
Robot Task Interruption by Learning to Switch Among Multiple Models

Anahita Mohseni-Kabir and Manuela Veloso
School of Computer Science, Carnegie Mellon University

{anahitam, mmv}@cs.cmu.edu

Abstract

While mobile robots reliably perform each service
task by accurately localizing and safely navigating
avoiding obstacles, they do not respond in any other
way to their surroundings. We can make the robots
more responsive to their environment by equipping
them with models of multiple tasks and a way to
interrupt a specific task and switch to another task
based on observations. However the challenges of
a multiple task model approach include selecting a
task model to execute based on observations and
having a potentially large set of observations as-
sociated with the set of all individual task models.
We present a novel two-step solution. First, our ap-
proach leverages the tasks’ policies and an abstract
representation of their states, and learns which task
should be executed at each given world state. Sec-
ondly, the algorithm uses the learned tasks and
identifies the observation stimuli that trigger the
interruption of one task and the switch to another
task. We show that our solution using the switching
stimuli compares favorably to the naive approach of
learning a combined model for all the tasks. More-
over, leveraging the stimuli significantly decreases
the amount of sensory input processing during the
execution of tasks.

1 Introduction
Our service robots can successfully perform user-requested
tasks by executing a single planned task at a time [Veloso et
al., 2015]. Our goal is to increase the robots’ responsiveness
to their environment by enabling them to interrupt their task
execution and switch to another task when appropriate. For
example, if the robot is scheduled to deliver an object to an
office, and on the way to the office it sees a person lying on
the ground, asking for help, we would want the robot to first
assist the person and then finish its delivery. There are ways
to hard-code the switching response for a specific problem.
However, we target service robot domains in which the tasks
have hundreds of state variables (e.g., human’s distance and
speed, human gaze, distance to obstacles) and hard-coding
the switching response is not feasible.

One way to address the task-switching behavior is to en-
code all the details of the tasks’ structure and environment in
one combined model and use a reinforcement learning (RL)
[Sutton and Barto, 1998] algorithm to find an optimal policy.
This approach has a large number of state variables with the
potential of high computational complexity. Another draw-
back of the combined model approach is that the robot should
process all the sensory state variables for all the task models
during the execution of the combined model. In most robotics
applications, there is a cost associated with processing the
sensory state variables, e.g., cost for human pose estimation
and speech recognition, and it is often not feasible to process
all sensory inputs.

We use a multiple task model representation and learn
when to switch between task models to focus the sensory
computations. We propose a two-step solution. In the first
step, learning, the robot learns a task selection policy that
specifies which task should be executed at each world state.
We formulate the task-switching problem as a Markov Deci-
sion Process (MDP) and leverage a Dueling Deep Q-Network
architecture to solve it [Wang et al., 2015]. In the second step,
identification, we speed up the execution of the task mod-
els by identifying “stimuli” that trigger the task-switching.
Leveraging the stimuli enables the robot to focus on only
one task at a time. When a stimulus is triggered, the robot
computes all sensory inputs and decides if a switch is more
rewarding than continuing with the current task. We iden-
tify these stimuli by identifying the sensory inputs that have
higher impact on the task switching.

In summary, our work makes the following contributions:
1) a novel approach that learns a mapping from world states
to task models (learning step), 2) a novel algorithm that iden-
tifies the stimuli that trigger the switch between task models
(identification step), 3) our approach enables a robot to be
more responsive to its surrounding environment, and 4) our
two-step algorithm significantly decreases the amount of sen-
sory input processing during the execution of the tasks.

2 Related Work
Hierarchical Reinforcement Learning (HRL) approaches are
capable of learning both the internal policies and the termina-
tion conditions of options (or tasks), in tandem with the policy
over options [Barto and Mahadevan, 2003; Konidaris, 2016;
Kulkarni et al., 2016; Bacon et al., 2017]. However, these ap-

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4943

proaches do not learn when it is more rewarding for the robot
to interrupt the execution and switch to another option. An-
other approach shows that greedy interruption of options is
better than not interrupting and treating them as indivisible
units [Sutton et al., 1999]. This approach processes all the
state variables to decide if a switch to another option is better.
Differently, our approach learns the switching policy and only
processes all the variables when the stimuli are triggered.

