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Abstract
In this paper, we analyze a suite of 7 well-known
branching heuristics proposed by the SAT commu-
nity and show that the better heuristics tend to gen-
erate more learnt clauses per decision, a metric we
define as the global learning rate (GLR). We pro-
pose GLR as a metric for the branching heuristic
to optimize. We test our hypothesis by develop-
ing a new branching heuristic that maximizes GLR
greedily. We show empirically that this heuris-
tic achieves very high GLR and interestingly very
low literal block distance (LBD) over the learnt
clauses. In our experiments this greedy branch-
ing heuristic enables the solver to solve instances
faster than VSIDS, when the branching time is
taken out of the equation. This experiment is a good
proof of concept that a branching heuristic maxi-
mizing GLR will lead to good solver performance
modulo the computational overhead. Finally, we
propose a new branching heuristic, called SGDB,
that uses machine learning to cheapily approximate
greedy maximization of GLR. We show experimen-
tally that SGDB performs on par with the VSIDS
branching heuristic.

1 Introduction
Searching through a large, potentially exponential, search
space is a reoccurring problem in many fields of computer sci-
ence and many researchers have come to rely on SAT solvers
as a general purpose tool to efficiently perform the search.
Two notable milestones that are key to the success of SAT
solvers are the Variable State Independent Decaying Sum
(VSIDS) branching heuristic (and its variants) [Moskewicz
et al., 2001] and conflict analysis techniques [Marques-Silva
and Sakallah, 1996].

One of the challenges in designing branching heuristics is
that it is not clear what constitutes a good decision variable.
We proposed one solution to this issue in our LRB branch-
ing heuristic paper [Liang et al., 2016b], which is to frame

∗This paper is an abridged version of a paper with the same title
at the SAT 2017 conference where it won the best student paper
honourable mention award.

branching as an optimization problem. We defined a com-
putable metric called learning rate and defined the objective
as maximizing the learning rate. Good decision variables are
ones with high learning rate. Since learning rate is expensive
to compute a priori, we used a multi-armed bandit learning
algorithm to estimate the learning rate on-the-fly as the basis
for the LRB branching heuristic [Liang et al., 2016b].

In this paper, we deepen our previous work and our starting
point remains the same, namely, branching heuristics should
be designed to solve the optimization problem of maximiz-
ing learning rate. In LRB, the learning rate metric is defined
per variable. In this paper, we define a new metric, called
the global learning rate (GLR) to measure the solver’s over-
all propensity to generate conflicts, rather than the variable-
specific metric we defined in the case of LRB. Not only do
we observe that the effectiveness of extant branching heuris-
tics correlates with their capacity to maximize GLR, we also
find that forcing VSIDS to increase GLR improves its per-
formance when the branching computation is factored out.
Lastly we present a new branching heuristic called stochastic
gradient descent branching (SGDB) that uses machine learn-
ing to greedily maximize GLR, and is shown experimentally
to perform on par with VSIDS.

2 Background
Conflict-driven clause-learning (CDCL) [Marques-Silva and
Sakallah, 1996] is currently the most effective paradigm
of SAT solvers in practice for a wide range of problems.
They perform an exhaustive backtracking search by assign-
ing Boolean variables to values trying to find a solution. The
branching heuristic is responsible for the order in which the
variables are assigned, and this order has a huge impact on
the running time of the solver. When the solver detects that
its assignment of variables cannot be extended to a solution,
it is in conflict and needs to backtrack to an earlier state.

CDCL solvers analyze every conflict to produce a new
clause that prevents the same or a similar conflict from re-
occurring. This requires maintaining an implication graph
where the nodes are assigned literals and edges are implica-
tions forced by Boolean constraint propagation (BCP). When
a clause is falsified, the CDCL solver invokes conflict anal-
ysis to produce a learnt clause from the conflict. It does
so by cutting the implication graph, typically at the first-
UIP [Marques-Silva and Sakallah, 1996], into the reason side
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and the conflict side with the condition that the decision vari-
ables appear on the reason side and the falsified clause ap-
pears on the conflict side. A new learnt clause is constructed
by negating the reason side literals incident to the cut. Lit-
eral block distance (LBD) is a popular metric for measuring
the “quality” of a learnt clause [Audemard and Simon, 2009].
The LBD is defined as the number of distinct decision levels
of the variables in the clause, the lower the LBD the better.

