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Abstract
The dueling bandits problem is an online learn-
ing framework where learning happens “on-the-
fly” through preference feedback, i.e., from com-
parisons between a pair of actions. Unlike con-
ventional online learning settings that require ab-
solute feedback for each action, the dueling bandits
framework assumes only the presence of (noisy) bi-
nary feedback about the relative quality of each pair
of actions. The dueling bandits problem is well-
suited for modeling settings that elicit subjective or
implicit human feedback, which is typically more
reliable in preference form. In this survey, we re-
view recent results in the theories, algorithms, and
applications of the dueling bandits problem. As an
emerging domain, the theories and algorithms of
dueling bandits have been intensively studied dur-
ing the past few years. We provide an overview
of recent advancements, including algorithmic ad-
vances and applications. We discuss extensions to
standard problem formulation and novel applica-
tion areas, highlighting key open research questions
in our discussion.

1 Introduction
Many real world applications require algorithms to simulta-
neously predict actions and learn “on-the-fly”. Examples in-
clude implicit or subjective feedback for information retrieval
and recommender systems [Chapelle et al., 2012], personal-
ized clinical treatments [Sui and Burdick, 2014], and many
others. In these settings, the recommendation algorithm does
not know a priori which actions are most effective, and must
learn from trial and error. A grand technical question in this
space is how to design algorithms that can quickly converge
to recommending the optimal actions. Furthermore, in many
settings, especially the ones that involve human feedback, it is
more practical to elicit pairwise preferences, which are often
more reliable than absolute feedback [Chapelle et al., 2012].

Online learning is the setting where the learner is simulta-
neously acting (or predicting) and learning “on-the-fly”. The
goal is to be competitive w.r.t. some benchmark. One com-
mon benchmark is being competitive with the best fixed ac-
tion with the benefit of hindsight. The difference between

rewards accumulated by the best hindsight action and the ac-
tions of the learner is often called the cumulative regret, and
hence a commonly studied version of online learning is on-
line regret minimization.

In the bandits setting, also known as “partial-information”
online learning, only the reward of the chosen action is re-
vealed. Regret minimization in the bandit setting typically
leads to an exploration-exploitation trade-off. On the one
hand, it is important to select actions with (estimated) high
reward. However, actions that appear very good may be
sub-optimal due to imperfections in the learner’s knowledge.
Therefore, it is important to explore by performing seemingly
bad actions in order to collect more information about them.

While the problem of online regret minimization is well-
studied given cardinal feedback, it is less clear how to for-
mulate regret when one only receives preference feedback.
Given a set of K arms, we want to find a sequence of noisy
comparisons to minimize cumulative regret. The dueling ban-
dits problem provides one such formulation (see Equation (2)
in Section 2.2), and defines regret of the chosen actions us-
ing the preference regret relative to the optimal action (e.g.,
how much one would have preferred the optimal action ver-
sus the chosen ones). Note that such a formulation assumes a
so-called Condorcet winner, where there is a unique optimal
action superior to all other actions. The Condorcet concept is
the most studied one for dueling bandits. Other concepts of
winners also exist but are less common.

In this survey, we overview recent advances in research
on dueling bandits. For a thorough review of early work
on dueling bandits, we refer readers to [Busa-Fekete and
Hüllermeier, 2014]. The remainder of this paper is struc-
tured as follows. We overview the key concepts for problem
setup in Section 2. Methods for the original dueling bandits
problem are introduced in Section 3. Section 4 continues to
discuss a variety of generalizations and applications of the
dueling bandits problem. Section 5 concludes the survey.

2 Problem Setup
We first overview the definitions of regret for the multi-armed
(Section 2.1) and dueling (Section 2.2) bandit settings, and
follow with presenting various dueling bandits algorithms.
For different algorithms, there is a range of modeling assump-
tions which lead to theoretical and/or empirical behaviors.
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2.1 Multi-armed Bandits (MAB)
We provide a brief formal description of the conventional
MAB problem for completeness. The stochastic MAB prob-
lem [Robbins, 1952] is an iterative decision making problem
where the algorithm repeatedly chooses among K actions (or
bandits or arms). The learner receives an absolute reward
that depends on the action selected. We assume w.l.o.g. that
every reward is bounded between [0, 1] and is sampled inde-
pendently with expected value µ(a) for each action a. The
goal then is to minimize the cumulative regret compared to
the best arm in expectation:

RMAB
T =

T∑
t=1

[µ∗ − µ(a(t))] , (1)

where a(t) denotes the arm chosen at time t, µ(a) denotes the
expected reward of arm a, and µ∗ = arg maxa µ(a).

In the adversarial setting, the rewards are chosen in an
adversarial fashion, rather than sampled independently from
some underlying distribution. In this case, regret in Equa-
tion (1) is rephrased as the difference in the sum of rewards.

Exploration-Exploitation Tradeoff. The issue of explo-
ration versus exploitation becomes apparent when consider-
ing the consequences of minimizing Equation (1). Since the
true expected rewards are unknown, one can only maintain an
estimate from the observations of performed actions. Choos-
ing bad actions will lead to high regret in Equation (1), but the
algorithm can only determine an action is suboptimal from
trying them. However, over-exploring can lead to slow con-
vergence, which is also undesirable. Indeed, properly balanc-
ing the exploration-exploitation tradeoff is a central question
in the study of sequential decision making under uncertainty.

