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Abstract
Automatic object viewpoint estimation from a
single image is an important but challenging
problem in machine intelligence community.
Although impressive performance has been
achieved, current state-of-the-art methods still have
difficulty to deal with the visual ambiguity and
structure ambiguity in real world images. To tackle
these problems, a novel Appearance-and-Structure
Fusion network, which we call it ASFnet that
estimates viewpoint by fusing both appearance
and structure information, is proposed in this
paper. The structure information is encoded by
precise semantic keypoints and can help address
the visual ambiguity. Meanwhile, distinguishable
appearance features contribute to overcoming
the structure ambiguity. Our ASFnet integrates
an appearance path and a structure path to an
end-to-end network and allows deep features
effectively share supervision from both the two
complementary aspects. A convolutional layer is
learned to fuse the two path results adaptively. To
balance the influence from the two supervision
sources, a piecewise loss weight strategy is
employed during training. Experimentally, our
proposed network outperforms state-of-the-art
methods on a public PASCAL 3D+ dataset, which
verifies the effectiveness of our method and further
corroborates the above proposition.

1 Introduction
Object viewpoint estimation aims at predicting 3D pose
(three angles: azimuth, elevation, and in-plane rotation)
of an object from a single image. It is important for
many machine intelligence applications, such as robotics,
augmented reality, surveillance, autonomous driving, and
manipulation. Although some existing 3D pose or viewpoint
estimation approaches [Su et al., 2015; Tulsiani and Malik,
2015; Zhang et al., 2013; Yang et al., 2014; Elhoseiny et
al., 2016; Mahendran et al., 2017; Pavlakos et al., 2017;
Wu et al., 2016; Szeto and Corso, 2017; Tekin et al.,

Appearance 
Ours 
GT  

0                                                                                  360 

Keypoint 
Ours  
GT 

(a) (b) 

Right-back wheel The rear Right-front wheel The front 

0                                                                                       360 

Figure 1: Appearance-based method vs. keypoint-based method.
The bars under each image show 360-class confidence of the
azimuth angle by different methods and ground truth (GT)
respectively, where bright color indicates high confidence. In (a), the
appearance based method is confused between its two confidence
peaks for the bus front view (about 35 degrees) and bus rear view
(about 215 degrees), which have similar appearance. In (b), the
car’s right-front wheel is occluded and the keypoint based method
predicts its position to be the same as the car’s right-back wheel
by mistake, which leads to wrong viewpoint confidence. By fusing
both appearance and keypoint information, our method eliminates
the confusion in such cases and yield correct viewpoint estimation
near GT.

2017], especially convolutional neural networks (CNN) based
methods have achieved remarkable success, it is still a
challenging problem when applying these approaches to
various real-word images.

Most existing viewpoint estimation methods from single
images can be generally divided into two categories:
appearance based methods and structure or keypoint based
methods. However, these two kinds of methods often have
difficulty with the visual ambiguity or structure ambiguity.
The appearance based methods [Su et al., 2015; Tulsiani and
Malik, 2015; Elhoseiny et al., 2016] only rely on appearance
information to estimate viewpoint. As a result, these methods
sometimes confuse to the similar appearances under different
viewpoints. For example, the ambiguous appearance between
the front view and rear view of a bus leads to an incorrect
estimation result, as shown in Figure 1(a). If coupled
with semantic keypoint locations, an accurate viewpoint
estimation can be obtained. Instead of using appearance
features, local keypoint locations or heatmaps are applied by
keypoint based methods [Pavlakos et al., 2017] to estimate
viewpoint. However, the keypoint location may present
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structure ambiguity in the scenarios of occlusion, truncation
or symmetry. For example, the right-back wheel and right-
front wheel of a car are predicted in the same location due to
the occlusion, which results in viewpoint prediction errors as
shown in Figure 1(b). Obviously, the appearance information
will contribute to correcting the predicted viewpoint error
in this case. The visual feature and structure feature are
complementary to each other and these two features can be
fused to resolve the issues above.

