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Abstract
We propose a new localized inference algorithm for
answering marginalization queries in large graph-
ical models with the correlation decay property.
Given a query variable and a large graphical model,
we define a much smaller model in a local region
around the query variable in the target model so that
the marginal distribution of the query variable can
be accurately approximated. We introduce two ap-
proximation error bounds based on the Dobrushin’s
comparison theorem and apply our bounds to de-
rive a greedy expansion algorithm that efficiently
guides the selection of neighbor nodes for local-
ized inference. We verify our theoretical bounds on
various datasets and demonstrate that our localized
inference algorithm can provide fast and accurate
approximation for large graphical models.

1 Introduction
Probabilistic graphical models such as Bayesian networks,
Markov random fields, and conditional random fields are
powerful tools for modeling complex dependencies over a
large number of random variables ([Koller and Friedman,
2009; Wainwright et al., 2008]). Graphs are used to repre-
sent joint probability distributions, where nodes denote ran-
dom variables, and edges represent dependency relationships
between different nodes. With the specification of a graphi-
cal model, a fundamental problem is to calculate the marginal
distributions of variables of interest. This problem is closely
related to computing the partition function, or the normal-
ization constant of a graphical model, which is known to be
intractable and #P-complete. As a result, developing efficient
approximation inference algorithms becomes a pressing need.
The most popular algorithms include deterministic variational
inference and Markov Chain Monte Carlo sampling.

However, many challenging practical problems involve
very large graphs on which it is computationally expensive
to use existing variational inference or Monte Carlo sampling
algorithms. This happens, for example, when we use Markov
random fields to represent the social network of Facebook or
use a Bayesian network to model the knowledge graph that
is derived from the entire Wikipedia, where in both cases
the sizes of the graphical models can be prohibitively large

(e.g., millions or billions of variables). It is thus infeasible to
perform traditional approximate inference such as message
passing or Mote Carlo on these models because such meth-
ods need to traverse the entire model to make an inference.
Despite the daunting sizes of large graphical models, in most
real-world applications, users only want to make an inference
on a set of query variables of interest. The distribution of a
query variable is often only dependent on a small number of
nearby variables in the graph. As a result, complete inference
over the entire graph is not necessary and practical methods
should perform inference only with the most relevant vari-
ables in local graph regions that are close to the query vari-
ables, while ignoring the variables that are weakly correlated
and/or distantly located on the graph.

In this work, we develop a new localized inference method
for very large graphical models. Our approach leverages the
Dobrushin’s comparison theorem that casts explicit bounds
based on the correlation decay property in the graphs, in order
to restrict the inference to a smaller local region that is suf-
ficient for the inference of marginal distribution of the query
variable. The use of the Dobrushin’s comparison theorem al-
lows us to explicitly bound the truncation error which guides
the selection of localized region from the original large graph.
Extensive experiments demonstrate both the effectiveness of
our theoretical bounds and the accuracy of our inference al-
gorithm on a variety of datasets.

Related Work Approximate inference algorithms of graph-
ical models have been extensively studied in the past
decades (see [Koller and Friedman, 2009; Wainwright et al.,
2008; Dechter, 2013]). Query-specific inference, including
[Chechetka and Guestrin, 2010] which proposed a focused
belief propagation for query specific inference, and [Wick
and McCallum, 2011; Shi et al., 2015] which study query-
aware sampling algorithms, have recently been introduced for
large graphical models. Compared with these methods, our
work is theoretically motivated by the Dobrushin’s compari-
son theorem and enables us to efficiently construct the local-
ized region in a principled and practically efficient manner.

2 Background on Graphical Models
Graphical models provide a flexible framework for rep-
resenting relationships between random variables [Heine-
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mann and Globerson, 2014]. In graph G, we use X =
(X1, X2, · · · , Xn) to denote a finite collection of n random
variables and we use x = (x1, x2, · · · , xn) to refer to an
assignment. Suppose E is a set of edges and θ is a set of
functions with θij(xi, xj) for edge 〈i j〉 ∈ E and θi(xi) for
node i ∈ {1, 2, · · · , n}. We use µ(x;θ) to represent the joint
distribution of the graphical model (G,E, θ) as following,

µ(x;θ) =
1

Zµ(θ)
exp

( ∑
〈i j〉∈E

θij(xi, xj) +
∑
i

θi(xi)
)
,

where Zµ(θ) is the normalization constant (also called the
partition function).