2.2 Dueling Bandits
In the dueling bandits problem, the following happens for
each time step t = 1, . . . , T :
• The algorithm chooses a pair of actions ai, aj from K

available actions.
• The world provides (independent stochastic) preference

feedback of which action is more preferred. The first
action is preferred with probability P (ai � aj), and the
second with probability P (ai � aj) = 1− P (aj � ai).

Unlike the standard multi-armed bandits setting described in
Section 2.1, the dueling bandits problem requires choosing
two arms, ai and aj . Furthermore, the feedback is either ai
or aj as the winner of the comparison between the two arms
(rather than an absolute reward). These preference probabili-
ties form the entries of a K ×K preference matrix P, which
defines the hidden information in the dueling bandits problem
and is not revealed to the algorithm.

Table 1 illustrates an example 6 × 6 preference matrix.
Here, the goal is to optimize over the set of six arms
{A,B,C,D,E, F}. At each iteration, the agent picks two
arms (arm B and arm E in this example) and compare them.
The value 0.08 high-lighted in yellow shows that arm B has
its winning probability of (0.5+0.08) against arm E. ArmA
is the Condorcet winner of the six arms as it beats any other
arm with probability greater than 0.5.

In a similar fashion to the MAB setting, we wish to define
a notion of regret to benchmark the performance of dueling
bandits algorithms. However, the definition of regret is less
clear-cut in this setting, due to the nature of preference feed-
back instead of cardinal feedback. One common approach
is to define regret relative to the a best arm, under a suitable
definition of “best”. The most straightforward case is a Con-
dorcet winner, where one arm is preferred to all other arms.
We discuss different solution concepts later in the paper.

To simplify the notation in the rest of the paper, we re-
label the arms such that a1 the best arm (e.g., the Condorcet
winner). The cumulative regret after T time-steps is:

R(T ) =
T∑

t=1

r(t), r = ∆1i + ∆1j . (2)

where the instantaneous regret r(t) is the regret incurred by
the choice of arms at time t, and ∆1k := P1k−0.5 = P (a1 �
ak)− 0.5 for each k.

Comparison to Multi-armed Bandits. One major chal-
lenge of the dueling bandits problem stems from the fact that
the algorithm cannot directly observe the costs of the chosen
actions. It is an example of a partial monitoring problem,
a class of regret-minimization problems defined in [Cesa-
Bianchi et al., 2006], in which the algorithm observes feed-
back that depend on the actions chosen by the forecaster and
by an unseen opponent (the “environment”). This pair of
actions also determines a loss, which is not revealed to the
learner but is used in defining the regret. For instance, in
Equation (2), regret is measured relative to the unknown best
action, but the learner only observes feedback involving the
two selected actions. As an example, consider Table 1, which
depicts a stochastic preference matrix over six actions, with
action A being the best. If the two selected actions are B
and E, then the learner suffers regret (∆AB + ∆AE) despite
collecting feedback to reveals information about ∆BE .

2.3 Different Solution Concepts
There are a variety of ways one can define a solution concept
and thus regret. As mentioned above, the most straightfor-
ward case is where there is a Condorcet winner which is pre-
ferred to all other arms, i.e., an arm aC such that PCj > 0.5
for all j 6= C. However, Table 2 shows a preference matrix
which doesn’t not have a Condorcet winner (A � B, B � C,
and C � A in this example).

P2
A B C D E F

A 0 0.03 0.04 0.06 0.10 0.11
P1 B -0.03 0 0.03 0.05 0.08 0.11

C -0.04 -0.03 0 0.04 0.07 0.09
D -0.06 -0.05 -0.04 0 0.05 0.07
E -0.10 -0.08 -0.07 -0.05 0 0.03
F -0.11 -0.11 -0.09 -0.07 -0.03 0

Table 1: Preference matrix of 6 arms, sorted in preference order. The
first choice (P1) is B, and the second (P2) is E. The probability of
P1 defeating P2 is (0.08 + 0.5). Incurred regret is ∆AB + ∆AE .
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A B C D E F
A 0 0.03 -0.02 0.06 0.10 0.11
B -0.03 0 0.03 0.05 0.08 0.11
C 0.02 -0.03 0 0.04 0.07 0.09
D -0.06 -0.05 -0.04 0 0.05 0.07
E -0.10 -0.08 -0.07 -0.05 0 0.03
F -0.11 -0.11 -0.09 -0.07 -0.03 0

Table 2: Violation of Condorcet Winner. Highlighted entries are
different from Table 1. No Condorcet winner exists as no arm could
beat every other arm.

A B C D E F
A 0 0.03 0.02 0.06 0.10 0.11
B -0.03 0 0.03 0.05 0.08 0.11
C -0.02 -0.03 0 0.04 0.07 0.09
D -0.06 -0.05 -0.04 0 0.05 0.07
E -0.10 -0.08 -0.07 -0.05 0 0.03
F -0.11 -0.11 -0.09 -0.07 -0.03 0

Table 3: Violation of Transitivity. Highlighted entries are different
from Table 1. A � B � C, but ∆AC < ∆BC .