With these considerations, we aim at leveraging both the
appearance information and structure information to improve
the viewpoint estimation. Toward this end, an Appearance-
and-Structure Fusion network (ASFnet) is proposed as shown
in Figure 2. In our network, two different parallel paths are
designed to make full use of object appearance information
and structure information. One path extracts appearance
features by supervision of viewpoint labels (appearance
based viewpoint path). The other one uses the structure
features by supervision of keypoint labels and then estimates
viewpoint from the resultant keypoint heatmaps (structure
based viewpoint path). Specifically, as shown in Figure 2,
we use the VGG net [Simonyan and Zisserman, 2014] to
extract appearance features and generate keypoint heatmaps
by integrating the architecture of Feature Pyramid Networks
(FPN) [Lin et al., 2017] for its powerful ability of feature
extraction at different scales. Then the viewpoint confidences
from the two paths are adaptively fused with a convolutional
fusion layer to infer the final viewpoint confidences. To
balance the supervision effects of viewpoint and keypoint in
our network, an adaptive piecewise loss weight strategy is
proposed for training the keypoint prediction task.

The proposed method is evaluated on a challenging
public PASCAL 3D+ [Xiang et al., 2014] dataset. The
experimental results demonstrate that the fusion of
appearance and structure information is effective for
viewpoint estimation and our method outperforms the state-
of-the-art methods [Tulsiani and Malik, 2015; Su et al., 2015;
Wu et al., 2016], especially using less training data.

In summary, our contributions are as follows:
1) For object viewpoint estimation from single images,

we propose an Appearance-and-Structure Fusion network
(ASFnet) with the supervision of viewpoint and keypoint
simultaneously. This network is composed of two different
parallel paths that can make full use of rich object appearance
information and structure information provided by keypoint.

2) An adaptive learning technique is proposed to fuse
the two paths with a convolutional layer together with the
architecture of Feature Pyramid Networks (FPN) for keypoint
prediction. In addition, we present a simple piecewise loss
weight strategy for keypoint prediction loss function when
training the network.

3) We evaluate our method on the public PASCAL 3D+
dataset, and achieves better performance than state-of-the-art
methods in 3D viewpoint estimation.

2 Related Work
This section reviews methods for the two tasks related to our
methods: keypoint estimation and viewpoint estimation.

Keypoint Estimation. Keypoint estimation methods
for humans are studied widely and have achieved great
success with CNN based approaches, such as human pose
estimation [Newell et al., 2016; Chen et al., 2017] and face
landmark detection [Zhang et al., 2014]. More recently, CNN
is also leveraged to predict keypoints of objects [Tulsiani and
Malik, 2015; Pavlakos et al., 2017; Wu et al., 2016; Li et
al., 2017]. For generic object keypoint prediction, [Tulsiani
and Malik, 2015] proposes a fully convolutional network
and [Pavlakos et al., 2017] adopts a stacked hourglass
architecture. [Wu et al., 2016] and [Li et al., 2017] design
their networks to estimate keypoints limited to a specific
object category. Furthermore, [Tulsiani and Malik, 2015; Li
et al., 2017] also utilize the viewpoint to improve the keypoint
prediction. We adapt the architecture of Feature Pyramid
Networks (FPN) [Lin et al., 2017] in our network to predict
keypoints of generic objects. FPN is powerful for feature
extraction at different scales and has achieved significant
improvement for object detection, segmentation [Lin et
al., 2017] and human pose estimation [Chen et al., 2017]

recently.

Viewpoint Estimation. Most viewpoint estimation methods
with only single images can be divided into two categories:
appearance based methods and keypoint (or structure) based
methods. Appearance based methods directly estimate
viewpoints of objects from RGB images. In early
works [Xiang et al., 2014; Pepik et al., 2012], Deformable
Part Models (DPM) [Felzenszwalb et al., 2010] are extended
to perform object detection and their viewpoint estimation.
Later, CNN based approaches [Su et al., 2015; Tulsiani and
Malik, 2015; Elhoseiny et al., 2016; Mahendran et al., 2017;
Poirson et al., 2016] are proposed for fine-grained viewpoint
estimation and they achieve remarkable progress. Most
of these methods focus on augmenting training dataset to
improve the performance. For example, in [Tulsiani and
Malik, 2015] the training data is augmented with jittered GT
bounding boxes. [Su et al., 2015] augments real images by
synthesizing millions of high diverse images with 3D models.