In this work, we will focus on the Ising model, an exten-
sively studied graphical model. The Ising model is a pairwise
model with binary variables xi ∈ χ = {−1,+1}. The pair-
wise and singleton parameters are defined as follows

θij(xi, xj) =

(
Jij −Jij
−Jij Jij

)
, θi(xi) =

(
−hi
hi

)
.

So the distribution of an Ising model is defined as,

µ(x;θ) =
1

Zµ(θ)
exp

( ∑
〈i j〉∈E

Jijxixj +
∑
i

hixi
)
. (1)

Given a graphical model, marginal inference involves calcu-
lating the normalization constant, or the marginal probabil-
ities of small subsets of variables. These problems require
summation over an exponential number of configurations and
are typically #P-hard in the worst case for loopy graphical
models. However, practical problems can be often easier than
the theoretically worst cases, and it is still possible to obtain
efficient approximations by leveraging the special structures
of given models. In this work, we focus on the query-specific
inference, where the goal is to calculate the marginal distri-
bution µ(xi) of given individual variable xi. For this task,
it is possible to make good approximations based on a local
region around xi, thus significantly accelerates the inference
in very large graphical models.

3 Localized Inference and Correlation Decay
Given a large graphical model, it is usually not feasible to
compute the exact marginal of a specific variable due to the
exponential time complexity. Furthermore, it is even not prac-
tical to perform the variational approximation algorithms,
such as mean field and belief propagation, when the graph is
very large. This is because these traditional methods need to
traverse the entire graph multiple times before convergence,
and thus are prohibitively slow for very large models such as
these built on social networks or knowledge bases.

On the other hand, it is relatively cheap to calculate exact
or approximate marginals in small or medium size graphical
models. In many applications, users are only interested in
certain queries of node marginals. Because users’ queries of
interest often have strong associations with only a small num-
ber of nearby variables in the graph, the complete inference
over the full graph is not necessary. This can be formally cap-
tured by the phenomenon of correlation decay, that is, when
the graph G is large and sparse, the influence of a random

Query Node

Local Subgraph

Figure 1: The key goal of this work is to approximate queries in
large scale graphical models using smaller models on local regions.

variable on the distribution of another random variable de-
creases quickly as the distance of the shortest path between
the corresponding nodes in the graph G increases.

The correlation decay property has been widely studied in
statistical mechanics and graphical models [Rebeschini et al.,
2015].

If a graphical model satisfies the property of correlation
decay, it is possible that we can use only the local informa-
tion in the graph to perform marginal inference, as the distant
variables have little correlation with the query variable. This
intuition allows us to use the information from the most rele-
vant variables in the local region close to the queried variable
to efficiently approximate its marginal distribution. Assume
that µ is a large graphical model, and we want to calculate a
marginal distribution µ(xi) of variable i. Localized inference
constructs a much smaller model ν(xα), defined on a small
subgraph α that includes i, such that ν(xi) ≈ µ(xi). The
challenge here, however, is how to construct a good localized
model and bound its approximation error. We address this
problem via the Dobrushin’s comparison theorem [Föllmer,
1982], and propose an efficient algorithm to find the local
graph region for a given query node and provide an error
bound between its approximate and true marginals. To get
started, we first introduce the Dobrushin’s comparison theo-
rem, which is used to compare two Gibbs measures.
Theorem 1 [Föllmer, 1982] Dobrushin’s comparison theo-
rem Let µ be a Gibbs measure on a finite product space
E = SI , where I is an index set. For i, j ∈ I , we define

Cij =
1

2
sup{‖µi(xi|x)− µi(yi|y)‖ : xk = yk, ∀k 6= j},

where µi(xi|x) is the conditional distribution of the ith coor-
dinate with respect to the σ-field generated by the coordinates
with index j 6= i, and ‖ · ‖ is the total variance distance. We
compute

c = max
i∈I

∑
j∈I

Cij , (2)

and assume c < 1. Let C = (Cij)i,j∈I and D =∑∞
n=0 C

n = (I − C)−1, then for any probability measure
ν on the same place and any function f , we have∣∣∣∣∫ fdµ−

∫
fdν

∣∣∣∣ 6∑
i∈I

(Db)i × δi(f),
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where b = (bj) is the singleton perturbation coefficient of
node xj:

bj =
1

2
sup
x
‖µj(xj |x)− νj(xj |x)‖, (3)

and δi(f) is the oscillation of f in the ith coordinate, that is,

δi(f) = max
xi,x′i

|f(x¬i, xi)− f(x¬i, x
′
i)|.

