
Emergent Tangled Program Graphs in Multi-Task Learning

Stephen Kelly and Malcolm I. Heywood
Dalhousie University

{skelly,mheywood}@cs.dal.ca

Abstract
We propose a Genetic Programming (GP) frame-
work to address high-dimensional Multi-Task Re-
inforcement Learning (MTRL) through emergent
modularity. A bottom-up process is assumed in
which multiple programs self-organize into col-
lective decision-making entities, or teams, which
then further develop into multi-team policy graphs,
or Tangled Program Graphs (TPG). The frame-
work learns to play three Atari video games simul-
taneously, producing a single control policy that
matches or exceeds leading results from (game-
specific) deep reinforcement learning in each game.
More importantly, unlike the representation as-
sumed for deep learning, TPG policies start simple
and adaptively complexify through interaction with
the task environment, resulting in agents that are
exceedingly simple, operating in real-time without
specialized hardware support such as GPUs.

1 Introduction
Reinforcement learning (RL) for defining artificial agent be-
haviours represents one of the longest standing themes re-
garding the use of games as AI benchmarks [Yannakakis and
Togelius, 2015]. In the most general case, agents are devel-
oped through direct interaction with game content as expe-
rienced by a human player, as opposed to requiring hand-
crafted (domain-specific) features to be defined a priori. With
this goal in mind, a growing body of research has been em-
ploying a suite of Atari video games in which to demonstrate
domain-independent RL [Mnih et al., 2015; Hausknecht et
al., 2014; Machado et al., 2017; van Steenkiste et al., 2016;
Naddaf, 2010]. In each case, the focus has been on develop-
ing game-specific agents for each game title. In this work,
we investigate MTRL in the Atari environment. We demon-
strate that in evolving solutions to multiple game titles simul-
taneously, agent behaviours for an individual game as well as
single agents capable of playing all games emerge from the
same evolutionary run. This paper is a condensed presenta-
tion of the work from [Kelly and Heywood, 2017b]. Addi-
tional MTRL results are available in [Kelly, 2018].

The Arcade Learning Environment (ALE) provides an
Atari emulator geared towards benchmarking RL algorithms

(a) Atari Screen (b) Decimal State Variables

Figure 1: Screen quantization steps, reducing the raw Atari pixel
matrix (a) to 1344 decimal state variables, visualized in (b).

[Bellemare et al., 2012]. The ALE is an interesting testbed
because each game is unique and designed to be challeng-
ing for human players. Furthermore, artificial agents expe-
rience game-play just as a human would, via the a high-
dimensional game screen (updated at 60Hz) and Atari joy-
stick (18 discrete actions, or all possible combinations of pad-
dle direction and fire button state, including ‘no action’). As
such, the ALE represents a visual RL domain. Moreover,
Atari environments are considered partially observable be-
cause game entities often appear intermittently over sequen-
tial screen frames, causing visible flicker. As such, it is often
impossible to observe the complete state of play from a single
frame. Agents in this study stochastically skip frames with
probability p = 0.25, with the previous action being repeated
on skipped frames. This limits artificial agents to roughly the
same reaction time as a human player and introduces stochas-
ticity into the environment [Machado et al., 2017].

Atari screen frames have a lot of redundant information.
That is, visual game content is designed for maximizing en-
tertainment, as opposed to simply conveying state, ~s(t), infor-
mation. As such, we adopt a quantization approach to image
preprocessing in which each frame, a 210 × 160 pixel ma-
trix, is reduced to 42× 32 = 1, 344 decimal state variables in
the range of 0 − 255, visualized in Figure 1(b) for the game
Zaxxon at time step (frame) t. Note that no feature extrac-
tion or game-specific variables are included in the final state
representation, just a quantization of the original frame data.1

1Experiments with no input quantization, i.e. agents operating
from the raw frame buffer, are reported in [Kelly et al., 2018].