3 GLR Maximization as a Branching
Heuristic Objective

To frame the branching heuristic as an optimization problem,
the first step is to define the objective. Ideally the objective of
the branching heuristic is to minimize the total running time.
However calculating the running time a priori is infeasible,
which makes it unsuitable as an objective for branching. In-
stead, we target an easy to compute feature that correlates
with solving time.

We define the global learning rate (GLR) of a solver as
GLR := # of conflicts

# of decisions . We will justify why maximizing
GLR is a reasonable objective for a branching heuristic. Past
research concludes that clause learning is the most important
feature for good performance in a CDCL solver [Katebi et
al., 2011], so perhaps it is not surprising that increasing the
rate at which clauses are learnt is a reasonable objective. In
our experiments, we assume the learning scheme is first-UIP
since it is universally used by all modern CDCL solvers.

We propose the following hypothesis: for a given in-
stance, the branching heuristic that achieves higher GLR
tends to solve that instance faster than heuristics with lower
GLR. In the following experiment, we tested the above hy-
pothesis with 7 branching heuristics: LRB [Liang et al.,
2016b], CHB [Liang et al., 2016a], VSIDS (MiniSat [Eén
and Sörensson, 2004] variation of VSIDS), CVSIDS
(Chaff [Moskewicz et al., 2001] variation of VSIDS), Berk-
min [Goldberg and Novikov, 2007], DLIS [Marques-Silva,
1999], and Jeroslow-Wang [Jeroslow and Wang, 1990]. We
created 7 versions of MapleSAT 1, one for each branching
heuristic, keeping the code unrelated to the branching heuris-
tic untouched. We ran all 7 solvers on each application and
hard combinatorial instance from every SAT Competition and
SAT Race held between 2009 and 2016 with a 1800 second
timeout. Duplicate instances are removed. We recorded the
GLR and the average LBD of clauses learnt at termination.
We then computed the median GLR and median average LBD
over the entire benchmark. All experiments in this paper were
conducted on StarExec [Stump et al., 2014]. The code for all
our experiments in this paper can be found on our website 2.
The results are presented in Table 1. Note that sorting by GLR
in decreasing order, sorting by instances solved in decreasing
order, and sorting by LBD in increasing order produces al-
most the same ranking. This gives credence to our hypothesis
that GLR correlates with branching heuristic effectiveness.
Additionally, the experiment shows that high GLR correlates
with low LBD.

1https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/
2https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/sgd

Heuristic Median LBD Median GLR # Solved
LRB 7.435 0.589 1552
CHB 8.430 0.512 1499

MVSIDS 9.548 0.524 1436
CVSIDS 9.988 0.413 1309

BERKMIN 12.235 0.359 629
DLIS 7.705 0.215 318
JW 25.061 0.068 290

Table 1: LBD, GLR, and number of instances solved for 7 differ-
ent branching heuristics, sorted by the number of instances solved.
Jeroslow-Wang (JW) is modified to also account for learnt clauses.

Maximizing GLR also makes intuitive sense when viewing
the CDCL solver as a proof system. Every conflict generates a
new lemma in the proof. Every decision is like a new “case”
in the proof. Intuitively, the solver wants to generate lem-
mas quickly using as few cases as possible, or in other words,
maximize conflicts with as few decisions as possible. This is
equivalent to maximizing GLR. Of course in practice not all
lemmas/learnt clauses are of equal quality, so the quality such
as LBD is also an important objective.

4 Greedy Maximization of GLR
Finding the globally optimal branching sequence that maxi-
mizes GLR is intractable in general. Hence we tackle a sim-
pler problem to maximize GLR greedily instead. Although
this is too computationally expensive to be effective in prac-
tice, it provides a proof of concept for GLR maximization and
a gold standard for subsequent branching heuristics.

We define the function c : PA → {1, 0} that maps partial
assignments to either class 1 or class 0. Class 1 is the “conflict
class” which means that applying BCP to the input partial
assignment with the current clause database would encounter
a conflict once BCP hits a fixed-point. Otherwise the input
partial assignment is given the class 0 for “non-conflict class”.
Note that c is a mathematical function with no side-effects,
that is applying it does not alter the state of the solver. The
function c is clearly decidable via one call to BCP, although
it is quite costly when called too often.