In Theorem 1, µi(xi|x) is the probability of variable
i conditioned on its adjacent variables whose assignments
are the same as corresponding entries in x. According to
the Markov property, calculating µi(xi|x) only requires in-
formation from the local star-shaped graph (the figure can
be found in the full version). It is worth noting that a
tighter bound can be obtained by defining b to be bj =
1
2

∫
‖µj(xj |x)−νj(xj |x)‖ν(dx). Here we use the definition

in (3) for lower computational complexity. The matrix C is
known as the Dobrushin’s interaction matrix, and the inequal-
ity c = maxi∈I

∑
j∈I Cij < 1 is the Dobrushin condition. If

this condition holds, the theorem can give us a bound between
two measures, which is the result of correlation decay.

In the following, we will apply Theorem 1 to undi-
rected graphical models to derive an approximation bound of
marginal distributions. We first denote I = {1, 2, · · · , n}
by the index set of the variables and assume that we want to
query the marginal distribution of variable xi. In order to ap-
ply Theorem 1, we set f(x) to be the indicator function of the
variable xi, that is, f(x) = f(x1, x2, · · · , xn) = I[xi = k].
Then |

∫
fdµ−

∫
fdν| becomes the absolute marginal differ-

ence |µ(xi = k) − ν(xi = k)| between the two measures µ
and ν. In addition, the oscillation of function f is thus re-
duced to δi(f) = 1 and ∀ j 6= i, δj(f) = 0. With these sim-
plifications, we obtain a bound of the maximum difference
between marginals of the queried node i for two measures:

Corollary 1 Following the assumptions in Theorem 1 and
the above text, we have

max
k
|µ(xi = k)− ν(xi = k)| 6 (Db)i. (4)

Note that the roles of µ and ν in (4) are not symmetric because
the Dobrushin coefficientD is solely defined based on µ (and
independent with ν). As a result, there are two ways to use
bound (4) for localized inference, depending on whether we
treat µ or ν as the original model that we want to query or the
localized model that we use for approximation, respectively.
We will next exploit both possibilities in the next sections. In
Section 4, we take µ as the global model (or measure) and
ν as the localized model (or measure) and derive a simple
upper bound relates the approximation error to the distance
between the query node and the boundary of the local region
on the graph. In Section 5, we take ν as the global model (or
measure) and µ as the localized model (or measure), we de-
rive another upper bound that only involves the localized re-
gion, and leverage it to propose a greedy expansion algorithm
to construct the localized model with guaranteed approxima-
tions.

4 Distance-based Upper Bound
In this section, we assume that µ = µ(x1, x2, · · · , xn) in
Theorem 1 is defined by the original graphical model that we
want to query, and ν is a simpler and more tractable distribu-
tion that we use to approximate the marginal of xi in µ.

For notational simplicity, we partition the node-set to two
disjoint sets α and β = {1, 2, · · · , n} \ α, where α is the
local subgraph that contains query node i ∈ α and β is the
rest of the graph. We use ∂α and α̊ to represent the set of
subscripts of nodes on the boundary and in the interior of α.
Obviously, ∂α ⊆ α, α̊ ⊆ α, and ∂α ∪ α̊ = α. Similarly,
∂β ⊆ β, β̊ ⊆ β, and ∂β ∪ β̊ = β. In addition, we use xα
to denote the variables in α and xβ to denote the variables in
β. We will first apply the following lemma to obtain our first
result on the relationship between the approximation error of
marginals and the radius of the local subgraph α.
Lemma 1 [Rebeschini and van Handel, 2014] Assume I is
a finite set and let m be a pseudo-metric on set I . C =
(Cij)i,j∈I is a non-negative matrix. Suppose that

max
i∈I

∑
j∈I

em(i,j)Cij 6 d < 1.

Then matrix D =
∞∑
n=0

Cn = (I − C)−1 satisfies

max
i∈I

∑
j∈I

em(i,j)Dij 6
1

1− d
.