Goal management is another area of research that has some
similarities to our work [Vattam et al., 2013]. Some work
permits arbitration between current goals based on priority
values that are dynamically computed from predefined con-
ditions and rules [Choi, 2011]. Another work evaluates all
possible goals for the agent using a set of predefined fitness
functions and selects the goal with the best combined score
[Muñoz-Avila et al., 2015]. However, in our service robot
domain with hundreds of state variables, it is not feasible
to hard-code the conditions or the fitness functions. In some
other work, Q-learning is used to learn a goal selection policy
over all the state variables. This approach computes the same
amount of state variables as the combined model in contrast
to our approach that enables the robot to focus on only one
task at a time [Jaidee et al., 2012].

Behavior-based control systems (BBC) provide algorithms
to select and activate the appropriate behaviors given the
robot’s observations [Pirjanian, 1999; Matarić and Michaud,
2008]. In these approaches, the behaviors are selected and
executed concurrently to collectively achieve the desired
system-level behavior [Nicolescu et al., 2006]. Different from
these approaches that process all the state variables, our ap-
proach decreases the amount of sensory computations by pur-
suing only one task at a time. In our approach, the robot
is committed to perform one task, might temporarily switch
to other tasks, but eventually returns to execute the initial
task. Some BBC approaches predefine the conditions and
learn a switching policy over them [Martinson et al., 2001;
Raı̈evsky and Michaud, 2008]. Differently, we introduce an
approach that learns the switching policy, identifies the stim-
uli, and then uses both the policy and stimuli to switch be-
tween multiple task models.

3 Approach
In this section, we explain how we formalize the task-
switching problem as an MDP. We then discuss how we iden-
tify the stimuli that trigger the task-switching behavior.

We consider a scenario in which the robot is executing
a user-requested task, e.g., object delivery, and is also alert
for other observations like humans and objects (e.g., trash)
around it. These observations may lead the robot to interrupt
the current task execution if the switch to a human interaction
or trash cleaning task results in a higher future utility.

3.1 Learning Task Selection Policy
Our task selection algorithm is provided with a set of task
models; each task model in this set achieves one goal. The
output of the algorithm is a policy, denoted by πselect−task,
that specifies which task model should be executed given an
observation of the environment. Each task model, denoted by

Ti for the ith task model, is represented as an MDP [Kober
et al., 2013]. Solving the ith task model’s MDP by a value-
function based approach provides a policy πi and a value
function Vi. The policy πi specifies the best action that should
be taken in each of the task model’s states. The value func-
tion Vi specifies how good each state is from the perspective
of the ith task model. The ultimate goal of the task selection
algorithm is to use πi’s and Vi’s, and learn when to switch
between the task models.

Problem formulation:
We formalize the task-switching problem as an MDP, and we
refer to it as “switching MDP”. The MDP’s representation1 is
as follows:

• States: In a domain with n task models, the switching
MDP’s state is [V1(S1), V2(S2), . . . , Vn(Sn)]. State Si

represents the state of the ith task model, and Vi(Si)
represents the expected reward when starting in Si for
the ith task model.

• Actions: In a domain with n task models, the actions are
execute π1, execute π2, ..., and execute πn. Each call to
execute πi executes an action based on policy πi of task
model Ti.

• Reward function: The reward is produced by the envi-
ronment. This reward function specifies the multi-task
behavior of the robot.

Learning πselect−taskπselect−taskπselect−task:
Our MDP’s state space is continuous, therefore we use a neu-
ral network to approximate the Q function. Some work pro-
vides a variant of Q-learning called Deep Q-Network (DQN)
that stabilizes RL by utilizing an experience replay mecha-
nism and a second fixed target network [Mnih et al., 2015].
In addition to utilizing these two improvements of DQN ap-
proach, we leverage the dueling architecture which compared
to DQN provides a more robust estimate of the Q function
and has shown better performance in domains with many
similar-valued actions [Wang et al., 2015]. Particularly, since
the task models can have common state variables and actions
in our domain, the optimal policy for different task models
might be the same in some parts of the state space. Hence,
the dueling method is more appropriate for our domain.