There are numerous proposals in the literature for alterna-
tive notions of winners in the absence of a Condorcet win-
ner, e.g., Borda winner [Urvoy et al., 2013; Jamieson et al.,
2015], Copeland winner [Zoghi et al., 2015a; Komiyama et
al., 2016], von Neumann winner [Dudı́k et al., 2015], with
each definition having its own benefits and drawbacks. We
will discuss some of these extensions in Section 4.

3 Dueling Bandits Algorithms with Condorcet
Winners

In this section, we review dueling bandits algorithms in the
literature that solve the Condorcet dueling bandits problem,
i.e. problems where there exists a single arm that is preferred
to all other arms. There are basically two styles of algorithm
design: Asymmetric Algorithms and Symmetric Algorithms.
The first style (pseudocode shown in Algorithm 1) conceptu-
ally separates the two choices into choosing a reference arm
and a exploration arm. The reference arm is typically chosen
either due it being the best known action thus far, or as one
of the plausibly best actions (i.e., not yet eliminated as pos-
sibly being the best action). This includes the algorithms of
IF, BtM, SAVAGE, Doubler, RUCB, MergeRUCB, RCS, and
DTS. The exploration arm is then chosen to duel against the
reference arm, e.g., to identify an arm that can outperform the
reference arm.

The second style (pseudocode shown in Algorithm 2) treats
the choise of the two arms symmetrically. For instance, one
simple approach is to use a separate online learning algorithm
to choose each arm, which shares affinity to online learning in
repeated zero-sum games [Cesa-Bianchi and Lugosi, 2006].
The intuition is that both online learners should converge to
the global optimum (Condorcet winner), which corresponds
to the unique pure Nash equilibrium when viewing the pref-
erence matrix as a zero-sum two-player payoff matrix. This
style of algorithms includes Sparring & Self-Sparring.

Algorithm 1 Asymmetric Algorithmic Framework

1: for t = 1, 2, . . . do
2: Choose a reference arm ai.
3: Given the arm ai, choose an exploratory arm aj to ex-

plore against the reference arm.
4: Duel the chosen arms (ai, aj), observe feedback: ai �

aj or aj � ai.
5: Integrate feedback to update corresponding arms.
6: end for

Algorithm 2 Symmetric Algorithm Framework

1: for t = 1, 2, . . . do
2: Choose arm ai and arm aj symmetrically.
3: Duel the chosen arms (ai, aj), observe feedback: ai �

aj or aj � ai.
4: Integrate feedback to update corresponding arms.
5: end for

IF and BtM
The first two methods proposed for theK-armed dueling ban-
dits problem are Interleaved Filter (IF) [Yue et al., 2012]
(conference version published in 2009) and Beat the Mean
(BtM) [Yue and Joachims, 2011]. These methods work under
the following assumptions:

1. A total ordering of the arms, i.e. we can relabel the
arms as a1, . . . , aK such that pij > 0.5 for all i < j. This
assumption implies a Condorcet winner.

2. Stochastic Triangle Inequality (STI): for any pair (j, k),
with 1 < j < k, the following condition is satisfied: ∆1k ≤
∆1j + ∆jk, where ∆ij := pij − 0.5.

3. IF and BtM require two different transitivity conditions:
IF: Strong Stochastic Transitivity (SST): for any triple

(i, j, k), with i < j < k, the following condition is satisfied:
∆ik ≥ max{∆ij ,∆jk}.

BtM: Relaxed Stochastic Transitivity (RST): there exists a
number γ ≥ 1 such that for all pairs (j, k) with 1 < j < k,
we have γ∆1k ≥ max{∆1j ,∆jk}.

Table 3 shows a case where Strong Stochastic Transitivity
does not hold. In BtM, the constant γ, which measures the
degree to which SST fails to hold, needs to be passed to the
algorithm explicitly: the higher the γ, the more challenging
the problem, with SST holding when γ = 1. Given these
assumptions, the following regret bounds have been proven
for IF and BtM. For large T , we have:

E
[
RIFT

T

]
≤ O

(
K log T

∆min

)
, and

RBtMT

T ≤ O
(
γ7K log T

∆min

)
with high probability,

where RT is cumulative regret in the Condorcet setting, de-
fined in §2.2. Moreover, ∆min is the smallest gap ∆1j :=
p1j − 0.5, where a1 is the best arm.

The first bound holds only when γ = 1 but matches the
lower bound in [Yue et al., 2012, Theorem 2]. The second
bound holds for γ ≥ 1 and is sharp when γ = 1.

IF is based on a form of “hill climbing.” IF begins by
choosing a random arm â as the reference arm and compares
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it against the other arms until we realize (with high probabil-
ity) that â loses to another arm, at which point the algorithm
pivots to the latter arm as the reference arm. Afterwards, IF
restarts the process with the new reference arm. Addition-
ally, the algorithm keeps track of the arms that are beaten by
any reference arm â and eliminates them from consideration,
reducing the need to explore them against future reference
arms. By exploiting stochastic triangle inequality and strong
stochastic transitivity, one can show fast improvement of the
sequence of reference arms towards the Condorcet winner (in
a logarithmic number of rounds), as well as exponentially
fast elimination of suboptimal arms in expectation (a constant
fraction of arms eliminated against each â), thus leading to
the regret guarantee.