In particular, this implies that∑
j∈J

Dij 6
e−m(i,J)

1− d

for every set J ⊆ I , where m(i, J) = maxj∈J m(i, j).
This lemma indicates that if Cij decays exponentially with
the distance between i and j, the Dij , which is used in Theo-
rem 1 and Corollary 1, also decays exponentially with the dis-
tance between i and j. The condition of this correlation decay
lemma is usually mild in practice. When we choose m ≡ 0,
which is naturally a pseudo-metric, and use Dobrushin’s in-
teraction matrix as C, the conditions of the lemma hold once
the Dobrushin condition is satisfied, because matrixC in The-
orem 1 is by definition a non-negative matrix and hence D is
also non-negative, and every entry in b is less than 1/2. Ap-
plying Lemma 1, we can obtain the following result.
Theorem 2 Suppose µ is the probability measure for a
graphical model for which we want to query the marginal
distribution of node i. Let ν be the another probability on the
same space, whose parameters of edges on subgraph α and
parameters of nodes in α̊ are the same as µ. Assume the Do-
brushin condition holds for µ (c = maxi∈I

∑
j∈I Cij < 1).

Let d(i, ∂α) denote the distance between node i and node-set
∂α on the Markov graph G of µ. If we assume

d(i, ∂α) >
ln t

2ε(t−1)(1−c)

ln 1+(t−1)c
tc

for some t > 1, (5)

then ∀ ε > 0, we have
max
k
|µ(xi = k)− ν(xi = k)| 6 ε.
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This theorem characterizes the error bound when approximat-
ing the global model µ using another model ν that matches µ
locally in region α. Our result shows that in order to ensure
an ε bound on the query node i, the distance d(i, ∂α) from the
query node i to the boundary ∂α should be at least linear to
ln(1/ε). In other words, the error ε decreases exponentially
with d(i, ∂α). The proof of Theorem 2 can be found in the
Appendix C.

As a result, given c and ε, we can get the minimum value
of the lower bound of d(i, ∂α) by optimizing t. Theorem 2
gives a simple but general way to bound the local subgraph of
variable xi, as we only need to check the Dobrushin condition
and compute c on the whole true graphical model.

5 Localized Bound and Greedy Expansion
The bound in Theorem 2 requires computing the value c as
defined in (2) for a given graphical model. However, since c
is the maximum Cij of the entire graph, it can be very expen-
sive to compute when the graph is large. In this section, we
explore another approach of using the bound in Corollary 1,
by setting ν = ν(x1, x2, · · · , xn) to be the distribution of the
original graphical model and µ to be the localized model. In
this way, we will derive a novel approximation approach by
greedily constructing a local graph from the query variable
i, with guaranteed upper bounds of the approximation error
between marginal distributions of µ and ν.

To start with, we note that ν can be decomposed to

ν(x) =
ψα(xα)ψβ(xβ)ψ∂α∂β(x∂α, x∂β)

Zν
,

where ψα is the exponential of a potential function of xα, ψβ
is the exponential of potential function of xβ , and ψ∂α∂β is
the exponential of potential function defined on x∂α and x∂β .

We want to approximate ν with a simpler model µ in which
the nodes in α and β are disconnected, so that the inference
over i ∈ α can be performed locally within α, irrelevant to
the nodes in α. Formally, we want to approximate µ by

µ(x) =
ψα(xα)ψβ(xβ)ψ̃∂α(x∂α)ψ̃∂β(x∂β)

Zµ
,

which replaces the factor ψ∂α∂β with a product ψ̃∂αψ̃∂β with
approximations ψ̃∂α and ψ̃∂β . Therefore, the marginal distri-
butions of xα and xβ get decoupled in µ, that is,

µ(x) = µ(xα)µ(xβ).

This decomposition thus allows us to approximately calculate
marginal µ(xi) efficiently within subgraph α. The challenges
here are 1) how to construct the factors ψ̃∂α and ψ̃∂β in µ to
closely approximate ν, 2) how to decide the subgraph region
and 3) how to bound the approximation error. We consider
two methods for constructing ψ̃ in this work:

1. [Dropping out] Simply remove the ψ∂α∂β in ν. To
do so, we set

ψ̃∂α = ψ̃∂β = 1. (6)
This corresponds to directly remove all the edges between ∂α
and ∂β, which is also referred as the “dropping out” method
in our experiments.

2. [Mean field] Find ψ̃∂αψ̃∂β to closely approximate
ψ∂α∂β by performing a mean field approximation, that is, we
solve the following optimization problem:

min
ψ̃∂α,ψ̃∂β

KL(ψ̃∂αψ̃∂β || ψ∂α∂β), (7)

where the KL(·||·) refers to the KL divergence of the cor-
responding normalized distributions. To apply the mean field
approximation and reduce complexity, we further assume that
the nodes are independent in ψ̃∂α and ψ̃∂β . By using the op-
timized approximation ψ̃∂α, we will be able to compensate
the error of marginal of xi, which is introduced by simply re-
moving the edges between ∂α and ∂β, as mentioned above.