Since viewpoint can be calculated by keypoints, keypoint
based methods leverage keypoints detected from single
images to estimate viewpoint of objects [Pavlakos et al.,
2017; Wu et al., 2016]. [Pavlakos et al., 2017] and [Wu et
al., 2016] propose to learn or design the projection method
from detected keypoint locations or heatmaps to viewpoint.
However, detected keypoint locations or heatmaps lack rich
object appearance information, and these methods heavily
rely on the predicted keypoint quality.

[Szeto and Corso, 2017] proposes a human-in-the-loop
network to assist a viewpoint estimation CNN by allowing
using a human labeled keypoint at inference time. The
network has two streams and takes an image and a
keypoint as inputs respectively. Then the CNN features and
keypoint generated features in the two streams are directly
concatenated for viewpoint estimation. In their method, the
keypoint location is assumed to be accurate and must be
provided by human at inference time. However, in many real-
world scenarios, such human annotations are not available.
One may consider using automatic keypoint extractor to
replace human efforts. The keypoint prediction on generic
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Figure 2: The architecture of our proposed network. (Conv: convolutional layer, FC: fully connected layer, KP: keypoint.)

objects is still a challenging problem [Pavlakos et al., 2017]

and cannot be assumed as available by default.
In our paper, we focus on automatic object viewpoint

estimation from single images without human interaction.
There are several differences between our method and
previous works. Compared with appearance based and
keypoint based methods, we use both of the appearance
and keypoint (structure) information with two parallel paths
inside one network. Furthermore, our architectures for
keypoint information extraction are different. Compared
with [Szeto and Corso, 2017], we simultaneously use the
keypoint and viewpoint annotations to supervise the network
at training stage. At test time, only an RGB image is
used without need of keypoint annotations. In addition,
we develop a convolutional fusion layer to automatically
learn the fusion of the two kinds of information. Finally,
we do not rely on the large amount of augmented training
data used in previous methods [Tulsiani and Malik, 2015;
Su et al., 2015; Wu et al., 2016; Szeto and Corso, 2017;
Pavlakos et al., 2017].

3 Our proposed ASFnet
In this section, we propose an end-to-end network to fuse
appearance information and structure information for object
viewpoint estimation from single RGB images. Figure 2
illustrates our approach. We begin with the formulation
for this problem (Sec. 3.1) and then give the details of our
proposed network (Sec. 3.2).

3.1 Problem Formulation
For a single RGB image x as input, our goal is to infer three
angles (azimuth α, elevation β, and in-plane rotation θ), the
relative viewpoint V = {α, β, θ} of an object with respect to
a camera. We formulate the viewpoint estimation problem as
a fine-grained classification problem, by dividing each angle
into Nv bins (Nv = 360, similar to previous works [Su et al.,
2015; Szeto and Corso, 2017]) respectively.

Viewpoint can be estimated directly from the
appearance features in images [Su et al., 2015;
Tulsiani and Malik, 2015], and can also be calculated
from the predicted keypoints [Pavlakos et al., 2017;
Wu et al., 2016]. However, the appearance information
lacks the structure information from predicted keypoint. The

predicted keypoint information loses the rich appearance
information. In this paper, to make full use of the appearance
information and structure information, we propose an
Appearance-and-Structure Fusion convolutional neural
network (ASFnet) with supervision of viewpoint and
keypoint labels simultaneously. This can be interpreted as
a probabilistic problem. Specifically, the goal is to learn
the network parameters W by maximizing the following
posterior probability,

Ŵ = argmax
W

p(W |x, y), (1)

where y is supervisory signals, including object class c,
viewpoint labels V and keypoint labels K, y = {c, V,K}.
Due to different appearance of different object categories in
the same viewpoint, object classification is included into the
network to learn discriminative representation for viewpoint
estimation.