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5294

2 Evolving Tangled Program Graphs
2.1 Teams of Programs
TPG is an extension of the Symbiotic Bid-Based (SBB) al-
gorithm for evolving teams of programs [Lichodzijewski and
Heywood, 2010]. SBB has been shown to build strong poli-
cies for a variety of reinforcement learning tasks [Doucette
et al., 2012; Kelly et al., 2012; Lichodzijewski and Hey-
wood, 2011; Kelly and Heywood, 2014; 2015]. A sin-
gle team of programs represents the simplest stand-alone
decision-making entity in the framework, in which a linear
program representation is assumed [Brameier and Banzhaf,
2007]. Specifically, programs are simple register machines
which may include: 1) two-argument instructions of the form
R[i] ← R[x] ◦ R[y] where ◦ ∈ {+,−,×,÷}; 2) single-
argument instructions of the form R[i] ← ◦(R[y]) where
◦ ∈ {cos, ln, exp}; and 3) a conditional statement of the the
form IF (R[i] < R[y]) THEN R[i] ← −R[i]. R[i] is a ref-
erence to an internal register, while R[x] and R[y] may refer-
ence internal registers or state variables. Determining which
state variables are actually used in the program, as well as the
number of instructions and their operations, are both emer-
gent properties of the evolutionary process.

Each program defines the context for one discrete action
(e.g. Atari joystick position), where actions are assigned to
the program at initialization and potentially modified by vari-
ation operators during evolution. In order to map a state ob-
servation to an action, each program in the team will execute
relative to the current state, ~s(t), and return a single real val-
ued ‘bid’, i.e. the content of register R[0] after execution. The
team then chooses the action of the program with the highest
bid. As such, decision-making is an explicitly cooperative
(group) behaviour.

Team development is driven by a generational genetic al-
gorithm in which teams and programs are stored in separate
populations and coevolved, Figure 2(a). Team (i.e. group)
fitness is defined by a task-dependent objective (e.g. Atari
game score). A fixed number of the least fit teams are deleted
in each generation and replaced by sampling, cloning, and
modifying surviving teams. Team variation operators may
add/remove programs or modify the instruction set or action
pointer of individual programs within a team. Naturally, if
there is a performance benefit in smaller/larger teams and/or
different program complements, this will be reflected in the
surviving populations, i.e. team–program complexity is a de-
velopmental trait.

2.2 Policy Graphs
Programs are initialized with atomic actions defined by the
task environment (i.e. Joystick positions, Figure 2(a)). In or-
der to enable the evolution of hierarchically organized code
under a completely open-ended process of evolution (i.e.
emergent modularity [Nolfi, 1997]), program variation oper-
ators are allowed to introduce actions that index other teams
within the team population. When a program’s action is
modified, it has an equal probability of referencing either
an atomic action or another team. Thus, variation operators
have the ability to incrementally construct multi-team policy
graphs, Figure 2(b). Each vertex in the graph is a team, while

{ }
{ }

{ }

Team
Population

Program
Population

Atari
Joystick
Positions

t
1

t
2

(a) Initial Populations

{ } { } { } { }{ }

t
3

t
4 t

5

(b) Emergence of Policy Graphs

Figure 2: Illustration of the relation between team and program
populations at initialization (a) and during evolution as arbitrarily
deep/wide tangled program graphs emerge (b).

each team member, or program, represents one outgoing edge
leading either to another team or an atomic action. Natu-
rally, decision-making in a policy graph begins at the root
team (e.g. t3 in Figure 2(b)), where each program in the
team will produce one bid relative to the current state observa-
tion. Graph traversal then follows the program / edge with the
largest bid, repeating the bidding process for the same state,
~s(t), at every team / vertex along the path until an atomic ac-
tion is reached. Thus, in sequential decision-making tasks,
the policy graph computes one path from root to action at ev-
ery time step, where only a subset of programs in the graph
(i.e those in teams along the path) require execution.

In summary, the critical idea behind TPG is that SBB
[Lichodzijewski and Heywood, 2010] is extended to allow
policy graphs to emerge, defining the inter-relation between
teams. As programs composing a team typically index differ-
ent subsets of the state space (i.e., the screen), the resulting
policy graph will incrementally adapt, indexing more or less
of the state space and defining the types of decisions made in
different regions.