To better understand BtM, we begin by first defining the
following quantity: given a K × K preference matrix P =
[pij ], define the Borda score of arm ai as 1

K

∑
j pij . The key

observations behind BtM are the following:
1. First, the Borda score of the Condorcet winner is always

greater than or equal to 0.5 because by definition the Con-
dorcet winner beats all other arms with probability greater
than 0.5. Therefore, the Condorcet winner is not a “Borda
loser” and as long as we eliminate Borda losers, the Con-
dorcet winner would not be eliminated.

2. Second, the other important property of the Condorcet
winner of a dueling bandits problem is that it remains the
Condorcet winner of any dueling bandits problem obtained
by removing any arm other than the Condorcet winner.

Putting these two observations together, we see that as long
as we keep eliminating Borda losers, we will eventually be
left with nothing but the Condorcet winner. Compared to IF,
BtM offers more stable performance ( a high probability re-
gret bound rather than in expectation) due to the variability in
how quickly IF eliminates arms against the chosen reference
arms.

SAVAGE
Sensitivity Analysis of VAriables for Generic Exploration
(SAVAGE) [Urvoy et al., 2013] is an algorithm that empir-
ically outperforms both IF and BtM by a wide margin when
the number of arms is of moderate size, as demonstrated by
the experimental results in [Urvoy et al., 2013]. One version
of SAVAGE, called Condorcet SAVAGE, makes the Condorcet
assumption and has a regret bound in the form O(K2 log T ),
which is not as tight as those of IF and BtM.

At high level, the algorithm compares pairs of arms in a
round robin fashion and drop pairs of arms from considera-
tion as soon as it is safe to do so, according to the follow-
ing rule. If we know that the dueling bandits problem has a
Condorcet winner, then any arm that loses with high proba-
bility to another arm cannot be a Condorcet winner and so can
be eliminated from further consideration. Proceeding in this
fashion, we will eventually be left with nothing but the Con-
dorcet winner, which is precisely how Condorcet SAVAGE
finds the Condorcet winner.

Doubler
Doubler [Ailon et al., 2014], is the first approach which con-
verts dueling bandits into conventional multi-armed bandit

problems, under the assumption that the preferences are lin-
ear choice functions of underlying utilities associated with the
arms. In other words, ∆AB = (µA − µB)/2.

Doubler proceeds in epochs of exponentially increasing
size (hence “doubler”). In each epoch, the left arm is sampled
from a fixed distribution, and the right arm is chosen using a
multi-armed bandit algorithm to minimize regret against the
left arm. The feedback received by the multi-armed bandit al-
gorithm is the wins and losses the right arm encounters when
compared against the left arm. In other words, the goal of the
right arm is to beat the fixed distribution from which the left
arm is sampled. The distribution the left arm plays is the em-
pirical distribution (histogram) of arms that were chosen for
the right arm in the previous epoch.

Since the utility assumption induces a total ordering, the al-
gorithm provably converges to the best arms. While the regret
bounds are near-optimal up to constant factors, in the practice
Doubler is not efficient compared to other algorithms due to
the doubling trick being conservative in how long it takes to
switch to a new distribution of left arms. Furthermore, the
linearity assumption may be overly restrictive in practice.

RUCB, MergeRUCB, RCS and DTS
Relative Upper Confidence Bounds (RUCB) [Zoghi et al.,
2014b] extends UCB to dueling bandits using a matrix of
optimistic estimates of the preference probabilities. The
RUCB algorithm significantly improves both theoretical and
experimental results of dueling bandits. For instance, RUCB
achieves high-probability regret bounds while making min-
imal assumptions other than assuming a Condorcet winner.
The experimental success of RUCB over its predecessors is
largely due to the fact that it avoids arm elimination.

At each time-step, RUCB chooses the first arm to be one
that beats all other arms given an optimism bonus in its favor
(i.e. a contender for the Condorcet winner), and chooses the
second arm to be the arm that beats the first arm given an
optimism bonus in the favor of the former, which translates to
a pessimism penalty for the first arm. In particular, for an arm
to be compared against itself, it needs to beat all other arms
both optimistically and pessimistically. Indeed, one of the
shortcomings of RUCB in practice is that it is overly prudent
when it comes to comparing the Condorcet winner against
itself and so it continues to accumulate regret for a long time.

The cumulative regret of RUCB after T time-steps is
bounded by an expression of the form O(K2 + K log T ),
which improves upon the regret bound for Condorcet SAV-
AGE, but continues having a quadratic dependence on the
number of arms, K, which poses a problem when dealing
with large-scale problems. This issue was resolved by the in-
troduction of MergeRUCB [Zoghi et al., 2015b], which does
away with the K2 term using a divide-and-conquer strategy.