3.2 Network Architecture
The architecture of our proposed ASFnet is shown in
Figure 2. The base net we use is VGG network [Simonyan
and Zisserman, 2014]. Then two parallel paths, appearance
based viewpoint path and structure based viewpoint path,
are connected to the base net. Each path estimates a
confidence vector for each angle. Finally, two confidence
vectors are adaptively fused for final estimation. We will
introduce the details of our network in the following parts:
appearance based viewpoint path, structure based viewpoint
path, adaptive fusion learning and objective function.
Appearance based Viewpoint Path. Appearance features
from images are useful for viewpoint estimation, which has
been shown by some existing state-of-the-art methods [Su
et al., 2015; Tulsiani and Malik, 2015]. We set an path in
the network to extract appearance representation. The path
is from the base net to three fully connected (FC) layers,
FC6, FC7, and FC8 x1 for each angle of viewpoint. FC6
and FC7 is the same as those of VGG network. FC8 x1
corresponds to FC8 α1, FC8 β1, FC8 θ1. Then each FC8 x1
and its corresponding GT label are feed into the loss function
for viewpoint estimation when training. Here we use the
geometric structure aware loss function from [Su et al., 2015],
which is an improved softmax loss function. Since the base
net is supervised with both of viewpoint and keypoint labels,
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both appearance and structure information are learned in the
layers of the base net, FC6 and FC7. In contrast with the
path of structure based viewpoint path, we call this path
appearance based viewpoint path.
Structure based Viewpoint Path. Viewpoint can be
calculated from predicted keypoint loctaions [Pavlakos et al.,
2017]. We aim to utilize structure information of keypoints
to improve the appearance based viewpoint estimation.
Furthermore, the supervision of viewpoint labels on base net
can also reduce structure ambiguity in keypoint prediction.
Here the architecture of FPN [Lin et al., 2017] is introduced
into the network for keypoint prediction. FPN uses a bottom-
up pathway and a top-down pathway with lateral connections
to construct feature pyramids as powerful feature extraction at
different scales. In our network, the path from pool3, pool4
to pool5 layers corresponds to the bottom-up pathway. The
path from conv6, conv7, to conv8 corresponds to the top-
down pathway. To predict keypoint localization and class,
we set the channels of conv6, conv7, conv8 to be equal to
the total number of the keypoints of all object classes Nk.

Nk =
∑C

c=1 |Kc|, here Kc denotes the set of keypoints of
object class c, |Kc| denotes the number of keypoints of class
c. The size (width and height) of conv6, conv7 and conv8 is
the same as that of layers pool5, pool4 and pool3 respectively.
Each feature map of conv6, conv7 and conv8 corresponds
to a probability distribution for each keypoint of a specific
object class. Thus the keypoint prediction is interpreted as a
multi-label classification problem. For network training, we
construct a GT label map for each layer (conv6,7,8). Its size is
the same as its corresponding layer. The value is set to 1 in the
location (h,w) of keypoints in each feature map and others
to 0. When training, conv6, 7, 8 and their corresponding
GT label maps are feed into each sigmoid-cross-entropy loss
function respectively. Then the heatmaps of conv8 are used
to predict viewpoints and the conv8 is feeded into a FC layer
FC8 x2 for each angle. FC8 x2 refers to FC8 α2, FC8 β2,
FC8 θ2. When training, FC8 x2 and its GT label are feed
into a geometric structure aware loss function for each angle
estimation. This path uses the heatmaps of keypoints. We call
it structure based viewpoint path.
Adaptive Fusion Learning. To fuse the predicted
viewpoint confidence vectors FC8 x1 and FC8 x2 in the
above paths, we utilize an adaptive learning technique for
fusion. Traditional fusion methods, such as averaging,
maximizing, are hard to design and may not extract
appropriate information from different paths. A learning
technique can learn the fusion parameters adaptively and is
suitable for the network. Specifically, for each angle in our
network, two confidence vectors FC8 x1 and FC8 x2 are
concatenated as a two-channel confidence map, which then
undergoes a 1 × 1 convolutional layer to generate FC8 x.
FC8 x corresponds to the final predicted viewpoint FC8 α,
FC8 β, FC8 θ. When training, FC8 x and its GT label are
taken as inputs of a geometric structure aware loss function
for each angle.
Objective Function. Let Lv(x, V ) denote a viewpoint
loss function, including three geometric structure aware loss
functions for three angles, La(x, α) for azimuth, Le(x, β) for
elevation, and Lr(x, θ) for in-plane rotation. Lv(x, V ) =