3 Empirical Experiment
Previous studies have established the ability of TPG to build
game-specific controllers for 20 unique Atari games [Kelly
and Heywood, 2017a]. The goal of this work is to produce
both game-specific and multi-task policies from the same
evolutionary run. We define two groups of games to be
learned simultaneously, each containing 3 games for which
(game-specific) TPG policies matched or exceeded test scores
from deep reinforcement learning (DQN from [Mnih et al.,
2015]). The two groupings are not based on any intuition
regarding multi-task compatibility. Game group A includes
Centipede, Frostbite, and Ms. Pac-Man, three games with
no obvious commonalities. Centipede is a vertically oriented
shooting game, Frostbite is an adventure game, and Ms. Pac-
Man is a maze task. Game group B contains Asteroids, Bat-
tle Zone, and Zaxxon, all shooting games in which the player
gains points by aiming and firing a gun at on-screen targets.
Note, however, that their similarities are relatively superfi-
cial, as each game title defines its own graphical environment,
colour scheme, physics, objective(s), and scoring scheme.
Furthermore, joystick actions are not necessarily correlated
between game titles. For example, in Asteroids the ‘down’
action causes the spaceship avatar to enter hyperspace, disap-

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5295

pearing and reappearing at a random screen location. In Bat-
tle Zone, the ‘down’ action causes the first-person tank avatar
to reverse, and foreground targets shrink, appearing to retreat
into the distance. In Zaxxon, a third-person plane-flying /
shooting game, the ’down’ action is interpreted as ‘pull-up’,
causing the plane to move vertically up the screen.

3.1 Experimental Setup
Five runs of TPG are conducted for 200 (300) generations in
game group A (B). In order to support the development of
multi-task policies, task switching is introduced such that the
population is exposed to different game titles over the course
of evolution. Thus, for each consecutive block of 10 genera-
tions, one game title is selected with uniform probability to be
the active title. Each policy graph is evaluated in 5 episodes
per generation under the active title, up to a lifetime maxi-
mum of 5 evaluations under each game title.

Thus, each policy stores a historical record of up to 15 eval-
uations (5 in each of the 3 titles). However, a policy’s fitness
in any given generation is its average score over 5 episodes in
the active title only. Thus, selective pressure is only explicitly
applied relative to a single game title. However, stochastically
switching the active title at regular intervals throughout evo-
lution implies that a policy’s long-term survival is dependent
on a level of competence in all games. Finally, to facilitate
the development of multi-task policies, the single best pol-
icy graph for each game title (i.e. that with the highest mean
score over 5 games) is protected from deletion, a simple form
of elitism that ensures the population as a whole never en-
tirely ‘forgets’ any game.

3.2 Test Results
Once for each block of 10 generations associated with the
current active game title, all policies are tested in 30 episodes
under all titles as per established test conditions [Mnih et al.,
2015; Kelly and Heywood, 2017a]. Figure 3 plots these test
results for each game group, where subplots (a) and (c) report
the best score achieved in each title by any policy, and sub-
plots (b) and (d) report the best multi-task policy scores (i.e.
the scores are from the same policy graph). Scores are nor-
malized relative to DQN’s score (from [Mnih et al., 2015])
in the same game (100%) and random play (0%). Normal-
ized score is calculated as 100 × (TPG score - random play
score)/(DQN score - random play score). Normalizing scores
makes it possible to plot TPG’s progress relative to all games
together regardless of the scoring scheme in different games,
and facilitates making a direct comparison with DQN.

The Group A experiment produces one game-specific pol-
icy for each game that ultimately exceeds the level of DQN,
Figure 3(a). Surprisingly, in the case of Frostbite and Cen-
tipede, TPG began with initial policies (i.e. generation 1,
prior to any learning) that exceeded the level of DQN. In
Centipede, this initial policy was degenerate, selecting the
‘up-right-fire’ action in every frame, but nonetheless accu-
mulating a score of 12,890. While completely un-interesting,
the strategy managed to exceed the test score of DQN (8,390)
and the reported test score for a human professional video
game tester (11,963). From this starting point, the single best
policy in Centipede improves throughout evolution to become