We use our MDP formulation of the task-switching
problem and apply the deep Q-network method to ap-
proximate the task-switching policy. To learn the task-
switching policy for n task models, our deep model gets
[V1(S1), V2(S2), .., Vn(Sn)] as an input. The output of our
network specifies which πi should be executed given the in-
put to the network. Fig. 1 shows what happens in one step of
learning if our domain consists of n task models. If n = 3
the robot observes the environment, updates S1, S2, and S3,
and computes the corresponding V1(S1), V2(S2), and V3(S3).
The robot picks one of the task models (e.g., T1) and executes
one step of its policy (e.g., if a3 = π1(S1), the robot executes
action a3). The robot observes the new state and the reward of

1We assume a discount factor of 0.99 in all our experiments.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4944

Figure 1: Overview of the task selection module.

the action execution, and updates the parameters of the net-
work. The robot keeps updating the parameters by applying
the DQN approach until the loss converges to 0.

Executing πselect−taskπselect−taskπselect−task:
We explain how the robot uses the trained network at execu-
tion time to perform the following task: the robot is scheduled
to deliver an object to a location (main task), while interacting
with the people around it. The robot starts going to the goal
location to deliver the object. At each step during execution,
the robot computes an array of Vi’s and passes it to the net-
work. The network then selects a task, and the robot executes
an action from the task’s policy. In our example scenario, the
robot might see multiple people in the scene. Interacting with
each person is a different task. The robot might choose to in-
teract with a person, and then decide to interact with another
person or return to the object delivery task.

The Q-values and V-values have been used in other work
to address the action (model) selection problem [Karlsson,
1997; Humphrys, 1996; Sutton et al., 1999]. Their algorithms
use heuristic values calculated from Q-values and V-values
to select actions from different modules. Similar to their ap-
proach, our tasks are learned with different reward functions,
but our approach trains a model based on the global reward
function that specifies the relative utility of the tasks to each
other. The robot learns a behavior that specifies how it should
switch between its multiple tasks to gain the highest utility.
Notice that just getting the maximum of V-values does not
work for the following reasons: 1) each task is learned sepa-
rately with a different reward function, and 2) the robot might
greedily select a task that is closer and miss a dense group of
rewarding tasks further away.

Our task-switching formulation has the following charac-
teristics:

• The structure of our task selection algorithm is indepen-
dent of the number of state variables and actions in each
task model’s MDP, and the size of the input to the deep
network increases linearly as the number of task mod-
els increases. This is because each task model is learned
separately using its own reward function, and the high-
level task selection module only learns how to switch
between the tasks to get the highest utility.

• Our formulation decouples the task model representa-
tion from the task selection module. Thus, MDPs can

be replaced by more complex representations, e.g., par-
tially observable MDPs (POMDPs), or simpler represen-
tations, e.g., a simple shortest path policy to goal, as long
as they provide a value function and a policy.

• The task selection module might not learn the combined
model’s optimal solution in some cases since it only uses
the individual task models’ policy and value function.
However, training the task selection module is faster
than solving the combined model. The task selection al-
gorithm favors computational feasibility over optimality.

• Although the task selection algorithm enables the robot
to switch between multiple task models, the robot is still
processing the same amount of sensory input as the com-
bined model during the execution phase. More specifi-
cally, the robot should first update all the state variables
and then use them to calculate Vi’s. That is to say, in a
real scenario, while the robot is executing a navigation
task, it should also process all the state variables of a
Human-Robot Interaction task to decide if a switch to a
different task is appropriate. We introduce the notion of
task-switching stimuli in the next section to decrease the
amount of sensory computations at execution time.