More specifically, MergeRUCB partitions the K arms into
small batches and compares arms within each batch. An arm
is eliminated from a batch once we realize that even according
to the most optimistic estimate of the preference probabilities
it loses to another arm in the batch. Once enough arms have
been eliminated, MergeRUCB repartitions the arms and con-
tinues as before. Importantly, MergeRUCB does not require
global pairwise comparisons between all pairs of arms, and
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so its cumulative regret can be bounded by O(K log T ).
To address the other shortcoming of RUCB mentioned

above, namely its hesitance to begin exploiting before it is
certain that it has found the correct Condorcet winner, one
can employ an approach based upon Thompson Sampling,
rather than confidence bounds. This is what was partially car-
ried out in the case of Relative Confidence Sampling (RCS)
[Zoghi et al., 2014a]. More specifically, the contender for the
Condorcet winner is chosen using samples from Beta poste-
riors on the preference probabilities.

RCS was shown to perform better than RUCB experimen-
tally, but it lacks theoretical guarantees. However, a similar
approach was proposed under the name of Double Thomp-
son Sampling (DTS) [Wu and Liu, 2016], which does come
equipped with regret bounds. DTS improves upon RUCB
by using Thompson Sampling to break ties when choosing
the first arm in RUCB and uses another round of Thompson
Sampling to choose the second arm. The cumulative regret of
DTS is bounded by O(K log T +K2 log log T ).

DTS is the state-of-the-art in the case of small-scale du-
eling bandits problems, while MergeRUCB is the state-of-
the-art for large-scale dueling bandits algorithms. In fact, as
discussed in the next section, DTS solves the more general
Copeland dueling bandits problem, while RUCB, RCS and
MergeRUCB are limited to the Condorcet setting.

RMED
The Relative Minimum Empirical Divergence (RMED) algo-
rithm has been proposed by [Komiyama et al., 2015] as an al-
gorithm with an optimal asymptotic regret bound, which im-
proves upon the results for RUCB, since the regret bound for
RUCB does not match the lower bound proven in [Komiyama
et al., 2015]. The authors prove a lower bound on the cumu-
lative regret of any dueling bandits algorithm, which takes the
form

RT ≥
K∑

k=2

min
{j|pij<.5}

(∆1i + ∆1j) log T

2d(pij , .5)
,

where d(p, q) := p log p
q +(1−q) log 1−p

1−q . This lower bound
follows from an intermediate result showing that for any du-
eling bandit algorithm with sublinear regret and any subop-
timal arm i > 1, the number of comparisons between i and
any arm j that beats i in the first T time-steps (denoted by
Nij(T )) can be bounded from below as follows:

E

 ∑
{j|pij<.5}

d(pij,.5)Nij(T )

 ≥ c log T

for some positive constant c.
The upper bound for RMED matches this lower bound

asymptotically. Indeed, the algorithm is directly inspired by
the lower bound, in the sense that the algorithm maintains em-
pirical estimate of the sum of divergences mentioned above.
More specifically, the algorithm computes for each arm the
empirical divergence defined as follows:

Ii(t) :=
∑

{j|pij<.5}

d(p̂ij(t), .5)Nij(t),

where p̂ij(t) is the algorithm’s empirical estimate of the
preference probability pij at time t. The authors consider

exp(−Ii(t)) to be the likelihood that arm i is the Condorcet
winner and use this to pick the arms that are going to be com-
pared against each other at time t+ 1. Despite its asymptotic
optimality, the regret bound for RMED has a quadratic de-
pendence on the number of arms.

Sparring & Self-Sparring
We now introduce the second trend of algorithm design which
treats the two dueling arms symmetrically, such as a game
played by two agents.

Sparring [Ailon et al., 2014] is an elegant method for con-
verting dueling bandit problems into MAB problems, typi-
cally under the linear choice model as assumed in Doubler.
The key insight is the realization that the dueling bandits
problem is an example of a symmetric game [Owen, 1995].
The Sparring algorithm uses separate MAB algorithms to
control the choice of the different arms, which essentially re-
duces the conventional dueling bandits problem to two multi-
armed bandit problems “sparring” against each other. This
in turn is related to the adversarial bandit problem [Auer
et al., 2002], which has been the subject of extensive re-
search [Bubeck and Cesa-Bianchi, 2012]. Although one can
prove regret bounds using adversarial MAB algorithms (e.g.,
EXP3), empirically such algorithms perform much worse
than using stochastic MAB algorithms.

Given an algorithm, A, that solves the adversarial bandit
problem, we can use it to solve the dueling bandits problem
in the following fashion, called Sparring-A: initiate a “row”
copy of the algorithm, calledAr, and a “column” copy, called
Ac; in each time-step, Ar proposes a “row” arm, which we
denote by ar, and Ac proposes a “column” arm, which we
call ac, and the two arms are compared against each other,
with the probability of the row arm ar beating the column
arms ac being prc; once the comparison has been carried out,
the algorithm that proposed the arm that won the comparison
receives a reward of 1 and the other side receives a reward of
0. In this setup, each copy of the algorithm plays the role of
an adversary for the other.

The theory of adversarial bandits guarantees that if we
make use of an adversarial bandit algorithmA, then Sparring-
A will incur regret of the form O(

√
T ), whereas the regret

bounds proven for all of the algorithms discussed so far take
the form O(log T ). What is intriguing, as far as the Spar-
ring style of algorithms are concerned, is that extensive ex-
perimentation by various researchers has demonstrated that
settingA to be a non-adversarial bandit algorithm like UCB,
produces results that empirically attain a logarithmic regret
rate [Ailon et al., 2014].

