪ {c} and eff(a′) := {e} and (ii)
remove ce from a. Note that the transformed problem is used
only for computing the heuristic. For simplicity, ĥaddhbd+ and
ĥmaxhbd+ are used also for the heuristic applied to numeric plan-
ning problems with conditional effects. The transformation
does not necessarily preserve admissibility, unless the cost of
actions corresponding to conditional effects is set to zero.

2.4 Towards Linear Numeric Planning Problems
In the following, we focus our attention on a subclass of gen-
eral numeric conditions that are not simple, but still linear.

Definition 3 (Linear Numeric Planning). A linear numeric
condition is a condition ξ D k where ξ is a linear expression
such that all effects on variables appearing in ξ are increase
or decrease effects whose right-hand side is a linear expres-
sion. A numeric planning problem is called linear iff all nu-
meric action preconditions and the goal are linear conditions.

A numeric effect featuring a linear but non-constant right-
hand side is said to be non-constant linear.

The class of linear numeric planning problems as we have
defined it is similar to the linear numeric planning tasks de-
fined by Hoffman [2003]. However, it does not include ex-
plicit assignment effects, which can be supported via the addi-
tivity transformation [Scala et al., 2016b] without the acyclic-
ity requirement as it is instead the case for Hoffman’s linear
numeric planning fragment.

3 The Effect-Abstraction Compilation
The relaxation-based heuristics developed so far for numeric
planning are either very widely applicable, or restricted to a
limited problem class such as simple numeric planning. Our
objective is to find a middle ground between these two. We

2An admissible variant ĥmax
hbd+ can be constructed by using only

reachability testing for hard numeric conditions. This preserves
admissibility, and has the same unreachability detection power as
ĥadd
hbd+.

do so by applying an abstraction mechanism to numeric ac-
tion effects, which we call effect abstraction. In this section
we present the general effect abstraction schema, while in
Section 4 we study the Π1 relaxation applied to the effect
abstracted problem.

Different from previous abstraction-based heuristics, e.g.,
[Helmert et al., 2007; Illanes and McIlraith, 2017], the effect
abstraction does not shrink the state space of the problem, but
rather it coarsens (non-simple) numeric effects of actions.

Definition 4 (Decomposition and Tags of a Numeric effect).
Let e be an additive numeric effect, i.e., an effect with opera-
tor += or−=. A decomposition of e,D(e) is a set of disjoint
non-empty intervals whose union contains all reachable val-
ues of rhs(e) except 0. T (e) : D(e) → Q is a function such
that for all l ∈ D(e), T (e)(l) ∈ D(e), i.e., that selects for
each interval in the decomposition a specific value in that in-
terval. T (e)(l) is called the tag of the interval l.

A pair of functions 〈D,T 〉 that provide the decomposition
and tags for each non-constant numeric effect in a planning
problem Π is an effect decomposition of Π.

A decomposition D(e) is a partitioning of the set of values
that the right-hand side of the numeric effect can take. For
each partition, its tag T (e)(l) is a commitment to one of these
values. The abstraction that we will apply is to treat the effect
as having the value T (e)(l) whenever rhs(e) ∈ l. Excluding
0 from the decomposition is natural since an additive effect
has no effect when its right-hand side is zero, and it simplifies
the statement of Theorem 2 below. Apart from this exclusion,
D(e), T (e) forms a tagged partition as defined by Gordon
[1998]. Note that D(e) only needs to contain (not equal) the
reachable non-zero values of rhs(e); thus, any partitioning of
Q− {0} into intervals is permissible.

Starting from the actions of the original problem, we ex-
press the effect abstraction with conditional effects. Given an
effect decomposition 〈D,T 〉, from each action a we generate
a new action a′ which has each non-constant additive effect
〈lhs(e), op(e), rhs(e)〉 of a replaced with a set of conditional
effects of the form 〈rhs(e) ∈ l, 〈lhs(e), op(e), T (e)(l)〉〉, one
for each interval l ∈ D(e), but is otherwise identical to a.
We call the Piecewise Conditional Effects Abstraction of the
action, and denote it Γ〈D,T 〉(a). Formally:

Definition 5 (Piecewise Conditional Effects Abstraction).
Let 〈D,T 〉 be an effect decomposition of Π and a an action
in Π. Partition eff(a) into a set effnca(a) containing all addi-
tive numeric effects of a with a non-constant right-hand side
and effother(a) = eff(a) − effnca(a). Γ〈D,T 〉(a) is an action
a′ such that pre(a′) = pre(a) and

eff(a′) = effother(a)∪⋃
e∈effnca(a)

{〈rhs(e) ∈ l, 〈lhs(e), op(e), T (e)(l)〉〉 : l ∈ D(e)}.