3.2 Identifying Task-Switching Stimuli
On one end of the spectrum, we have approaches like our
task selection algorithm that process all the sensory informa-
tion for decision making. These approaches work if the total
time of processing the sensory information is less than the
desired response time of the robot. However, as we increase
the number of sensors on robots and the tasks become more
complex, these approaches become infeasible. On the other
end of the spectrum, we have approaches that only focus on
one task at a time. These approaches are not responsive to
their external environment which makes them less effective
in real-world applications. We are interested in a method that
trades-off between the amount of sensory input computations
and responsiveness of robots. We introduce another algorithm
that leverages stimuli to address this trade-off.

A “stimulus” (plural stimuli) is a detectable change in the
internal or external environment of a robot that causes a reac-
tion in the robot. These stimuli, when triggered, interrupt the
robot to assess if switching to another task model is benefi-
cial. The information that a robot requires to execute actions
and achieve a task model’s goal is already provided in the
task model’s state variables (features). We introduce an algo-
rithm that takes as input the state variables of each task model
and selects the most informative state variable as the stimu-
lus that triggers the reevaluations of the task selection policy
πselect−task. For each task model, our algorithm computes a
sorted list of the task model’s features with their associated
importance percentage.

Algorithm 1 presents the stimuli identification algorithm.
The stimuli identification algorithm takes as an input a list of
target task models U , the task selection policy πselect−task,
and the main robot task cmain, and computes U ’s features’
importances. We run N simulations (line 1) with differ-
ent goal locations and random initial values for the features
(line 2) and evaluate the task selection policy at each step of

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4945

the simulation (line 5). To find the features that have the most
impact on the task-switching policy, the algorithm gathers ex-
amples of observations where the robot decides to switch to
another task or continue with the current task. For each tar-
get task model, the algorithm considers an empty positive and
negative example sets. At each simulation step, if we switch
from task model A to task model B, we add the current state
of the task models U − B to their negative example set (line
7) and the current state of task model B to its positive exam-
ple set (line 6); otherwise, we add the current state of task
model A to its positive example set, and the current state of
the other task modelsU−A to their negative example set. No-
tice that if the robot does not switch from A to another task
model, we still consider the state as a positive example for A,
since A is preferred to the other task models in that state. We
keep updating the positive and negative example sets for the
tasks until all the simulations terminate.

Algorithm 1 Task-Switching Stimuli Identification. The al-
gorithm takes the task selection policy πselect−task, the num-
ber of simulations N , the main robot task cmain, and a list of
target task models U as input.

1: for 1 to N do
2: Randomly reset all task models.
3: while cmain not done do
4: cstate ← compute taskmodel values()

. computes state of the switching MDP (Vi’s)
5: ctask ← πselect−task(cstate)

. selects a task model
6: Add the state of ctask to its positive set
7: Add the state of U − ctask to their negative sets
8: execute(ctask)

. executes one step of ctask
9: for task in U do

10: data, label ← get sensory data(task)
11: clf ← fit classifier(data, label)
12: task.importances← feature importances(clf)

We formalize the identification problem as a classification
problem. The stimuli identification algorithm first filters out
all nonsensory features since they cannot be used as a stimu-
lus to interrupt the task execution (line 10). The sensory fea-
ture vectors with their labels are then provided to the classi-
fication algorithm (line 11), and the feature importances are
computed (line 12). The feature with the highest importance
is selected as the stimulus for the target task.

Algorithm 2 describes how the learning and identifica-
tion steps of our approach are integrated and executed by the
robot. The robot starts with the main robot task, e.g., object
delivery task, and keeps executing it (line 4) until a stimu-
lus is triggered, e.g., the robot sees a person, or the current
task is done (line 5). The robot then computes all the sensory
variables and selects a task model to execute (lines 6-7). No-
tice that while executing the current task ctask, the robot only
processes the sensory variables of ctask and the stimuli.

Algorithm 2 Task-switching behavior. The algorithm takes
the task selection policy πselect−task and the main robot task
cmain as input.

1: ctask ← cmain

2: while cmain not done do
3: repeat
4: execute(ctask)
5: until stimuli not triggered & ctask not done
6: cstate ← compute taskmodel values()
7: ctask ← πselect−task(cstate)

4 Experiments
In this section, we discuss the results of our task selection
and stimuli identification algorithms in a scenario with 1 to
6 tasks (e.g., the object delivery and human interaction tasks)
that our service robot encounters everyday in our building.