Major improvements in this direction are presented in
[Sui et al., 2017b], where a related algorithm, called Self-
Sparring, is analyzed with a O(K log T ) asymptotic regret
bound. Self-Sparring uses a stochastic MAB algorithm such
as Thompson sampling as a subroutine to independently sam-
ple the set of m arms, St to duel (m = 2 is the standard du-
eling bandits setting). Self-Sparring algorithm views the du-
eling bandits problem as a multi-player game with stochastic
rewards and drifting dynamics. The high-level strategy is to
reduce the multi-dueling bandits problem to a multi-armed
bandit problem that can be solved using one single MAB
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algorithm, and ideally lift existing MAB guarantees to the
multi-dueling setting. Self-Sparring is a simple framework
and easy to extend to continuous bandits by integrating with
kernels to model dependencies across arms.

As numerous experimental investigations have demon-
strated, Sparring & Self-Sparring tend to perform extremely
well in practice. Therefore, the question of providing finite
time O(K log T ) regret bounds for the symmetrically de-
signed algorithms remain a very interesting open question.

4 Extensions and Applications
There are numerous extensions of the basic Condorcet duel-
ing bandits setting that have been explored in the literature.
We discuss these extensions in this section. The purpose of
this effort has been to address the shortcomings of this setup,
which include the following:

1. The Condorcet winner may fail to exist in practice. In
such a scenario, there are numerous generalizations and sub-
stitutes for the Condorcet winner that could be employed.

2. In many applications, the preference matrix might not
be fixed over time: it might depend on a context or might be
set by an adversary.

3. In certain applications, it is feasible to carry out mul-
tiple comparisons simultaneously, so we would like to have
algorithms that can make use of more complex feedback.

4. So far, we have treated each arm as a disjoint entity from
the remaining arms, but oftentimes the set of arms comes
equipped with certain structures that could be utilized to ex-
plore the arms more efficiently.

4.1 Beyond Condorcet Winners
What makes the Condorcet winner desirable as a solution
concept is that one arm is unambiguously preferred to all
other arms, which makes it easy to define a natural notion
of regret. However, there is no guarantee that there exists an
arm that is preferred to all other arms, as is the case in the
rock-paper-scissors example. Indeed, the Condorcet winner
can often not exist in practice [Zoghi et al., 2015a], which re-
quires new solution concepts for the dueling bandits problem.

The field of social choice theory has been grappling with
situations where there is no Condorcet winner among the can-
didates and so it is unclear who the winner of, e.g., an elec-
tion should be. Over the years, numerous definitions have
been proposed to address this conundrum, and in more recent
years corresponding dueling bandits algorithms have been
proposed that converge to these solution concepts. We dis-
cuss these in the following together with a discussion of the
advantages and disadvantages of each definition:

1. The Borda winner [Jamieson et al., 2015] is the arm
ab with the largest Borda score, which is defined to be∑

j pbj/K: this is equivalent to the probability that ab beats
a uniformly randomly sampled arm aj .
Even though the Borda winner always exists, it is not neces-
sarily equal to the Condorcet winner if the latter exists, which
is undesirable because the Condorcet winner is preferred to
all other arms, including the Borda winner.

2. The von Neumann winner [Dudı́k et al., 2015; Balsub-
ramani et al., 2016] is a probability distribution πvN on the

arms (rather than a single arm), which satisfies the property
that if the arm ai is sampled from πvN and aj is sampled from
any other distribution on the arms, then Eai,aj

(pij) ≥ 0.5: in
other words, arms sampled πvN on average beat arms sam-
pled from any other distribution.

The von Neumann winner is also guaranteed to exist by
von Neumann’s min-max theorem [Dudı́k et al., 2015], rather
than just the uniform distribution: indeed, if the Condorcet
winner exists, then the von Neumann winner is the distribu-
tion that assigns all of its probability to the Condorcet winner.
However, there might be certain situations where it is undesir-
able to adopt a solution concept that requires sampling from
a distribution on the arms, e.g. due to memory constraints.

3. The Copeland winner [Zoghi et al., 2015a; Komiyama
et al., 2016; Wu and Liu, 2016] is the arm with the highest
Copeland score, which is the number of arms that a given arm
beats on average. The Copeland winner is also guaranteed to
exist and it coincides with the Condorcet winner if the lat-
ter exists, but unlike the von Neumann winner, the Copeland
winner might lose to some other arms on average, which can
be problematic if one would like to have a solution concept
that has no weaknesses. Note that a Copeland winner is any
arm with maximum Copeland score.

4. As with the set of Copeland winners, there exist other
subsets of the arms that one could define based on the pref-
erence graph of the dueling bandits problem where we might
consider arm in the set an acceptable solution. Examples of
these include the Top Cycle, the Uncovered Set and the Banks
Set, all of which collapse to the Condorcet winner if the latter
exists: we refer the interested reader to [Ramamohan et al.,
2016] for the definitions of these sets.