For an interval l ∈ D(e), l and l denote the lower and
upper bounds of l, respectively. The condition rhs(e) ∈ l is
expressed by the conjunction of rhs(e) B l and l B rhs(e),
where each operator B is either > or ≥, depending on if l is
open or closed at that end.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4789

For an example, consider an action with the linear effect
x += y + z. A possible decomposition could be into the
intervals [−∞, 0), (0, 5] and (5,∞], with the tag function
T ([−∞, 0)) = −1, T ((0, 5]) = 5, and T ((5,∞]) = 10.
In the piece-wise conditional effect abstraction of the action,
the linear effect is replaced with the three conditional effects
〈y + z < 0, x += −1〉, 〈0 < y + z ∧ y + z ≤ 5, x += 5〉
and 〈5 < y + z, x += 10〉.

The effect abstraction transformation extends naturally to
planning problems:
Definition 6 (Numeric Effect Abstraction). The Numeric Ef-
fect Abstraction of Π = 〈F,X, s0, A,G〉 is the planning
problem Γ〈D,T 〉(Π) = 〈F,X, s0, {Γ〈D,T 〉(a) : a ∈ A}, G〉.

The effect abstraction has similarities with the construction
of asymptotic supporters defined for the AIBR relaxation.
The AIBR asymptotic supporter construction can be inter-
preted as an effect abstraction function assigning two open-
ended intervals (−∞, 0), (0,∞) to each numeric effect, and
taking as tags −∞ and∞.

It is easy to see that when every expression in the original
problem is linear (or can be made linear by simple invariant
analysis), then applying Γ〈D,T 〉 results in a simple numeric
planning problem with conditional effects.
Observation 1. If Π is a linear numeric planning problem,
then Γ〈D,T 〉(Π) is a simple numeric planning problem for any
effect decomposition 〈D,T 〉.

Although the effect abstraction makes the problem literally
simpler, the concrete choice of the decomposition 〈D,T 〉 is
critical to making the transformation useful. In the next sec-
tion we show several properties of the subgoaling relaxation
of the abstraction, Γ〈D,T 〉(Π)1. In Section 5 we propose a
pragmatic choice of decompositions, which we then evaluate
empirically in Section 6.
Towards Non-Linear Numeric Effects. Abstracting a lin-
ear numeric effect makes the piece-wise effect conditions lin-
ear (and hence simple in the abstracted problem). However,
a non-linear effect expression can also be partitioned with
linear (simple) conditions on the variables that appear in it.
For example, the restriction of the effect x += y × z to
the interval (0,∞] can be expressed with the two conditions
y > 0 ∧ z > 0 and y < 0 ∧ z < 0, resulting in two condi-
tional effects. Unlike the linear effect case, however, there is
no general, automatic procedure to compute the conditions of
the decomposition for general non-linear effects.

4 Theoretical Analysis
4.1 A Safe Effect-Abstraction Relaxation
We say that an effect abstraction is safe with respect to a
relaxation iff the relaxation applied to the effect-abstracted
problem is unsolvable only when the original problem is ac-
tually unsolvable.
Theorem 2 (Numeric Effect Abstraction Safeness w.r.t. Π1).
Let Π = 〈F,X,A,G, I〉 be a linear numeric planning prob-
lem and Γ〈D,T 〉(·) a numeric effect abstraction. If for ev-
ery non-constant linear effect e in Π and for every l ∈
D(e) it holds that l · l > 0, then Sol(Π) 6= ∅ =⇒
Sol(Γ〈D,T 〉(Π)1) 6= ∅.