The greedy GLR branching (GGB) heuristic is a branching
heuristic that maximizes GLR greedily. When it comes time
to branch, the branching heuristic is responsible for append-
ing a decision variable (plus a sign) to the current partial as-
signment. GGB prioritizes decision variables where the new
partial assignment falls in class 1 according to the function
c. That is, GGB branches on decision variables that cause a
conflict during the subsequent call to BCP, if such variables
exist. See Algorithm 1 for the implementation of GGB.

Unfortunately, GGB is very computationally expensive due
to the numerous calls to the c function every time a new de-
cision variable is needed. However, we show that GGB sig-
nificantly increases the GLR relative to the base branching
heuristic VSIDS. Additionally, we show that if the time to
compute the decision variables was ignored, then GGB would
be a more efficient heuristic than VSIDS. This suggests we
need to cheaply approximate GGB to avoid the heavy compu-
tation. A cheap and accurate approximation of GGB would
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Algorithm 1 Pseudocode for the GGB heuristic using the
function c to greedily maximize GLR. Note that GGB is
a meta-heuristic, it takes an existing branching heuristic
(VSIDS in the following pseudocode) and makes it greedier
by causing conflicts whenever possible. In general, VSIDS
can be replaced with any other branching heuristic.
1: function PHASESAVING(Var) . Return variable plus a sign.
2: return mkLit(V ar, V arsavedPolarity)

3:
4: function VSIDS(Vars) . Return variable with highest VSIDS activity plus a sign.
5: return PhaseSaving(argmaxv∈V arsvactivity)

6:
7: function GGB
8: CPA← CurrentPartialAssignment
9: V ← UnassignedV ariables
10: oneClass← {v ∈ V | c(CPA ∪ {PhaseSaving(v)}) = 1}
11: zeroClass← V \ oneClass
12: if oneClass 6= ∅ then . Next BCP will cause a conflict.
13: return VSIDS(oneClass)
14: else . Next BCP will not cause a conflict.
15: return VSIDS(zeroClass)
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Figure 1: GGB vs VSIDS. Each point in the plot is a comparable
instance. Note that the axes are in log scale. GGB has a higher
GLR for all but 2 instances. GGB has a mean GLR of 0.74 for this
benchmark whereas VSIDS has a mean GLR of 0.59.

in theory be a better branching heuristic than VSIDS. The
following experiments were performed with MapleSAT with
restarts and clause deletion turned off to minimize the effects
of external heuristics. For each of the 300 instances in the
SAT Competition 2016 application category, MapleSAT was
ran twice, the first run configured with VSIDS and the second
run configured with GGB. The run with VSIDS used a time-
out of 5000 seconds. The run with GGB used a timeout of 24
hours to account for the heavy computational overhead. We
define effective time as the solving time minus the time spent
by the branching heuristic selecting variables. Figure 1 shows
the results of effective time between the two heuristics. Only
comparable instances are plotted. An instance is comparable
if either both heuristics solved the instance or one heuristic
solved the instance with an effective time of x seconds while
the other heuristic timed out with an effective time greater
than x seconds.

Of the comparable instances, GGB solved 69 instances
with a lower effective time than VSIDS and 29 instances with
a higher effective time. Hence if the branching was free, then
GGB would solve instances faster than VSIDS 70% of the
time. GGB achieves a higher GLR than VSIDS for all but
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Figure 2: A cactus plot of various configurations of SGDB, VSIDS,
and LRB on the entire benchmark with duplicate instances removed.
A point (x, y) can be interpretted as x instances have a solving time
of y seconds or less with the given heuristic. Being to the right and
down is better.

2 instances, hence it does a good job increasing GLR as ex-
pected. Additionally, GGB has a lower LBD than VSIDS
for 72 of the 98 comparable instances. We believe this is
because GGB by design causes conflicts earlier when the de-
cision level is low, which keeps the LBD small since LBD
cannot exceed the current decision level.