Note that the potentials ψ̃∂β and ψβ in µ do not influence
the calculation of µ(xi), for i ∈ α. Therefore, we remove all
the edges in β. The marginal of node i ∈ α will not change.

By applying Corollary 1, we can now obtain an error bound
which, remarkably, only involves the local region α. The de-
tails can be found in Appendix B.

Corollary 2 Assume µ(x) = µ(xα)µ(xβ), and the condi-
tions in Theorem 1 holds, we have

max
k
|µ(xi = k)− ν(xi = k)| 6

∑
j∈∂α

Dijbj , (8)

where bj is defined in Eq 3, and D is defined by Dαα =
(I − Cαα)−1; here C is defined in Theorem 1.

Note that the upper bound in (8) only involves the local
region α and hence can be computed efficiently using mean
field or belief propagation within the subgraph on α. The
proof of Corollary 2 and the details on how to calculate C
and D for Ising models in practice can be found in the full
version.

Using the bound in (8), we propose a greedy algorithm to
expand the local graph starting from query node i incremen-
tally. At iteration, we add a neighboring node that yields the
tightest bound using the above bound and repeat this process
until the bound is tight enough or a maximum of graph size
is reached. This process is summarized in Algorithm 1. Af-
ter we complete the expanding phase, we can apply exact in-
ference or on local region α to calculate the marginal of the
query xi if the size of α is small or perform approximate in-
ference methods if the size of α is medium. The actual size
of α can vary in different graphical models, which is mainly
determined by the correlation decay property near the query
variable xi or the tightness of the upper bound in Eq (8).

Computational Complexity We find that both the com-
plexity of expanding the local subgraph and the complexity
of localized inference can be bounded. The details will be
included in the Appendix A.

6 Experiments
We test our algorithm on both simulated and real-world
datasets. The results indicate that our method provides an
efficient localized inference technique.
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Algorithm 1 Greedy expansion algorithm for localized infer-
ence

1: given a graphical model ν and a node i, approximate
marginal probability ν(xi)

2: input: K = maximum number of nodes in the local sub-
graph α and δ = the improvement threshold

3: initialize local subgraph α = {i} and boundbest = 1
4: while |α| < K (|α| is the number of nodes in α) do
5: set β = {1, 2, · · · , n} \ α and ∂β the nodes in β that

connects with α in ν.
6: for node k ∈ ∂β do
7: add node k to α and get a candidate local subgraph

αnewk = α ∪ {k}.
8: construct local model µ by setting ψ̃∂α = 1 (drop-

ping out, Eq (6)) or estimating it using mean field as
in Eq (7).

9: calculate the bound boundk in (8) where the boundk
refers to

∑
j∈∂αnewk

Dijbj
10: end for
11: if mink∈∂β boundk < boundbest − δ then
12: update boundbest = mink∈∂β boundk
13: update α = α ∪ {argmink∈∂β boundk}
14: end if
15: end while

6.1 2D Ising Grid
In this section, we perform experiments on 2D-grid Ising
models and regard the localized probability as ν and regard
the true probability as µ. The graph is a 10×10 lattice and the
coordinate of query node is (5, 5). The parameters in the Ising
model is generated by drawing hi uniformly from [−I1, I1]
for all nodes i and Jij uniformly from [−I2, I2] for all edges
〈i j〉. Here I1 and I2 control the locality and hardness of this
Ising model.

Checking Dobrushin’s condition We start with numeri-
cally checking the Dobrushin condition c = maxi

∑
j Cij <

1. We find that c is smaller than one in most regions, but is
larger than one when I2 is very large and I1 is very small, in
which case the nodes are strongly coupled together (no cor-
relation decay) and there is no significant local information.
The hope, however, is that real problems tend to be easier be-
cause a large amount of information is available. The figure
is shown in the full version.

Comparing Different Expansion Algorithms In this part,
we compare the true approximation error maxk |µ(xi =
k) − ν(xi = k)| to the bound

∑
j∈∂αDijbj given by our

algorithm when we expand the local subgraph. The true er-
ror maxk |µ(xi = k) − ν(xi = k)| is evaluated using the
brute-force algorithm. When removing the bipartite graph,
we try both simply dropping edges and the mean field ap-
proximation. In all the experiments, we use the UGM Matlab
package1 for the mean field approximation.