Proof Sketch. We only need to prove that a plan for Π im-
plies the existence of a plan for Γ〈D,T 〉(Π)1. Let π ∈ Sol(Π);
the difficult part is to show that we can find possible achievers
that are reachable in Γ〈D,T 〉(Π)1 for those conditions that are
reached by π (at some stage) and whose reachability depends
on using at least one non-constant linear effect. We proceed
by induction over π. Any condition reached by an empty plan
is satisfied in the initial state, and thus trivially reachable also
in Γ〈D,T 〉(Π)1. A condition reached by π that is not true in
the initial state implies the existence of some action ai in π
making c true from the state si−1 reached by the prefix of
π up to ai. If ai has a non-constant linear effect e acting
positively on c in the state s, then the value [rhs(e)]s makes
ai a possible achiever of c (under Π1 semantics). From the
combination of the effect abstraction and the subgoaling over
conditional effects (Section 2.3), we know there is an action
a′ in Γ〈D,T 〉(Π)1 whose precondition combines the precon-
dition of ai with an interval l that includes rhs(e). Because
of the condition l · l > 0, we also know that the effect of this
action on lhs(e), which is the tag T (e)(l), is in the same di-
rection as [rhs(e)]s; in fact, using the tag, or any value from l,
in place of [rhs(e)]s does not affect the asymptotic behavior
of the effect, so a′ is a possible achiever of c. The precon-
ditions of a′ are the preconditions of ai, and rhs(e) B l and
l B rhs(e) (with B ∈ {>,≥}) which, due to the choice of l,
are each achieved by the prefix of π up to ai, and thus reach-
able in Γ〈D,T 〉(Π)1 by inductive assumption. If ai achieves
c with a constant numeric or propositional effect, it does so
also in Γ〈D,T 〉(Π)1. Finally, observe that the subgoaling re-
laxation considers reachability of conditions separately; thus,
since all conditions achieved by the prefix up to and includ-
ing ai are reachable, in some way, in Γ〈D,T 〉(Π)1, so is any
conjunction of them.

Next, we study the relationship between Γ〈D,T 〉(Π)1 and
the additive interval-based relaxation. Unless otherwise
stated, in the following we consider only effect decomposi-
tions that satisfy the condition of Theorem 2.

4.2 Comparing Different Relaxations/Heuristics
Any effect-abstraction subgoaling relaxation, regardless of
the choice ofD and T , is tighter than the AIBR. To prove this,
we first need to prove that subgoaling is tighter than AIBR.

Theorem 3. For any simple numeric planning problem Π:

1. Sol(Π1) 6= ∅ =⇒ Sol(Π++) 6= ∅
2. Sol(Π++) 6= ∅ 6=⇒ Sol(Π1) 6= ∅

Proof Sketch. (1). If c is reachable in Π1 there is some
reachable action a that contributes positively to achieving it.
From any interval I , there exists a finite number m of times
that a applied on I under Π++ semantics makes c true, be-
cause Π++ grows intervals by convex union with action ef-
fects. Moreover, given that the preconditions of a are indi-
vidually reachable in Π1, they are also reachable individually
in Π++ by inductive assumption; the monotonicity of Π++

means that the conjunction of all the action’s preconditions
is reachable in Π++, by the concatenation of the plans for

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4790

the individual conditions. (2). Consider a numeric condi-
tion c′ : x > y, a state s : {x = 0, y = 0} and an action
a : 〈∅, {(x += 1), (y += 1)}〉. c can be reached under
Π++ semantics, but not under Π1 semantics because a is not
a possible achiever for c.

Theorem 4. Let Π be a linear numeric planning problem,
and Γ〈D,T 〉Π

1 a safe effect abstraction relaxation:

1. Sol(Γ〈D,T 〉Π
1) 6= ∅ =⇒ Sol(Π++) 6= ∅

2. Sol(Π++) 6= ∅ 6=⇒ Sol(Γ〈D,T 〉Π
1) 6= ∅

Proof Sketch. (2) follows since Γ〈D,T 〉Π
1 inherits the power

of the reasoning over simple numeric condition from the sub-
goaling relaxation, as shown in Theorem 3. (1) can be shown
by an argument similar to that developed for the previous the-
orem. In particular, from a plan found in Sol(Γ〈D,T 〉Π

1) it is
possible to extract asymptotic supporters that are inductively
reachable, and can be used to make the asymptotic relaxed
planning graph procedure return true.