La(x, α) + Le(x, β) + Lr(x, θ). Let Lk(x,K) denote a
sigmoid cross entropy loss function for keypoint prediction.
Let Lc(x, c) denote a softmax loss function for object
classification. In our ASFnet, there are three viewpoint loss
functions Lv(x, V ), three keypoint loss functions Lk(x,K)
and an object classification loss functions Lc(x, c). We
set Lvf (x, V ) as the final viewpoint estimation loss, set
Lva(x, V ) as the appearance based viewpoint estimation loss,
set Lvs(x, V ) as the structure based viewpoint estimation
loss, set Lk6(x,K), Lk7(x,K) and Lk8(x,K) as the
keypoint estimation followed by layers conv6, conv7 and
conv8 respectively. The final objective function is

L(x, y) =
∑
u∈U

Lvs(x, V )+
∑
i∈I

f(Lki)Lki(x,K)+Lc(x, c), (2)

here U = {f, a, s}, I = {6, 7, 8}. f(Lki) is our proposed
loss weight function.

To keep and balance the effects of all tasks in our network
in entire training procedure, we propose a piecewise function
f(l) to adaptively provide the weight of each keypoint
estimation loss function. We find that softmax loss function
only considers the value corresponding GT label for each
training example, the geometric structure aware loss function
considers some values around GT label, while sigmoid cross
entropy loss function considers all the values in all the
locations of all feature maps. The loss values of different
tasks are very different in the training. Thus different loss
functions need different loss weights in the network training.
In addition, the speed of loss value decent of different tasks
through the entire training procedure is also very different.
For example, loss of keypoint prediction falls faster than the
loss of viewpoint estimation task at the beginning of training.
When the network converges, the losses of the two tasks are
falling at similar rate. Thus the loss weights for different loss
functions need to be adjusted in the entire training procedure
to keep the effects of all tasks. To implement it, we propose a
simple piecewise function f(l) for the keypoint loss function.

f(l) =

⎧⎨
⎩

a/L2, l ≥ L2,
a/L1, L1 ≤ l < L2,

a, 0 < l < L1,
(3)

here l corresponds to the loss value of keypoint estimation,
L1 and L2 are two threshold values, a is a constant. In this
method, when the loss is very large, the loss weight is very
small. When the loss converges, the loss weight becomes
larger. In this way, it makes all the tasks affect the network
effectively through entire training procedure until the network
converges.

4 Experiments
In this section, we present the experimental setup,
quantitative and qualitative results on viewpoint estimation.
Dataset and Metrics. Our method is evaluated on 12 object
categories of a public PASCAL 3D+ [Xiang et al., 2014]