In order to better compare the error, we also add two base-
lines. One baseline is that we expand the local subgraph in

1http://www.cs.ubc.ca/ schmidtm/Software/UGM.html
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Figure 2: The true errors and our upper bounds for the marginal ap-
proximation when we expand the local subgraphs to different sizes.

each step by randomly selecting a node in the boundary ∂β.
Another baseline is that we expand the local subgraph greed-
ily by choosing the node in ∂β that has the maximum L2

norm over the edge-set between such node and the subgraph
α. The intuition is that when the the edges’ weights are large,
the node may be more related to the nodes in the subgraph.

In Figure 2, we compare our greedy expansion method
stated in Algorithm 1 to the baselines stated above. For this
experiment, we fix I1 = 1 and I2 = 0.25 and average on
100 random trials. We stop expanding the graph when the lo-
cal subgraph contains 16 nodes. We calculate the mean value
of the true errors and bounds in the 100 trials for a different
number of nodes in the subgraph.

From Figure 2, we can see that, when combined the drop-
ping out method for constructing ψ̃, our greedy expansion
method significantly outperforms the two baselines. We also
find that the mean field method for constructing ψ̃ gives about
the same true error as the dropping out method, but provides
a tighter upper bound. It is interesting to note that the true
errors of the two baseline expansion methods are sometimes
even worse than the upper bounds of our greedy expansion,
indicating the strong advantage of our method.

We further investigate how the parameters of the Ising
model may influence the results of the algorithms and the
tightness of the bound. For this purpose, we fix I2 = 0.25
and vary I1 in the range of {0, 0.5, 1, · · · , 10} in Figure 3.
For each setting, we simulate 100 times and then calculate
the mean error and bound. From Figure 3, we can find that
the bound is again relatively tight, especially when the value
of I1 is large. both the bounds and the true errors decrease
as I1 increases because the correlation decay is stronger and
the inference task is easier with strong local evidence on the
singleton potentials (large I1).

6.2 Cora Data Set
We perform experimental evaluations on the Cora data set2.
Cora consists of a large collection of machine learning pa-
pers with citation relations between the papers, in which each

2https://people.cs.umass.edu/ mccallum/data.html
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Figure 3: Our bounds and the true errors vs. different I1.

paper is labeled as one of seven classes. For our experiment,
we binarize the labels by taking “Neural Networks” as label 1
and the remaining classes as label−1. We process the data by
removing the hubs in the graph and truncate the graph to have
a maximum degree of 15; this is done by randomly deleting
edges of the nodes whose degree is larger than 15 until the
whole graph is degree bounded by 15. We then experiment
on the maximum connected subgraph, which consists of 2389
nodes and 4325 edges.

In order to construct an Ising model, we random draw
edge potentials by Jij ∼ N(0.25, 0.05) for each edge of
the citation graph, and draw the singleton potentials by
hi ∼ N(0.1I1, 1) for nodes with true label 1, and hi ∼
N(−0.1I1, 1) for nodes with true label −1. Here I1 is a pa-
rameter that we choose from {0, 1, · · · , 10}. When I1 , the
node potentials increases so that marginal is more dominated
by the status of the query node and the querying is easier.

Comparing local inference with global inference In this
part, we want to compare the performance of inference on the
local graph to the inference on the global graph. Since the
global graph is too large, we can only use approximate in-
ference algorithm. Here, we use mean field to do the global
inference and use it as a baseline. For the local graph, we ex-
pand the graph greedily as stated in Algorithm 1 and choose
a threshold of δ = 0.005 and stop expanding when the sub-
graph already has 16 nodes.

For I1 ∈ {0, 1, · · · , 10}, we query the same 500 nodes
randomly selected out of the 2389 nodes and evaluate their
marginal distributions. In global inference and local infer-
ence, we have the marginal on the each query node. If the
marginal is larger than 0.5, we consider our inference algo-
rithm give it label 1, whereas if the marginal is less than 0.5,
we give it label −1.