5 Stochastic Gradient Descent Branching
Heuristic

GGB is too expensive in practice due to the computational
cost of computing the c : PA → {1, 0} function. In-
stead, we propose a new braching heuristic called stochas-
tic gradient descent branching (SGDB) to cheaply approxi-
mate cwith online stochastic gradient descent [Bottou, 1998].
SGDB learns the logistic regression [Cox, 1958] function
c̃ : Rn → [0, 1] where Rn is the partial assignment’s feature
vector and [0, 1] is the probability the partial assignment is in
class 1, the conflict class. Online training is a good fit since
the function c we are approximating is non-stationary due to
the clause database changing over time. For an instance with
n Boolean variables and a partial assignment PA, we intro-
duce the features x1, ..., xn defined as follows: xi = 1 if
variable i ∈ PA, otherwise xi = 0. With logistic regression,
c̃ := σ(w0+w1x1+w2x2+ ...+wnxn) is parameterized by
the weights wi, and the goal of SGDB is to find good weights
dynamically as the solver roams through the search space.
Initially the weights are set to zero since we assume no prior
knowledge.

To train these weights, SGDB needs to generate training
data of the form PA × {1, 0} where 1 signifies the conflict
class. We leverage the existing conflict analysis procedure
in the CDCL algorithm to create this data. Whenever the
solver performs conflict analysis, SGDB creates a partial as-
signment PA1 by concatenating the literals on the conflict
side of conflict analysis with the negation of the literals in
the learnt clause and gives this partial assignment the label
1. Clearly applying BCP to PA1 with the current clause
database leads to a conflict, hence it is assigned to the con-
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Metric Status SGDB +
No Ext

SGDB +
Reason Ext

SGDB +
Sparse Ext

SGDB +
Both Ext VSIDS LRB

Mean GLR
SAT 0.324501 0.333763 0.349940 0.357161 0.343401 0.375181
UNSAT 0.515593 0.518362 0.542679 0.545567 0.527546 0.557765
BOTH 0.403302 0.409887 0.429420 0.434854 0.419337 0.450473

Mean Avg LBD
SAT 22.553479 20.625091 19.470764 19.242937 28.833872 16.930723
UNSAT 17.571518 16.896552 16.249930 15.832730 22.281780 13.574527
BOTH 20.336537 18.965914 18.037512 17.725416 25.918232 15.437237

Table 2: GLR and average LBD of various configurations of SGDB, VSIDS, and LRB on the entire benchmark with duplicate instances
removed. LRB solves the most instances and achieves the highest GLR and lowest average LBD in our experiments.

flict class. SGDB creates another partial assignment PA0 by
concatenating all the literals in the current partial assignment
excluding the variables in the current decision level and ex-
cluding the variables in PA1. Applying BCP to PA0 does
not lead to a conflict with the current clause database, be-
cause if it did, the conflict would have occurred at an earlier
level. Hence PA0 is given the label 0. In summary, SGDB
creates two data points at every conflict, one for each class
guaranteeing a balance between the two classes. SGDB then
applies one step of stochastic gradient descent on these two
data points to update the weights. Since we are training in
an online fashion, the two data points are discarded after the
weights are updated. To reduce the computation cost, reg-
ularization is performed lazily. Regularization, if done ea-
gerly, updates the weights of every variable on every step
of stochastic gradient descent. With lazy updates, only the
weights of non-zero features are updated. As is typical with
stochastic gradient descent, we gradually decrease the learn-
ing rate α over time until it reaches a fixed limit. This helps
to rapidly adjust the weights at the start of the search.

When it comes time to pick a new decision variable, SGDB
uses the c̃ function to predict the decision variable that maxi-
mizes the probability of creating a partial assignment in class
1, the conflict class. Since we are using logistic regression,
and the features are either 0 or 1, we can simply branch on the
unassigned variable with the highest weight. By storing the
weights in a max priority queue, the variable with the highest
weight can be retrieved in time logarithmic to the number of
unassigned variables, a big improvement over linear time.

Sparse Non-Conflict Extension: Applying stochastic gra-
dient descent takes time proportional to |PA1| and |PA0|.
Unfortunately in practice, |PA0| is often quite large, about 75
times the size of |PA1| in our experiments. To shrink the size
of PA0, we introduce the sparse non-conflict extension. With
this extension PA0 is constructed by randomly sampling one
assigned literal for each decision level less than the current
decision level. Then the literals in PA1 are removed from
PA0 as usual. This construction bounds the size of PA0 to
be less than the number of decision levels.