dataset. There are annotations of viewpoints, keypoints,
object classes and object bounding boxes in this dataset. This
dataset consists of PASCAL VOC 2012 detection train and
validation set, and ImageNet images. We use the PASCAL
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aero bike boat bottle bus car chair table mbike sofa train tv mean
Accπ/6 (Anet) 81.9 83.9 52.9 94.4 92.9 87.1 73.7 60.9 87.6 87.5 79.6 85.6 80.7
Accπ/6 (ASnet) 85.9 85.6 61.9 94.8 97.4 87.7 78.9 73.9 90.5 85.0 79.6 85.1 83.9
Accπ/6 (ASFnet with average fusion) 82.2 85.6 62.3 94.0 97.4 87.1 76.1 78.3 87.6 82.5 82.3 88.7 83.7
Accπ/6 (ASFnet with max fusion) 85.9 81.4 52.0 94.8 96.1 88.1 72.5 73.9 88.3 80.0 81.4 88.3 81.9
Accπ/6 (ASFnet with adaptive fusion) 86.6 88.1 58.6 93.3 98.7 86.5 78.5 82.6 89.8 85.0 84.1 90.1 85.2
Accπ/6 ([Tulsiani and Malik, 2015]) 81 77 59 93 98 89 80 62 88 82 80 80 81
Accπ/6 ([Su et al., 2015]) 74 83 52 91 91 88 86 73 78 90 86 92 82
Accπ/6 ([Szeto and Corso, 2017])* - - - - 96.8 90.2 - - 85.2 - - -

MedErr (Anet) 10.0 12.1 26.6 6.1 2.3 4.1 9.6 23.3 10.0 8.1 4.8 9.5 10.5
MedErr (ASnet) 8.0 10.8 18.6 5.9 2.0 4.0 8.4 10.0 9.7 7.7 3.7 10.4 8.3
MedErr (ASFnet with average fusion) 8.3 10.7 20.2 5.7 1.9 4.3 8.5 7.0 9.8 7.8 4.0 11.0 8.2
MedErr (ASFnet with max fusion) 7.8 12.1 26.8 6.4 2.1 4.1 9.7 8.8 10.4 9.6 4.5 9.3 9.3
MedErr (ASFnet with adaptive fusion) 7.4 10.7 18.5 6.1 1.8 4.0 8.2 7.5 9.0 8.1 3.7 9.7 7.9
MedErr ([Tulsiani and Malik, 2015]) 13.8 17.7 21.3 12.9 5.8 9.1 14.8 15.2 14.7 13.7 8.7 15.4 13.6
MedErr ([Su et al., 2015]) 15.4 14.8 25.6 9.3 3.6 6.0 9.7 10.8 16.7 9.5 6.1 12.6 11.7
MedErr ([Pavlakos et al., 2017]) 8.0 13.4 40.7 11.7 2.0 5.5 10.4 - - 9.6 8.3 32.9
MedErr ([Mahendran et al., 2017]) 13.97 21.07 35.52 8.99 4.08 7.56 21.18 17.74 17.87 12.70 8.22 15.68 15.38
MedErr ([Szeto and Corso, 2017])* - - - - 2.64 4.98 - - 11.4 - - -

*This work takes an RGB image and a human localized keypoint as inputs to estimate viewpoint in the test time.

Table 1: Accπ/6 (%) and MedErr of different methods for viewpoint estimation with ground truth bounding boxes on PASCAL 3D+ dataset.
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Figure 3: Two baselines for our proposed network.

train set and ImageNet images with GT bounding boxes to
train our network. The whole PASCAL validation set is used
to evaluate our performance.

To be consistent with previous works [Xiang et al., 2014;
Su et al., 2015; Tulsiani and Malik, 2015], we use (Average
Viewpoint Precision) AVP, Accπ/6 and MedErr as the

evaluation metrics. AVP [Xiang et al., 2014] is used to
evaluate the performance of methods for joint detection and
viewpoint estimation. When computing AVP, the result is
correct only if both of detection result and viewpoint (only
azimuth is considered following previous works [Tulsiani and
Malik, 2015; Su et al., 2015; Xiang et al., 2014; Pepik et
al., 2012]) are correct. Accπ/6 (accuracy at Δ(R1, R2) <
π
6 ) and MedErr are based on the geodesic distance

Δ(R1, R2) = ||log(RT
1 R2)||F /

√
2 over the manifold of

rotation matrix between GT and predicted viewpoint (three
angles are all considered). These two metrics [Tulsiani
and Malik, 2015] are presented to evaluate the viewpoint
estimation performance with GT bounding boxes.