Neural Network Structure
The network gets as input an array with size equal to the num-
ber of task models. This is followed by 3 hidden layers, each
with 60 neurons and ReLU activation functions. The output
layer has size equal to the number of task models. We sam-
ple uniformly a batch of size 32 from the replay memory of
size 50, 000 to perform each update. We use a linear decay
epsilon greedy policy with maximum value 1 and minimum
value 0.1 and the Adam stochastic gradient descent method
as the optimizer with learning rate 0.001 [Kingma and Ba,
2014]. We use the same network structure and parameters in
all our experiments. Instead of applying a hard update on the
network, we use a soft update method with smoothing pa-
rameter α = e−2 to update the model. The parameters of the
DQN approach, e.g., minibatch and replay memory size, are
equivalent to the ones used by other works in deep RL [Mnih
et al., 2015].

Feature Importance Computation
In order to compute the feature importances, we apply the
Extra-trees algorithm on the positive and negative example
sets2 [Geurts et al., 2006]. We used the extra-trees algorithm
with 1000 estimators, i.e., 1000 trees in the ensemble, gini cri-
terion and maximum depth of 4. Features with higher ranks,
i.e., at the top of the tree, contribute more to the final classi-
fication decision of a larger fraction of the examples. The ex-
pected fraction of the examples that each feature contributes
to is used as an estimate of the relative importance of the fea-
ture. Averaging the relative importances over several random-
ized trees produces the feature importances for each target
task model.

Simulation Setup
We tested our task-switching behavior in an 11×11-grid en-
vironment (Fig. 2) with three types of tasks: an object deliv-
ery task with 3 features and 3 actions, a trash cleaning task
with 4 features and 5 actions, and a Human-Robot Interac-
tion task (HRI) with 7 features and 7 actions. Except for the x

2We used the scikit-learn implementation of the algorithm [Pe-
dregosa et al., 2011]

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4946

Figure 2: 11×11-grid environment with the robot (R), the navigation
goal (G), and 5 humans goals (H’s).

and y position of the robot, all other features are binary. In all
experiments, the robot is performing an object delivery task
while interacting with 0 to n people or executing 0 to n trash
cleaning tasks. Thus, the number of tasks ranges from 1 to
n+ 1.

We build a huge MDP with the n + 1 tasks, and we call
it “exact MDP” since it computes the exact solution to our
problem. The exact MDP would have 5n + 3 state variables,
121× 25n+1 states, and 8 actions if we use the HRI task and
2n + 3 state variables, 121 × 22n+1 states, and 6 actions if
we use the trash cleaning task. We compare our switching
MDP’s solution to the solution of the value-iteration algo-
rithm on the exact MDP. In both MDPs, the robot gets −0.1
reward for each action execution. The reward of interacting
with a human goal, cleaning trash, and delivering an object
is 1, 1, and 0 respectively. The episode terminates when the
robot achieves the delivery task regardless of whether it inter-
acts with the humans or performs the trash cleaning tasks. We
consider the same setup for our switching MDP. With n + 1
tasks, our switching MDP has n+1 state variables and n+1
actions.

4.1 Results of Task-Switching Behavior
We evaluate our task-switching behavior in different setups
and show its benefits over the exact MDP. Here, we assume
that the switching stimulus is detected by the stimuli identifi-
cation algorithm, and we provide the results of the identifica-
tion step in the next section. We report the final results of our
task-switching approach in three evaluations:

1. In the first evaluation, we used one object delivery task
and 1 to 4 different trash cleaning tasks and compared the
switching MDP and the exact MDP’s performance during
training. While executing the object delivery task, the robot
observes 1 to 4 different trash goals, and it should decide
if it should switch to another task. Fig. 3 shows the perfor-
mance of our switching MDP compared to the exact MDP
(dashed lines). To compute the performance, we average the
final reward of running 120 simulations with random initial
values for the state variables. The final reward of a simula-
tion is the total reward of its episode until it terminates or the
robot reaches the maximum number of steps, which is set to
150. Fig. 3 shows our dueling Q-network performance is very
close to the exact solution at the end of the training process.