Centipede

Frostbite

Ms. Pac−Man

0 50 100 150 200

100

500

1000

1500

%
 D

Q
N

 L
ev

el

Generation

(a)

Centipede

Frostbite

Ms. Pac−Man

0 50 100 150 200

Generation

(b)

Asteroids

Battle Zone

Zaxxon

0 50 100 150 200 250 300

−50

0

50

100

150

200

%
 D

Q
N

 L
ev

el

Generation

(c)

Asteroids

Battle Zone
Zaxxon

0 50 100 150 200 250 300

Generation

(d)

Figure 3: Incremental test results. See text for details.

more responsive and interesting; maintaining the strategy of
shooting from the far right while gaining the ability to avoid
threats through vertical and horizontal movement. Likewise,
the single best policy in Frostbite begins at a high level of play
relative to DQN, and significantly improves throughout evo-
lution. From the group B experiment, the game-specific As-
teroids policy begins at a high level of play relative to DQN,
while game-specific champions in Battle Zone and Zaxxon
slowly emerge during evolution, Figure 3(c).

Interestingly, the final champion policy in Frostbite defined
a relatively long-term strategy, which involved building an
igloo by jumping on horizontally-moving icebergs for an ex-
tended period of play (≈ 1000 frames). When the igloo is
complete, the agent promptly navigates to the entrance and
enters the igloo (a trajectory consuming ≈ 200 frames), ad-
vancing to the next level. A long-term strategy also emerges
for Ms. Pac-Man, in which the agent navigates directly to a
power pill and eats it. Ghosts, which are normally threats to
Ms. Pac-Man, become temporarily edible after a power pill
is eaten. Thus, after eating the pill, the Ms. Pac-Man agent
moves throughout the same section of maze, gaining points
by eating ghosts.

Figures 3(b) and 3(d) report test scores for the best multi-
task policy from each game group. While no single policy is
initially capable of playing all three games at a level equiva-
lent to DQN, a competent multi-task policy emerges by gen-
eration ≈ 125 (Group A) and ≈ 250 (Group B). Table 1
reports final TPG test scores along with DQN scores from
[Mnih et al., 2015].

By compartmentalizing decision-making over multiple
independent modules (teams), and incrementally combin-
ing modules into policy graphs, three critical benefits are

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5296

Game DQN TPG-ST TPG-MT Tms Ins %IP

Centipede 8309 (±5237) 30689 (±734) 14683 (±1809) 3 588 17
Frostbite 328 (±251) 3836 (±243) 3092 (±416) 4 844 24
Ms. Pac-Man 2311 (±525) 4127 (±230) 3988 (±598) 5 1064 29

Asteroids 1629 (±542) 2389 (±1044) 1431 (±409) 5 999 27
Battle Zone 26300 (±7725) 40933 (±9892) 23700 (±7566) 6 1211 31
Zaxxon 4977 (±1235) 4484 (±1677) 4364 (±1780) 6 1244 32

Table 1: TPG-ST reports the best mean test score for each game
achieved by any policy (i.e. each score is from a different policy
graph). TPG-MT reports the best mean score for each game from a
single multi-task policy graph. Complexity of the TPG-MT policy
is also reported. The cost of making each decision is relative to the
average number of teams visited (Tms), average number of instruc-
tions executed (Ins), and proportion of state space indexed (%IP).

achieved:
1) Adaptive Complexity. The number and complement of

programs per team and teams per policy graph is an emergent
property driven by environmental interaction. That is, poli-
cies are initialized in their simplest form and only complexify
when/if simpler solutions are outperformed (see [Kelly and
Heywood, 2017a] for empirical evidence of this property);

2) State Space Selectivity. Each program indexes a small
proportion of the state space. As the the number of teams and
programs in each policy graph increases, the policy will in-
dex more of the state space and optimize the decisions made
in each region. However, each decision requires traversing
a single path from root node to atomic action. As such,
while the decision-making capacity of the policy graph ex-
pands through environment-driven complexification, the cost
of making each decision, as measured by the number of pro-
grams which require execution, remains relatively low.