Note that the effect-abstraction subgoaling relaxation dom-
inates AIBR with respect to detecting unreachability (result 2
of Th. 4) even if the enclosing interval of the decomposition
D is the whole set of rational numbers.

5 Practical Decompositions
To implement an actual heuristic based of the effect abstrac-
tion we need to (i) (over-)approximate reachable values for
the right-hand side of each non-constant linear numeric ef-
fect, (ii) select a decomposition satisfying the condition of
Th. 2, and (iii) determine an actual tag function. Point (ii)
introduces a trade-off between informativeness and computa-
tional cost of the heuristic. A decomposition into many inter-
vals captures more contingencies and results in higher accu-
racy of the representation; on the other hand, many intervals
for each numeric effect means higher computational cost for
the Π1 relaxation, which can outweigh the information gain
it might bring during search.
AIBR-based Decomposition (ABD). To overcome issue (i)
and (ii) we extract information to predict S(Π) and its struc-
ture from Π++. More precisely, we use asymptotic reacha-
bility to over-approximate the reachable values for each vari-
able in form of an interval, and, using interval analysis, the
reachable values of each non-constant linear effect. Return-
ing to the example effect x += y + z, if the asymptotically
reachable values of y and z are contained in [0, 5] and [2,∞),
respectively, the interval of possibly reachable values of the
expression y+ z is [2,∞). Next, we use haibr to predict how
these intervals change. Precisely, we take the sequence of
relaxed states obtained to reach the goal (under Π++ seman-
tics), and manipulate this to get a view of “relevant” (w.r.t.
the goal) changes for each non-constant linear effect.

For each right hand side expression ξ, we generate an “in-
crement” interval sequence (IIS), which partitions the reach-
able values of ξ. The IIS is a sequence of intervals providing
a differential view of the values of ξ. Suppose from haibr we
obtain the intervals I : [[2, 2], [2, 5], [2, 20]] for ξ = y + z;
then IIS(I) : [[2, 2], (2, 5], (5, 20]]. Alg. 1 shows how the

IIS is generated; besides rhs(e), it takes as input s∞ and
Sc, i.e., the relaxed goal state after asymptotic reachability
and the sequence of relaxed states provided by haibr. The
algorithm iterates over Sc ⊕ [s∞] incrementally populating
the IIS associated with rhs(e). It differentiates when the in-
terval is extending the largest or the smallest value enclosed
by IIS (min(·) and max(·)). To meet condition of Th. 2,
addElement makes sure none of the intervals includes 0.
Alg. 1 is called for each effect in the Piecewise Conditional
Effects Abstraction.

Algorithm 1: AIBR-based-Decomposition
Input: rhs(e) – right-hand side expression of effect e
s∞ – relaxed goal state from AIBR reachability analysis
Sc – ordered relaxed states from AIBR counting
Output: IIS - Increment Interval Sequence

1 Sc := Sc ⊕ [s∞]

2 IIS := [[rhs(e)]Sc[0]];
3 for i from 1 to |Sc| − 1 do
4 addElement(IIS, [rhs(e)]Sc[i])
5 end
6 return IIS
7 Procedure addElement(L – List, I – Interval)
8 if I < min(L) then
9 if I ·min(L) < 0 then

L := [[I, 0), (0,min(L)]]⊕ L
10 else L := [[I,min(L))]⊕ L
11 end
12 if I > max(L) then
13 if I ·max(L) < 0 then

L := L⊕ [[max(L), 0), (0, I]]

14 else L := L⊕ [(max(L), I]]
15 end

Midpoint Tag Function (MTF). Starting from the IIS gen-
erated for a non-constant numeric effect, we need to select
a tag, i.e., a representative, for each of the intervals in IIS.
While this does not affect the safety of the effect abstraction,
it does affect the heuristic estimates for reachable conditions.
Because the abstraction is done offline (i.e., prior to search),
we take a compromise between the two extremes of the inter-
val. For non-diverging intervals (where neither end is open
to∞ or −∞) we select as the tag its midpoint; for diverging
intervals we choose a value at the finite end. We call this the
Midpoint Tag Function, and it is defined as follows:

MTF (I) =

I + ε if I =∞
I − ε if I = −∞
I+I
2

otherwise

with ε ∈ Q>0 to ensure the tag lies within the interval.
We call haddabs the heuristic obtained by using the effect ab-

straction through ABD and MTF, and using the estimate pro-
vided by haddhbd+ on ΓABD,MTF (Π).