In Figure 4, we report the accuracy of the labels given by
the global and local inference evaluated w.r.t. the true labels,
as well as the accuracy of the local inference evaluated w.r.t.
the labels provided by global inference. We find that as I1
increases, both the accuracies of global and local inference
w.r.t. the true labels increase significantly. In addition, the lo-
cal inference gives similar result as the global inference (the
green curve is high) and the accuracy increases as I1 increases
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Figure 4: The accuracy of different algorithms when I1 changes.
Red and blue: the accuracy of the labels given by the global and the
local inference evaluated w.r.t. the true labels. Green: the accuracy
of the local inference evaluated w.r.t. the labels provided by the
global inference.
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Figure 5: Precision, Recall, and F-measure of the labels given by
local inference vs. global inference when the value of I1 changes.

as well. We also report in Figure 5 the precision, recall, and
F-measure when comparing local inference with global infer-
ence, by treating label 1 as positives. Both figures show that
when I2 is fixed and I1 increases, which means that the corre-
lation decay is stronger, our local inference method achieves
better results.

7 Conclusion
In this paper, we address query-specific marginal inference in
large-scale graphical models using a new localized inference
algorithm. We leverage the Dobrushin’s comparison theorem
to derive two error bounds for localized inference, including a
simple bound based on graph distance and a localized bound
from which we derive an efficient greedy expansion algorithm
for constructing local regions for localized inference. Our
experiments have shown that our bounds are practically use-
ful and the algorithm works efficiently on various graphical
models. Future directions include theoretical investigation on
tighter bounds and development of more efficient greedy ex-
pansion algorithms.
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A Computational Complexity

Here we consider the computational complexity of expanding
the local subgraph and the complexity of localized inference.
We always suppose that the maximum degree of the graph G
is d and we define the maximum distance between the query
node and any node in the subgraph to be the radius of the
subgraph. First, given a threshold ε, from Theorem 2, we just
need a subgraph with radius

r = inf
t>1

⌈
ln t

2ε(t−1)(1−c)

ln 1+(t−1)c
tc

⌉
,

where we recall that c is the Dobrushin coefficient c =
maxi∈I

∑
j∈I Cij . In particular, taking t = 2 shows that

we just need r = d− ln(ε(1 − c))/ ln 1+c
2c e. It is worth not-

ing that r decreases when c becomes small and/or the accu-
racy threshold ε becomes large. Since the size of the sub-
graph with radius r is no more than 1 + d+ d2 + · · ·+ dr =
(dr+1 − 1)/(d − 1), it can be much smaller than the whole
graph. As a result, the inference over the subgraph is much
more efficient.

Then, we discuss the computation complexity in each ex-
pansion step (Algorithm 1, line 6-10). We need to loop over
the nodes in ∂β. In the loop, we need to calculate the vector
b and the matrix D. The calculation for each element in b re-
quires the enumeration of different assignments in the neigh-
borhood of such node, which is bounded because it is not
related to the size of the whole graph. In the calculation of
matrix C, we only need to update the elements related to the
new node. The number of such elements is no more than d
and the calculation of each element is not related to the size
of the whole graph. D can be derived from C and use histor-
ical information to calculate incrementally. The complexity
is no more than computing the inverse of the whole matrix
I − Cαα. If we use mean field approximation in the greedy
expansion, the computation is also cheap because the sizes of
∂α and ∂β are small.

B Proof of Corollary 2

Proof 1 Note that the Dobrushin’s interaction matrix C of µ
is a block diagonal matrix. Since there are no edges between
α and β, the corresponding blocks equal to zero. If the Do-
brushin condition holds, D would also be a block-diagonal
matrix and can be calculated easily from C. To see this, we
have

C =

α β[ ]
Cαα O α
O Cββ β

and D =

α β[ ]
(I − Cαα)−1 O α

O (I − Cββ)−1 β
.

Applying the bound in Corollary (1) gives the result.

C Proof of Theorem 2
Proof 2 Let m(i, j) = d(i, j) ln 1+(t−1)c

tc , where d(i, j) rep-
resents the distance between node i and node j in the graph
and t > 1. Then

max
i∈I

∑
j∈I

em(i,j)Cij =
1 + (t− 1)c

tc
max
i∈I

∑
j∈I

ed(i,j)Cij

6
1 + (t− 1)c

t
< 1.

Applying Lemma 1, we have

max
k={1,−1}

|µ(xi = k)− ν(xi = k)|

6
e−m(i,∂α)

1− 1+(t−1)c
t

=
e−d(i,∂α) ln

1+(t−1)c
tc

(t−1)(1−c)
t

.

Substituting the inequality of d(i, ∂α) in the condition into
right-hand side yields to the result.
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