Figure 4 quantifies these first two properties by examin-
ing, for the best multi-task policy throughout evolution from
Group A (Figure 3(b)), the number of teams per policy vs.
teams visited per decision (Figure 4(a)) and the proportion of
input space covered by the policy as a whole vs. the propor-
tion indexed per decision (Figure 4(b)). Table 1 summarizes
this data for the best multi-task policy from each game group.
The run-time efficiency of policy graphs is a factor of how
many instructions are executed to make each decision, rang-
ing from 1064 in Ms. Pac-Man to 588 in Centipede for the
Group A multi-task champion. For perspective, DQN per-
forms millions of weight computations for each decision and
defines the architecture a priori, using the same level of com-
plexity for each game.

3) Modular Task Decomposition. As TPG policy graphs
develop, they will subsume an increasing number of stand-
alone modules (teams) into a hierarchical decision-making
structure, or policy graph. Importantly, policy graphs are de-
veloped from the bottom up such that only root teams are
subject to modification by variation operators. Thus, teams
that are subsumed as interior nodes of a policy graph undergo
no modification. This property allows a policy graph to avoid
(quickly) unlearning tasks that were experienced in the past
under task switching but are not currently the active task. This
represents an alternative approach to avoiding ”catastrophic
forgetting“ [Kirkpatrick et al., 2016] during the continual, se-

Policy

Decision

0 50 100 150 200

0

50

100

150

Generation

N
um

be
r o

f T
ea

m
s

(a)
Policy

Decision

0 50 100 150 200

0

20

40

60

80

Generation

Pr
op

or
tio

n
of

 S
en

so
r S

pa
ce

 In
de

xe
d

(b)

Figure 4: Complexity of best multi-task policy graph from Group A
(Figure 3(b)). See text for details.

quential learning of multiple tasks. The degree to which indi-
vidual teams specialize relative to each objective experienced
during evolution, i.e. the 3 game titles, can be characterized
by looking at which teams contribute to decision-making at
least once during test, relative to each game title.

Figure 5 shows a multi-task TPG policy graph from gen-
eration 175 of the group A experiment. The Venn diagram
indicates which teams are visited at least once while playing
each game, over all test episodes. Naturally, the root team
contributes to every decision (node labelled ABC, center of
Venn diagram). 7 teams contribute to playing both Ms. Pac-
Man and Frostbite (nodes labelled BC), while the rest of the
teams specialize for a specific game title. In short, both gen-
eralist and specialist teams appear within the same policy and
collectively define a policy capable of playing multiple game
titles.

Ms. Pac−Man (C)

Frostbite (B)Centipede (A)

1 30

1

0 7
1

{ }

Atari Joystick Position

Program

Team

Figure 5: Example multi-task TPG policy graph from group A.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5297

4 Conclusion
The simultaneous evolution of single-task and multi-task
agent behaviours is demonstrated in the Atari environment.
To do so, a new approach is proposed for providing emergent
modularity in GP, or Tangled Program Graphs. The resulting
agents match or exceed current state-of-the-art from (single-
task) deep learning, while not requiring any more training re-
source than necessary for developing agent’s under a single
game title. Moreover, TPG agents are particularly elegant,
supporting real-time operation without specialized hardware.

References
[Bellemare et al., 2012] Marc G. Bellemare, Yavar Naddaf,

Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents.
Journal of Artificial Intelligence Research, 2012.

[Brameier and Banzhaf, 2007] Markus Brameier and Wolf-
gang Banzhaf. Linear Genetic Programming. Springer,
1st edition, 2007.

[Doucette et al., 2012] John A. Doucette, Peter Lichodzijew-
ski, and Malcolm I. Heywood. Hierarchical task decom-
position through symbiosis in reinforcement learning. In
Proceedings of the ACM Genetic and Evolutionary Com-
putation Conference, pages 97–104, 2012.

[Hausknecht et al., 2014] Matthew Hausknecht, Joel
Lehman, Risto Miikkulainen, and Peter Stone. A neu-
roevolution approach to general Atari game playing. IEEE
Transactions on Computational Intelligence and AI in
Games, 6(4):355–366, 2014.