Other tag functions are of course possible. For instance, se-
lecting always an extreme of the interval may result in a more
“conservative” evaluation, and thus a heuristic that favours
cheaper plans. Exploring the impact of tag functions on the
heuristic is a question for future work.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4791

Theorem 5. haddabs is (i) polynomial in the size of the problem
and |Sc|, and (ii) returns infinity only for unsolvable instances

Proof Sketch. (i) The number of actions after decomposi-
tion is bounded by the number of intervals given by ABD,
which is linear in the size of the relaxed plan obtained by
haibr, and so |Sc|. haddhbd+ applied to the abstract problem,
i.e. ΓABD,MTF (Π), is polynomial in the instance size. (ii)
Direct consequence of Th. 2. ABD over-approximates reach-
able values, and splits intervals so as not to include 0.

6 Experiments
In this section, we study the practical implications of the ef-
fect abstraction implemented by the haddabs schema. We imple-
mented haddabs in the ENHSP planner3, and compared it to other
heuristics in a greedy best-first search (f(n) = h(n) with
ties broken in favor of lower g-values). The other heuristics
are haibr [Scala et al., 2016b], ĥaddhbd+

[Scala et al., 2016a],
and the Metric-FF heuristic, herein called hFFLNF

[Hoffmann,
2003]. hFFLNF is obtained by running Metric-FF in greedy
best-first search with no helpful actions. We also compare
with Metric-FF in its default configuration.
Domains. We extended simple numeric planning domains
from the literature [Scala et al., 2016a; Francès and Geffner,
2015; Piacentini et al., 2018] by changing constant numeric
effects to be dependent on “second-order” variables, which
are in turn changed by constant effects. This emphasises
reasoning over linear but non-simple numeric conditions.
More precisely: FO-COUNT extends the COUNTERS do-
main [Francès and Geffner, 2015]. Like in the original formu-
lation, there are N numeric variables, X1, X2, ..., XN , each
of which can be increased or decreased by a variable delta,
∆X1,∆X2, ...,∆XN , which in turn can be changed by con-
stant steps in the range from 0 to a constant maximum. The
goal is to set the values of the counters in ascending order. In-
stances are split in three groups, with the initial values all 0,
ordered inversely to the goal, or randomly chosen (three for
each size). Instances scale on the number of counters. FO-
SAILING extends the SAILING domain [Scala et al., 2016a].
The boat speed (along the 7 compass directions) is here a
function of the direction of the boat and of a variable fac-
tor that can be increased/decreased by a second-order set of
actions, again within the range from 0 to a constant maxi-
mum. Instances scale on the number of boats and people to
be rescued. FO-FARMLAND. This domain extends FARM-
LAND [Scala et al., 2016a] by the introduction of a new action
(move by car) with which it is possible to move more work-
ers per time from place to place. The more cars are hired, the
more people can be moved per action, but at a higher cost.
Instances scale on the number of farms and workers. We also
add TPP-METRIC, which is the only IPC domain featuring
non-simple linear numeric conditions.
Results. haddabs dominates all the other heuristics across the
tested domains regarding coverage (Table 1). Except for FO-
COUNT, haddabs expands less nodes, improving run-time and