[Chen and Frazier, 2017] studied the dueling bandit prob-
lem in the Condorcet winner setting, but with a different def-
inition of regret. They consider a less well-studied form of
regret, called weak regret, which is 0 if either arm pulled
is the Condorcet winner. It proposes WS − W algorithm
that has expected cumulative weak regret that is O(N2), and
O(N log(N)) if arms have a total order.

4.2 Adversarial and Contextual Dueling Bandits
As also studied in the MAB problem setting, there are many
settings where the parameters of the problem (i.e. the prefer-
ence matrix) are not fixed over time. There are two problems
settings in the dueling bandits literature that deal with such
extensions: adversarial dueling bandits and contextual duel-
ing bandits. In the case of the former, an adversary selects the
preference matrix at each time-step. In the case of the contex-
tual variant of the problem, the preference matrix at time t is
determined by a context variable xt that is drawn i.i.d. for all
t from an unknown distribution, with only xt being revealed
to the algorithm; also, the algorithm has access to a pool of
policies from which it needs to chose the optimal policy.

A simple solution to both of these problems is to use
Sparring-EXP4, as discussed in Section 3, where EXP4 is an
adversarial contextual bandit algorithm [Auer et al., 2002],
whose regret bound also provides a bound on the regret of
Sparring-EXP4 in the adversarial contextual dueling bandits
setting [Dudı́k et al., 2015]. In the purely adversarial setting,
Relative EXP3 (REX3) [Gajane et al., 2015] has been pro-
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posed as a modification to Sparring-EXP3, where the weights
are shared between the two copies of EXP3.

In the contextual setting, one major drawback of EXP4
is that its computational complexity scales linearly with the
number of available policies, which tends to be prohibitively
large in practice. It is thus desirable to devise algorithms that
make a limited number of calls to an oracle that produces the
best policy given a set of past observations. This problem
was partially addressed with the introduction of two algo-
rithms, SparringFPL and ProjectedGD [Dudı́k et al., 2015],
which use an explore-first strategy, in the sense that given a
certain time horizon, the algorithm allocated a certain number
of time-steps to pure exploration and then it exploits using its
best guess at the optimal policy afterwards. The drawback of
this scheme is that the best attainable regret bound is of the
formO(T 2/3), whereas the regret bound of Sparring-EXP4 is
O(
√
T ). Indeed, the problem of devising a computationally

efficient contextual dueling bandits algorithm with optimal
regret bound remains an interesting open problem.

4.3 With Multiple Comparisons
Recent attempts [Brost et al., 2016; Sui et al., 2017b]
also extend the dueling bandits framework and proposed
multi-dueling bandits algorithms for the intelligent selection
of rankers for simultaneous comparisons and improves the
trade-off between exploration and exploitation. [Brost et al.,
2016] provided the first multi-dueling algorithm. It is an
empirical approach with upper confidence bound method as
the subroutine. This work provided large scale experimental
evaluations on both synthetic and real web search learning-
to-rank datasets.

Algorithms that treat the arms asymmetrically are hard to
extend to multi-dueling cases due to the asymmetric struc-
ture of picking arms. [Sui et al., 2017b] addresses the multi-
dueling bandits with symmetric sampling strategy for each
arm. This makes the self-dueling Self-Sparring algorithm
easy to be generated to multi-dueling. This work extends
the original dueling bandits problem by simultaneously duel-
ing multiple arms as well as modeling dependencies between
arms using a kernel.

For this setting, the Self-Sparring algorithm algorithmi-
cally reduces the multi-dueling bandits problem into a con-
ventional multi-armed bandit problem that can be solved us-
ing a stochastic bandit algorithm such as Thompson Sam-
pling. It provides a regret analysis of the multi-dueling setting
and guarantees the asymptotic regret to be O(K lnT/∆).
When multiple comparisons are feasible, multi-dueling al-
gorithms yield orders of magnitude improvement in perfor-
mance compared to conventional dueling bandits algorithms.

4.4 With Structured Input Spaces
Convex Dueling Bandits. [Yue and Joachims, 2009] pro-
poses a dueling bandits gradient-descent method for opti-
mizing information retrieval systems. It builds on meth-
ods for online convex optimization. The dueling bandits
gradient descent approach is compatible with many existing
classes of retrieval functions with theoretical guaranteed sub-
linear regret. [Kumagai, 2017] proposes a stochastic mir-
ror descent algorithm and show that the algorithm achieves

an O(
√
T log T ) regret bound under strong convexity and

smoothness assumptions for the cost function. It also shows
the equivalence between regret minimization in dueling ban-
dits and convex optimization for the cost function.

Sparse Dueling Bandits. [Jamieson et al., 2015] proposes
a new structural assumption for the K-armed dueling bandits
problem in which the top arms can be distinguished by duels
with a sparse set of other arms. An algorithm was developed
for the dueling bandits problem under this assumption, with
theoretical performance guarantees showing significant sam-
ple complexity improvements compared to naive reductions
to standard multi-armed bandit algorithms.