[Kelly and Heywood, 2014] Stephen Kelly and Malcolm I.
Heywood. On diversity, teaming, and hierarchical poli-
cies: Observations from the keepaway soccer task. In
European Conference on Genetic Programming, volume
8599 of LNCS, pages 75–86. Springer, 2014.

[Kelly and Heywood, 2015] Stephen Kelly and Malcolm I.
Heywood. Knowledge transfer from keepaway soccer to
half-field offense through program symbiosis: Building
simple programs for a complex task. In Proceedings of the
ACM Genetic and Evolutionary Computation Conference,
pages 1143–1150, 2015.

[Kelly and Heywood, 2017a] Stephen Kelly and Malcolm I.
Heywood. Emergent tangled graph representations for
Atari game playing agents. In European Conference on
Genetic Programming, volume 10196 of LNCS, pages 64–
79, 2017.

[Kelly and Heywood, 2017b] Stephen Kelly and Malcolm I.
Heywood. Multi-task learning in atari video games with
emergent tangled program graphs. In Proceedings of the
ACM Genetic and Evolutionary Computation Conference,
2017.

[Kelly et al., 2012] Stephen Kelly, Peter Lichodzijewski, and
Malcolm I. Heywood. On run time libraries and hierarchi-
cal symbiosis. In IEEE Congress on Evolutionary Compu-
tation, pages 3245–3252, 2012.

[Kelly et al., 2018] Stephen Kelly, Robert Smith, and Mal-
colm I. Heywood. Emergent policy discovery for visual
reinforcement learning through tangled program graphs:
A tutorial. In Genetic Programming Theory and Practice
XVI. Springer, 2018.

[Kelly, 2018] Stephen Kelly. Scaling genetic programming
to challenging reinforcement tasks through emergent mod-
ularity. PhD thesis, Faculty of Computer Science, Dal-
housie University, 2018.

[Kirkpatrick et al., 2016] James Kirkpatrick, Razvan Pas-
canu, Neil Rabinowitz, Joel Veness, Guillaume Des-
jardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago
Ramalho, Agnieszka Grabska-Barwinska, Demis Hass-
abis, Claudia Clopath, Dharshan Kumaran, and Raia Had-
sell. Overcoming catastrophic forgetting in neural net-
works. arXiv preprint 1612.00796, 2016.

[Lichodzijewski and Heywood, 2010] Peter Lichodzijewski
and Malcolm I. Heywood. Symbiosis, complexification
and simplicity under GP. In Proceedings of the ACM
Genetic and Evolutionary Computation Conference, pages
853–860, 2010.

[Lichodzijewski and Heywood, 2011] Peter Lichodzijewski
and Malcolm I. Heywood. The Rubik cube and GP tem-
poral sequence learning: an initial study. In Genetic Pro-
gramming Theory and Practice VIII, chapter 3, pages 35–
54. Springer, 2011.

[Machado et al., 2017] Marlos C. Machado, Marc G. Belle-
mare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environ-
ment: Evaluation protocols and open problems for general
agents. arXiv preprint 1709.06009, 2017.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A. Rusu, Joel. Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan
Kumaran, Daan Wierstra, Shane Legg, and Demis Has-
sabis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

[Naddaf, 2010] Yavar Naddaf. Game-independent AI agents
for playing Atari 2600 console games. Masters thesis, Uni-
versity of Alberta, 2010.

[Nolfi, 1997] Stefano Nolfi. Using emergent modularity to
develop control systems for mobile robots. Adaptive be-
havior, 5(3-4):343–363, 1997.

[van Steenkiste et al., 2016] Sjoerd van Steenkiste, Jan
Koutnı́k, Kurt Driessens, and Jürgen Schmidhuber. A
wavelet-based encoding for neuroevolution. In Pro-
ceedings of the Genetic and Evolutionary Computation
Conference, pages 517–524, 2016.

[Yannakakis and Togelius, 2015] Georgios N. Yannakakis
and Julian Togelius. A panorama of artificial and com-
putational intelligence in games. IEEE Transactions on
Computational Intelligence and AI in Games, 7(4):317–
335, 2015.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5298