Figure 3: Performance of the switching MDP during the training
phase for 1 delivery task and 1 to 4 trash cleaning tasks.

As the number of tasks increases, the neural network re-
quires more training steps to converge to the optimal solu-
tion. For two, three, four, and five tasks, the network required
25, 000, 30, 000, 60, 000, and 70, 000 training steps respec-
tively. Due to space constraints, here we briefly highlight the
advantages of our approach, in terms of time complexity of
the learning phase, compared to the naive approach. To bet-
ter illustrate the computational complexity of the combined
model when the state space is just slightly bigger, we intro-
duce a new task HRI-13 that has the same 7 variables as the
HRI task, and we add 6 more binary variables to it.

The value-iteration algorithm computes the optimal solu-
tions of the object delivery and HRI-13 tasks in 0.08 and
66.04 seconds (s) respectively. For 2 tasks, object delivery
and HRI-13, the naive approach takes 137.01 s to solve the
MDP, and our approach takes 183.03 s to learn the switching
policy. The time complexity of our approach, in total 249.15 s
(183.03+0.08+66.04), is almost twice as much as the com-
plexity of the naive approach. If we add one more task with
13 variables (total 25 variables), value-iteration was not able
to compute the solution even after hours of waiting, but our
approach in total took 336.98 s to compute the solution.

2. In the second evaluation, we compared the performance
of our switching MDP with the exact MDP when the robot
executes the final learned network. In addition to the cost of
each action execution, the robot receives a negative reward
for updating each sensory variable, we call this cost “obser-
vation cost” (oc). For example, the cost of detecting a person
in the scene is 0.01 (oc = 0.01). In the exact MDP, all the
task models’ state variables are being computed. However, in
the switching MDP, only the state variables of the current task
model and one stimulus for each one of the other task models
are being computed. We used the same setup as before and in-
cluded the observation cost. Fig. 4 shows how the difference
between the performance, in terms of average reward, of the
exact MDP, denoted by er, and the switching MDP, denoted
by sr, increases as the number of task models increases. No-
tice the difference in performance of the MDPs is 0 when the
robot is only scheduled to execute the delivery task. Although
adding each trash cleaning task to the task models only in-
creases the number of state variables by 2, with 6 task models
the exact MDP on average processes 89 more state variables
than the switching MDP.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4947

Figure 4: Difference between the performance of the exact MDP (er)
and the switching MDP (sr) when there is an observation cost (oc)
for processing each sensory variable.

Figure 5: Average reward that the robot gains for 3 tasks as we in-
crease the observation cost by 0.01.

3. In the third evaluation, we incorporated the observation
cost into the training phase. In addition to the positive re-
ward for achieving the goals and negative reward for each
action execution, the robot gets a negative reward equal to
sensory variables × oc in each state. This ensures that
the robot considers the cost of observations during training,
and if the observation and execution cost of achieving another
goal exceeds its reward, the robot will not switch to the other
task. Fig. 5 shows the results of the task-switching behavior
with different observations costs. The performance is com-
puted as before for 3 tasks, 1 object delivery task and 2 trash
cleaning tasks. As the observation cost increases by 0.01, the
exact MDP’s average reward decreases by almost 0.8, but the
switching MDP’s average reward only decreases by 0.3.

Discussion We tested different versions of neural networks
with a different number of layers and neurons, but all other
network structures degraded our results or didn’t improve
them. Whether a deep network is needed or just a linear net-
work suffices depends on the target domain. We attempted
to use the linear combination of basis functions [Sutton and
Barto, 1998; Bethke et al., 2008], but this approach did not
achieve satisfactory results.

4.2 Results of Identifying Task-Switching Stimuli
To evaluate our stimuli identification algorithm, we ran mul-
tiple simulations of the task selection policy for 2 tasks (a

feature present x y
mean ± std % 69± 31 27± 29 4± 8

Table 1: Feature importances for the trash cleaning task.