Baselines. We design two baseline networks (shown in

Figure 3) to evaluate the effectiveness of our ASFnet.
(1) Baseline 1: An appearance-only viewpoint estimation
network is implemented. We call it Anet, which is similar
to the state-of-the-art methods [Su et al., 2015; Tulsiani and
Malik, 2015]. Its architecture is same as the appearance based
viewpoint path in our ASFnet. (2) Baseline 2: Compared
to baseline 1, an Anet with added supervision of keypoint
is implemented. We call it ASnet. The added architecture
of FPN for keypoint prediction is same as the corresponding
layers of our ASFnet. Compared with ASFnet, ASnet does
not have the fusion part of the ASFnet.

When training the baseline networks and ASFnet, we
resize the object images cropped from training set with their
GT bounding boxes to 256× 256× 3, then randomly extract
a 224 × 224 × 3 patch from the resized image or resized
mirror image as the input of all networks. In addition to these
traditional operations, previous works also augment training
data with jittered GT bounding boxes that overlap with
annotated bounding box with IoU > 0.7 [Tulsiani and Malik,
2015], or by synthesizing millions of high diverse images
with 3D CAD models [Su et al., 2015; Wu et al., 2016;
Szeto and Corso, 2017]. All the baseline networks and
ASFnet here are only trained with the traditional operations
as mentioned above. In the piecewise loss weight function
f(l), a is set to 0.5, L1 to 100, L2 to 1000 by experience.
We initialize the two baseline networks with the trained VGG
network on ImageNet classification task. Then the ASnet is
used to initialize our ASFnet.

Effect of Structure Information from Keypoints. To
evaluate the effectiveness of structure information provided
by keypoints for viewpoint estimation quantitatively, we
show the Accπ/6 and MedErr of Anet, ASnet and ASFnet
with GT bounding boxes in Table 1. As shown in Table 1,
our ASFnet performs best, and ASnet performs better than
Anet. By comparing the performance of ASnet and Anet,
we can see that the supervision of keypoint is very useful
to learn auxiliary structure representations in the base net
for viewpoint estimation. By comparing the results of
ASFnet and ASnet, we can see that our adaptive fusion for
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Figure 4: Qualitative comparison results. Azimuth confidences with
different methods and ground truth (GT). Our predicted keypoint
locations are also shown in the images with different markers and
different colors for different object categories.

using the structure information is effective to further improve
viewpoint estimation.

To qualitatively demonstrate the benefits of structure
information for viewpoint estimation, we show some example
images with predicted viewpoints in Figure 4. It shows that
the appearance only method Anet sometime has two peaks
in the viewpoint confidence due to visual ambiguity and is
confused. The keypoint information of ASnet and ASFnet
can reduce the ambiguity effectively.
Effect of Adaptive Fusion. Traditional fusion techniques
often use averaging, maximizing, etc. To verify the effect
of our adaptive fusion method, we replace the 1 × 1
convolutional layer in ASFnet with averaging or maximizing
the values from two paths. We call these fusion networks as
ASFnet with average fusion and ASFnet with max fusion. As
shown in Table 1, traditional fusion methods contribute little
for improvement. Our adaptive fusion performs much better.
Effect of Piecewise Loss Weight. We propose a piecewise
loss weight strategy for keypoint prediction loss function
when training our ASnet and ASFnet. To demonstrate the
effect of the piecewise loss weight, we implement an ASnet
with a fixed loss weight for each keypoint loss function when
training. We choose three best loss weights for Lk6, Lk7,
Lk8 by experiments. The training and testing errors of the
two ASnets with different loss weight strategies for viewpoint
estimation and keypoint prediction respectively are shown in
Figure 5. We can see that piecewise loss weight is beneficial
to both of the two tasks by keeping and balancing the effects
of all tasks. It makes the network learn more powerful
features for viewpoint estimation.
Comparison to State-of-the-art Methods. We compare
with the viewpoint estimation methods that use only a single
image as input. In all the comparisons, our training data
augmentation does not use the CAD synthesized images [Su
et al., 2015; Wu et al., 2016; Szeto and Corso, 2017; Pavlakos
et al., 2017] nor the jittered bounding boxes [Tulsiani and
Malik, 2015]. Note that results of some compared methods
are only available with one or two metrics on some object
categories. Firstly, we evaluate the performance of different
methods with GT bounding boxes in Table 1. Our network