Kernelized Dueling Bandits. [González et al., 2017] pro-
poses the approach aiming at combining the good properties
of the dueling bandits methods with the advantages of hav-
ing a probabilistic model able to capture correlations within
the whole input space. Following the bandits settings, the key
idea is to learn a preference function in the space of the duels
by using a Gaussian process. This allows the agent to se-
lect the most relevant comparisons non-greedily. It is a pure
Bayesian optimization approach without theoretical guaran-
tees on convergence rate. [Sui et al., 2017b] addresses two
challenges in a unified framework, as multi-dueling bandits
with dependent arms. This work extends the original duel-
ing bandits problem by simultaneously dueling multiple arms
as well as modeling dependencies between arms using a ker-
nel. Explicitly formalizing these real-world characteristics
provides an opportunity to develop principled algorithms that
are much more efficient than algorithms designed for the orig-
inal setting. Most dueling bandits algorithms suffer regret that
scales linearly with the number of arms, which is not practi-
cal when the number of arms is very large or infinite. The
Self-Sparring algorithm can incorporate dependencies using
a Gaussian process prior with an appropriate kernel, and re-
duce the sample complexity from O(K) to O(d) where d is
the dimension of the kernel. [Sui et al., 2018] extended this
idea by incorporating dueling bandits within safe Bayesian
optimization. It solves the optimization of an unknown util-
ity function with absolute feedback or preference feedback
subject to unknown safety constraints.

4.5 Applications
Due to the ubiquity of preference elicitation, the dueling
bandit setting enjoys a broad range of applications, in both
preference-based optimization in other theoretical settings
and real-world applications.

Preference-based reinforcement learning is considered in
[Fürnkranz et al., 2012]. This approach is basically a
preference-based racing algorithm that selects the best among
a given set of candidate policies with high probability. The
algorithm operates on a suitable ordinal preference structure
and only uses pairwise comparisons between sample roll-outs
of the policies. This work provides both formal performance
and complexity analysis and experimental studies for the ef-
fectiveness and efficiency of the algorithm. Some related
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works on preference-based reinforcement learning were sur-
veyed in [Wirth et al., 2017].

The problem of online rank elicitation with dueling ban-
dits is studied in [Szörényi et al., 2015]. It assumes that the
rankings of a set of alternatives obey the Plackett-Luce dis-
tribution, a widely used probability distribution over rank-
ings. Following the setting of the dueling bandits problem,
the learner is allowed to query pairwise comparisons between
alternatives. This work provides a formal complexity analysis
of the algorithms and experimental studies showing the effec-
tiveness in practice. A variant of structured dueling bandits
setting also shows the improvement over machine translation
tasks [Sokolov et al., 2016].

[Sui and Burdick, 2014] proposed a Rank-Comparison al-
gorithm to efficiently solve a specific bandit problem using
subgroup rank feedback. The application of this algorithm is
efficiently optimize therapies within a restricted action space
for clinical treatment. [Sui et al., 2017a] presents the first
time an online learning algorithm was applied towards spinal
cord injury treatments. The paraplegic human patients could
achieve full-weight standing under the stimulation strategies
provided by the algorithm. The effectiveness and efficiency
of dueling bandits approach is recognized in clinical treat-
ments as shown in the paper. [Sui et al., 2018] presents the
safe optimization of clinical neurological therapies.

In the area of search engine optimization, it has been shown
that pairwise comparisons between pairs of documents can
lead to great improvements in the quality of the search results
[Zoghi et al., 2016], so an interesting question is if online
ranking methods [Zoghi et al., 2017] can be adapted to use
dueling bandits, rather than MAB methods.

Another way that dueling bandits have been used to im-
proved search engines has been through the use of interleaved
comparisons [Radlinski et al., 2008; Hofmann et al., 2011;
Radlinski and Craswell, 2013] which is a method for com-
paring two rankers (e.g. Google vs Bing). The compari-
son is carried out by submitting a query issued by a user to
both systems to get two results lists and then interleaving the
two ranked lists before presenting the merged list to the user.
Once the user’s interactions have been received, then we can
infer which result list was preferred by the user. This method
can be used both for the sake of evaluating multiple proposed
improvements to a ranker [Schuth et al., 2015] and for learn-
ing the ranker itself [Hofmann et al., 2013].

5 Conclusions and Outlook
This paper provides a survey of the theories, algorithms, and
applications of the dueling bandits problem. Dueling bandits
is an emerging field of research. In contrast to standard MAB
problems, where feedback comes in the form of (stochastic)
real valued rewards produced by the arms, dueling bandits
setting has indirect preference feedback. We have given an
overview of the dueling bandits problem that have been stud-
ied in the literature, algorithms for tackling them, and appli-
cations that could be benefit from such algorithms.

While this research area is still in its early stages, some of
the recent advancements have already been successfully ap-
plied in concrete applications, such as information retrieval,

search engine improvement, and clinical online recommen-
dation. As reinforcement learning can be viewed as a state-
ful generalization of the bandit problem, the dueling bandits
problem can also be a key component for preference based
reinforcement learning. With this survey, we hope to have
presented a clear background and encourage further funda-
mental and applied research in this area.
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Nicolò Cesa-Bianchi. Regret analysis of stochastic and
nonstochastic multi-armed bandit problems. Foundations
and Trends in Machine Learning, 2012.
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rice Clérot. A relative exponential weighing algorithm for
adversarial utility-based dueling bandits. In ICML, 2015.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5509
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