Figure 6: Feature importances for the HRI task.

delivery task and a trash cleaning, or a delivery task and an
HRI task) with random initial values for the state variables.
The sensory state variables (features) of the trash cleaning
and HRI tasks are shown in Table 1 and Fig. 6. The algo-
rithm randomly selects the value of the willing, looking, and
stopped variables. The value of the present variable is initially
set to 0, and it becomes 1 when the robot is 5 steps away from
a human goal or a trash goal, i.e., we assume that the sensor
range is 5. We applied our proposed algorithm on our data and
calculated the feature importances. Table 1 and Fig. 6 show
the feature importances for the trash cleaning and HRI tasks
respectively for 40 simulation runs. Feature importances for
each task model sum to 100. We evaluated the performance of
the extra-trees classifier by 5-fold cross-validation technique.
The classifier’s accuracy is 89% on the HRI and 76% on the
trash cleaning task.

Table 1 shows that the present feature is more important
than the x and y features, so the algorithm selects it as the
stimulus for the trash cleaning task. The importance of the
present feature is not close to 100% since the robot will only
switch to another task if the switch is beneficial. We observed
similar results for the HRI task. The present and willing fea-
tures are the most important features, and their sum of im-
portances (71%) is almost the same as the importance of the
present feature in the trash cleaning task (69%). Although the
looking and stopped features are involved in the termination
conditions of the HRI task, the robot can execute actions to
change their value, so they do not affect the task-switching
behavior. The present feature is more important than the other
features, so it is selected as the stimulus for the HRI task.

We decreased the sensor range from 5 to 3 and observed
that the importance of the present and willing features is
46% and 24% respectively. We increased the sensor range
from 5 to 8, and we observed that the importance of the
present and willing features is 26% and 43% respectively.
As the sensor range increases, the present feature becomes
less important since the robot can see the person from most
places, and the present feature does not significantly affect
the task-switching behavior. However, if we decrease the sen-
sor range, the present feature becomes more important for the
task-switching behavior.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4948

Discussion We tested different ensemble approaches (aver-
aging and boosting) on our problem. In summary, averaging
methods, which use a set of strong classifiers, such as extra-
trees and random forest performed quite well on our dataset.
However, boosting methods, which use a set of weak classi-
fiers, such as gradient boosting and adaptive boosting (Ad-
aBoost) performed poorly. In future work, we plan to apply
other feature selection methods. Our current approach is not
efficient for a continuous stimulus if its value changes con-
stantly, e.g., constant changes in battery level.

5 Conclusion
We contribute a novel approach for switching among multi-
ple task models. We explain how we leverage stimuli to in-
terrupt the robot’s task execution and reevaluate the task se-
lection policy. We evaluate our approach in a scenario with 1
to 6 tasks and show that it requires less sensory computations
compared to the combined model. In future work, we will ad-
dress the following issues: 1) how to scale up our approach for
robots with more tasks and sensors, 2) how to augment the ex-
isting task planners with our task switching behavior, 3) how
to factorize a huge MDP into smaller MDPs and learn the task
models and the task-switching policy simultaneously, and 4)
how to transfer and refine a policy that is learned in simu-
lation to apply it in the real-world. We believe this transfer
is possible since our approach uses high-level state variables
(not low-level control inputs), such as position.

Acknowledgements
This research is partially sponsored by DARPA under agree-
ments FA87501620042 and FA87501720152, and NSF under
grant IIS1637927. The views and conclusions contained in
this document are those of the authors only.

References
[Bacon et al., 2017] Pierre-Luc Bacon, Jean Harb, and Doina Pre-

cup. The option-critic architecture. In AAAI, pages 1726–1734,
2017.

[Barto and Mahadevan, 2003] Andrew G. Barto and Sridhar Ma-
hadevan. Recent advances in hierarchical reinforcement learning.
Discrete Event Dynamic Systems, pages 341–379, 2003.

[Bethke et al., 2008] Brett Bethke, Jonathan P. How, and Asuman
Ozdaglar. Approximate dynamic programming using support
vector regression. In CDC, pages 3811–3816, 2008.

[Choi, 2011] Dongkyu Choi. Reactive goal management in a cog-
nitive architecture. Cognitive Systems Research, pages 293–308,
2011.