Reason-Side Extension: SGDB constructs the partial as-
signment PA1 by concatenating the literals in the conflict
side and the learnt clause. Although PA1 is sufficient for
causing the conflict, the literals on the reason side are the rea-
son why PA1 literals are set in the first place. Inspired by the

LRB branching heuristic with a similar extension, the reason-
side extension takes the literals on the reason side adjacent to
the learnt clause in the implication graph and adds them to
PA1. This lets the learning algorithm associate these vari-
ables with the conflict class.

5.1 Experimental Results
We ran MapleSAT configured with 6 different branching
heuristics (LRB, VSIDS, SGDB with four combinations of
the two extensions) on all the application and hard combi-
natorial instances from SAT Competitions 2011, 2013, 2014,
and 2016. At the end of each run, we recorded the elapsed
time, the GLR at termination, and the average LBD of all
clauses learnt from start to finish. Figure 2 show the effec-
tiveness of each branching heuristic in solving the instances in
the benchmark. The reason-side extension (resp. sparse non-
conflict extension) increases the number of solved instances
by 97 (resp. 155). The two extensions together increase the
number of solved instances by 219, and in total solve just 12
instances fewer than VSIDS. LRB solves 93 more instances
than VSIDS. Table 2 shows the GLR and the average LBD
achieved by the branching heuristics. Both extensions indi-
vidually increased the GLR and decreased the LBD. The ex-
tensions combined increased the GLR and decreased the LBD
even further. The best performing heuristic, LRB, achieves
the highest GLR and lowest LBD in this experiment. It should
not be surprising that LRB has high GLR, our goal when de-
signing LRB was to generate lots of conflicts by branching
on variables likely to cause conflicts. By design, LRB tries to
achieve high GLR albeit indirectly by branching on variables
with high learning rate.

6 Related Work
The VSIDS branching heuristic, currently the most widely
implemented branching heuristic in CDCL solvers, was intro-
duced by the authors of the Chaff solver in 2001 [Moskewicz
et al., 2001] and later improved by the authors of the MiniSat
solver in 2003 [Eén and Sörensson, 2004]. Lagoudakis and
Littman introduced a new branching heuristic in 2001 that dy-
namically switches between 7 different branching heuristics
using reinforcement learning to guide the choice [Lagoudakis
and Littman, 2001]. In 2015, Biere and Fröhlich introduced
a new heuristic called ACIDS [Biere and Fröhlich, 2015] that
is shown to be as effective as VSIDS. Additionally, they show
that the VMTF heuristic if implemented carefully is com-
petitive with VSIDS. Liang et al. introduced two branching
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heuristics, CHB and LRB, in 2016 where a stateless rein-
forcement learning algorithm selects the branching variables
themselves. CHB does not view branching as an optimiza-
tion problem, whereas LRB, GGB, SGDB do. As stated ear-
lier, LRB optimizes for learning rate, a metric defined with
respect to variables. GGB and SGDB optimize for global
learning rate, a metric defined with respect to the solver.

7 Conclusion
Finding the optimal branching sequence is nigh impossible,
but we show that using the simple framework of optimiz-
ing GLR has merit. The crux of the question since the suc-
cess of our LRB heuristic is whether solving the learning
rate optimization problem is indeed a good way of designing
branching heuristics. A second question is whether machine
learning algorithms are the way to go forward. We answer
both questions via a thorough analysis of 7 different notable
branching heuristics, wherein we provide strong empirical ev-
idence that better branching heuristics correlate with higher
GLR. Further, we show that higher GLR correlates with lower
LBD, implying better clause learning. Additionally, we de-
signed a greedy branching heuristic to maximize GLR and
showed that it outperformed VSIDS, one of the most compet-
itive branching heuristics. To answer the second question, we
designed the SGDB that is competitive vis-a-vis VSIDS. With
the success of LRB and SGDB, we are more confident than
ever before in the wisdom of using machine learning tech-
niques as a basis for branching heuristics in SAT solvers.
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