Methods mAVP AVP (4V)
4V 8V 16V 24V chair sofa

[Xiang et al., 2014] 19.5 18.7 15.6 12.1 6.8 5.1
[Pepik et al., 2012] 23.8 21.5 17.3 13.6 6.1 11.8
[Poirson et al., 2016] 50.7 45.1 33.6 28.8 11.3 40.6
[Wu et al., 2016] - - - - 23.1 45.8
[Su et al., 2015] 39.7 32.9 24.2 19.8 15.7 28.4
Ours+detection-1 46.5 41.0 32.1 27.4 17.3 34.7
[Tulsiani and Malik, 2015] 49.1 44.5 36.0 31.1 25.1 43.8
Ours+detection-2 52.1 45.5 37.2 31.4 26.4 54.2

Table 2: Joint object detection and viewpoint estimation. We show
mean AVPs (mAVP) of different methods on 12 categories of the
PASCAL 3D+ and AVPs (4 bins) on two categories.
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Figure 5: Fixed loss weight vs. Piecewise loss weight. (a) shows the
error (1- accuracy at π/6) of azimuth angle in viewpoint estimation
(b) shows the error (L2 distance between predicted and GT) for
keypoint estimation. In both training and test set, network using the
piecewise loss weight achieves lower error with faster convergence.

outperforms the state-of-the-art methods [Tulsiani and Malik,
2015; Su et al., 2015] on the whole PASCAL 3D+ validation
set. Although the work [Szeto and Corso, 2017] uses an
RGB image and a human localized keypoint as inputs, we
also list their results in Table 1 just for reference. Then,
we evaluate our method on the joint detection and viewpoint
estimation task as shown in Table 2. AVPs are shown
for four cases that the 360-degree views are discretized to
4, 8, 16, 24 bins respectively as in previous works. We
use the detection results, detection-1 provided by [Su et
al., 2015] and detection-2 provided by [Tulsiani and Malik,
2015] respectively to evaluate our ASFnet. The method [Wu
et al., 2016] is limited to some specific categories and is
only evaluated on two categories, sofa and chair, for 4
bins. It is shown that our viewpoint estimation method
(with less training data) outperforms the state-of-the-art
methods [Tulsiani and Malik, 2015; Su et al., 2015; Wu et al.,
2016; Poirson et al., 2016]. These results on the three metrics
demonstrate that fusing appearance and structure information
leads to significant improvement for viewpoint estimation.

Compared with previous methods, our method works much
better for the error cases due to the problem of visual
ambiguity and structure ambiguity as shown in Figure 1
and 4. However, as for other sources of errors in existing
methods [Tulsiani and Malik, 2015], such as very small
objects, our method may encounter difficulty too. In these
cases, it is difficult to recover useful features since most visual
information are lost due to low resolution.
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5 Conclusion
Current state-of-the-art methods for viewpoint estimation
have achieved remarkable progress by exploring deep
learning models, but they still suffer from visual ambiguity
and structure ambiguity issues. This paper addresses
the issue of how to effectively fuse the appearance and
structure information to reduce such ambiguity for viewpoint
estimation. An appearance and structure fusion network is
proposed with two different parallel paths and an adaptive
fusing technique. The two paths fuse supervision from
viewpoint labels on appearance extraction and from keypoint
labels on structure information extraction respectively.
Experiments demonstrate that our fusion based method
outperforms the state-of-the-art methods on the challenging
Pascal3D+ dataset. We wish this work would inspire
more efforts in the research community to investigate fusing
relevant supervision to further improve the performance of
this important task.
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