3https://gitlab.com/enricos83/ENHSP-Public

coverage. In FO-COUNT optimal solutions require firstly in-
creasing the rate of change of the variables, and then increase
the respective counters. The haibr relaxation favors more
committed states, which are those where less actions can be
done. These states correspond to states where the rate is set
to maximum. haibr and ĥaddhbd+ perform better than haddabs as
they capture this necessity, yet yield unnecessary increases of
the delta variables and thus resulting in longer plans. In FO-
COUNT-INV and FO-COUNT-RND, haddabs is more informed
as decompositions result in finer granularities (the goal is not
immediately satisfied after one step of haibr). In the remain-
ing domains, haddabs converges faster but with longer plans than
haibr, especially for FO-FARMLAND. Loss of plan qual-
ity is explained by haddabs over-estimation when subgoals are
not completely independent. (This happens to some extent
in ĥaddhbd+too, yet we do not observe a general trend when
comparing it with haibr.) Surprisingly, haddabs turns out to
be competitive even with the full Metric-FF system on the
majority of the domains. This result is quite significant as
haddabs has a large handicap: 1) it does not use local search
techniques such as Enforced Hill Climbing (EHC), and 2) –
probably more important – does not make any use of helpful
actions. Metric-FF outperforms the other techniques on the
TPP-METRIC domain by far. Note that all instances of TPP-
METRIC can be solved in seconds with depth-first search,
which is what Metric-FF’s tie-breaking plus EHC exploits.
haddabs internally reasons with a larger number of (heuristic)
actions. In the FO-COUNT domain, the number of heuris-
tic actions are on average 3.5 times the number of original
actions; in FO-SAILING it is 12.87, in FO-FARMLAND it is
5.31 and in TPP-METRIC it is 8.97 times. It has been ob-
served that for large instances of TPP-METRIC, the heuristic
becomes very slow, and is probably the bottleneck of the ap-
proach. A possible solution to this problem is to bound the
number of intervals in the decomposition, leading to fewer
heuristic actions.

7 Conclusion and Future Work
We presented a novel relaxation for a subclass of numeric
planning inbetween the simple case and the fully general
problem. The relaxation rests on a novel effect abstraction
whose main objective is making the problem numerically
simple. We presented a schema for an inadmissible heuristic
based on this relaxation. We provided (i) a theoretical anal-
ysis of effect abstraction, in particular safeness and tightness
w.r.t. other numeric planning relaxations, and (ii) empirical
evidence of the usefulness of this approach. Future work is
twofold: first, to study whether other relaxations/heuristics
(e.g., [Piacentini et al., 2018]) can be combined with effect
abstraction whilst preserving safeness and informativeness;
second, to extend the automatic construction of effect abstrac-
tions to fragments of numeric planning beyond linear.

Acknowledgments
This work was funded by ARC project DP140104219 (Ro-
bust AI Planning for Hybrid Systems), and partly supported
by the Air Force Office of Scientific Research award no.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4792

Coverage CPU-Time (s) Plan Length Exp. Nodes Coverage
haddabs h

aibr ĥaddhbd+ haddabs h
aibr ĥaddhbd+ haddabs h

aibr ĥaddhbd+ haddabs haibr ĥaddhbd+ hFFLNF M-FF
FO-COUNT(20) 8 8 8 39.4 8.9 56.3 17.5 20.4 21.9 24991.1 5807.8 2239.6 1 8

FO-COUNT-INV(20) 8 6 6 1.0 67.7 13.0 22.0 24.0 26.5 804.0 70880.8 970.3 1 7
FO-COUNT-RND(60) 31 24 21 9.6 33.0 123.1 19.7 22.3 19.9 5755.3 25085.0 9582.7 0 23

FO-SAILING(20) 17 4 5 1.0 344.0 160.6 91.0 74.0 126.3 92.0 997881.7 36323.0 0 11
FO-FARMLAND(50) 50 50 50 0.7 2.0 64.8 58.1 26.8 26.3 60.4 638.8 172.4 0 38
TPP-METRIC(40) 20 8 10 2.9 123.3 107.8 20.5 20.8 23.2 29.6 91546.9 144.0 6 40

Total 134 100 100 8 127

Table 1: Comparison between heuristics hadd
abs , haibr , ĥadd

hbd+, hFF
LNF and the Metric-FF planning system (M-FF). Time, plan length and

expansions are averages over instances solved with the first three heuristics. Bold is for best performer. Timeout is 1800 seconds.

FA2386-17-1-4065. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
United States Air Force.

References
[Aldinger et al., 2015] Johannes Aldinger, Robert

Mattmüller, and Moritz Göbelbecker. Complexity of
interval relaxed numeric planning. In Proc. of KI 2015:
Advances in Artificial Intelligence, pages 19–31, 2015.

[Coles and Coles, 2011] Amanda Jane Coles and Andrew
Coles. LPRPG-P: Relaxed plan heuristics for planning
with preferences. In ICAPS, 2011.