[Geurts et al., 2006] Pierre Geurts, Damien Ernst, and Louis We-
henkel. Extremely randomized trees. Machine learning, pages
3–42, 2006.

[Humphrys, 1996] Mark Humphrys. Action selection methods us-
ing reinforcement learning. From Animals to Animats, pages
135–144, 1996.

[Jaidee et al., 2012] Ulit Jaidee, Héctor Muñoz-Avila, and
David W. Aha. Learning and reusing goal-specific policies for
goal-driven autonomy. In ICCBR, pages 182–195, 2012.

[Karlsson, 1997] Jonas Karlsson. Learning to solve multiple goals.
PhD thesis, University of Rochester, 1997.

[Kingma and Ba, 2014] Diederik P. Kingma and Jimmy Ba. Adam:
A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[Kober et al., 2013] Jens Kober, J. Andrew Bagnell, and Jan Peters.
Reinforcement learning in robotics: A survey. The International
Journal of Robotics Research, pages 1238–1274, 2013.

[Konidaris, 2016] George Konidaris. Constructing abstraction hier-
archies using a skill-symbol loop. In IJCAI, page 1648, 2016.

[Kulkarni et al., 2016] Tejas D. Kulkarni, Karthik Narasimhan, Ar-
davan Saeedi, and Josh Tenenbaum. Hierarchical deep reinforce-
ment learning: Integrating temporal abstraction and intrinsic mo-
tivation. In NIPS, pages 3675–3683, 2016.

[Martinson et al., 2001] Eric Martinson, Alexander Stoytchev, and
Ronald C. Arkin. Robot behavioral selection using q-learning.
Technical report, Georgia Institute of Technology, 2001.

[Matarić and Michaud, 2008] Maja J. Matarić and François
Michaud. Behavior-based systems. In Springer Handbook of
Robotics, pages 891–909. 2008.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu, and
David Silver et al. Human-level control through deep reinforce-
ment learning. Nature, pages 529–533, 2015.

[Muñoz-Avila et al., 2015] Héctor Muñoz-Avila, Mark A. Wilson,
and David W. Aha. Guiding the ass with goal motivation weights.
In Goal Reasoning: Papers from the ACS Workshop, pages 133–
145, 2015.

[Nicolescu et al., 2006] Monica Nicolescu, Odest C. Jenkins, and
Adam Olenderski. Learning behavior fusion estimation from
demonstration. In ROMAN, pages 340–345, 2006.

[Pedregosa et al., 2011] Fabian Pedregosa, Gaël Varoquaux, and
Alexandre Gramfort et al. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, pages 2825–
2830, 2011.

[Pirjanian, 1999] Paolo Pirjanian. Behavior coordination
mechanisms-state-of-the-art. Technical report, University
of Southern California, 1999.

[Raı̈evsky and Michaud, 2008] Clément Raı̈evsky and François
Michaud. Improving situated agents adaptability using interrup-
tion theory of emotions. In SAB, pages 301–310, 2008.

[Sutton and Barto, 1998] Richard S. Sutton and Andrew G. Barto.
Reinforcement learning: An introduction. Cambridge: MIT press,
1998.

[Sutton et al., 1999] Richard S. Sutton, Satinder P. Singh, Doina
Precup, and Balaraman Ravindran. Improved switching among
temporally abstract actions. In NIPS, pages 1066–1072, 1999.

[Vattam et al., 2013] Swaroop Vattam, Matthew Klenk, Matthew
Molineaux, and David W. Aha. Breadth of approaches to goal
reasoning: A research survey. Technical report, Naval Research
Lab Washington DC, 2013.

[Veloso et al., 2015] Manuela M. Veloso, Joydeep Biswas, Brian
Coltin, and Stephanie Rosenthal. Cobots: Robust symbiotic au-
tonomous mobile service robots. In IJCAI, page 4423, 2015.

[Wang et al., 2015] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado
Van Hasselt, Marc Lanctot, and Nando De Freitas. Dueling
network architectures for deep reinforcement learning. arXiv
preprint arXiv:1511.06581, 2015.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4949