[Coles et al., 2010] Amanda Jane Coles, Andrew Coles,
Maria Fox, and Derek Long. Forward-chaining partial-
order planning. In ICAPS, pages 42–49, 2010.

[Coles et al., 2012] Amanda Jane Coles, Andrew I Coles,
Maria Fox, and Derek Long. Colin: Planning with con-
tinuous linear numeric change. Journal of Artificial Intel-
ligence Research, 44:1–96, 2012.

[Fox and Long, 2003] Maria Fox and Derek Long.
PDDL2.1: An extension to pddl for expressing tem-
poral planning domains. Journal of Artificial Intelligence
Research, 20:61–124, 2003.

[Francès and Geffner, 2015] Guillem Francès and Hector
Geffner. Modeling and computation in planning: Better
heuristics from more expressive languages. In Proc. of
the Conference on Automated Planning and Scheduling,
(ICAPS 2015), pages 70–78, 2015.

[Gordon, 1998] Russell A Gordon. The use of tagged par-
titions in elementary real analysis. The American mathe-
matical monthly, 105(2):107–117, 1998.

[Helmert et al., 2007] Malte Helmert, Patrik Haslum, Jörg
Hoffmann, et al. Flexible abstraction heuristics for opti-
mal sequential planning. In ICAPS, pages 176–183, 2007.

[Helmert, 2002] Malte Helmert. Decidability and undecid-
ability results for planning with numerical state variables.
In Proc,. of International Conference on Artificial Intelli-
gence Planning and Scheduling (AIPS 2002), pages 44–
53, 2002.

[Hoffmann, 2003] Jörg Hoffmann. The Metric-FF planning
system: Translating ”ignoring delete lists” to numeric

state variables. Journal of Artificial Intelligence Research
(JAIR), 20:291–341, 2003.

[Illanes and McIlraith, 2017] León Illanes and Sheila A
McIlraith. Numeric planning via abstraction and policy
guided search. In Proceedings of International Joint Con-
ference on Artificial Intelligence, pages 4338–4345, 2017.

[Kiam and Schulte, 2017] Jane Jean Kiam and Axel Schulte.
Multilateral quality mission planning for solar-powered
long-endurance UAV. In Aerospace Conference, 2017
IEEE, pages 1–10. IEEE, 2017.

[Piacentini et al., 2018] Chiara Piacentini, Margarita P. Cas-
tro, Andre A. Cire, and J. Christopher Beck. Linear and
integer programming-based heuristics for cost-optimal nu-
meric planning. In to appear in proceedings of AAAI-18,
2018.

[Piotrowski et al., 2016] Wiktor Mateusz Piotrowski, Maria
Fox, Derek Long, Daniele Magazzeni, and Fabio Merco-
rio. Heuristic planning for hybrid systems. In Proceed-
ings of the Thirtieth AAAI Conference on Artificial Intel-
ligence, February 12-17, 2016, Phoenix, Arizona, USA.,
pages 4254–4255, 2016.

[Röger et al., 2014] Gabriele Röger, Florian Pommerening,
and Malte Helmert. Optimal planning in the presence of
conditional effects: Extending LM-cut with context split-
ting. In Proceedings of the Twenty-first European Confer-
ence on Artificial Intelligence, pages 765–770. IOS Press,
2014.

[Scala et al., 2016a] Enrico Scala, Patrik Haslum, and Sylvie
Thiébaux. Heuristics for numeric planning via subgoal-
ing. In Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016, New
York, NY, USA, 9-15 July 2016, pages 3228–3234, 2016.

[Scala et al., 2016b] Enrico Scala, Patrik Haslum, Sylvie
Thiébaux, and Miquel Ramı́rez. Interval-based relaxation
for general numeric planning. In ECAI 2016 - 22nd Euro-
pean Conference on Artificial Intelligence, pages 655–663,
2016.

[Vallati et al., 2016] Mauro Vallati, Daniele Magazzeni, Bart
De Schutter, Lukás Chrpa, and Thomas Leo McCluskey.
Efficient macroscopic urban traffic models for reducing
congestion: A PDDL+ planning approach. In AAAI, pages
3188–3194, 2016.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4793

