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Abstract

Mutex groups are defined in the context of STRIPS
planning as sets of facts out of which, maximally,
one can be true in any state reachable from the ini-
tial state. This work provides a complexity analysis
showing that inference of mutex groups is as hard
as planning itself (PSPACE-Complete) and it also
shows a tight relationship between mutex groups
and graph cliques. Furthermore, we propose a new
type of mutex group called a fact-alternating mu-
tex group (fam-group) of which inference is NP-
Complete. We introduce an algorithm for the in-
ference of fam-groups based on integer linear pro-
gramming that is complete with respect to the max-
imal fam-groups and we demonstrate that fam-
groups can be beneficial in the translation of plan-
ning tasks into finite domain representation, for the
detection of dead-end state and for the pruning of
spurious operators. The experimental evaluation of
the pruning algorithm shows a substantial increase
in a number of solved tasks in domains from the
optimal deterministic track of the last two planning
competitions (IPC 2011 and 2014).

1 Introduction

State invariants in domain-independent planning are certain
intrinsic properties of a particular planning task that hold in
all states reachable from the initial state. State invariants tell
something about the internal structure of the problem, which
can be further utilized in the process of solving the task. A
rather scarce literature on the inference of state invariants in-
clude methods using different “guess, check, and repair” ap-
proaches [Gerevini and Schubert, 1998; 2000; Helmert, 2009;
Rintanen, 2000], inference based on sampling of a state space
[Mukherji and Schubert, 2005; 2006], a reachability analy-
sis generalized to h™ heuristics [Haslum and Geffner, 2000;
Haslum, 2009; Alcazar and Torralba, 2015], or an iterative
weakening of more general invariants formed as a disjunction
of possibly negated facts [Rintanen, 2008].

*This paper is an extended abstract of an article in the Journal of
Artificial Intelligence Research [Fiser and Komenda, 2018].
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In this work, we are particularly interested in the inference
of state invariants called mutex groups consisting of facts that
are pairwise mutually exclusive. Therefore, a mutex group
states that any reachable state can contain at most one fact
from the mutex group.

The most straightforward application of mutex groups is
in the translation to finite domain representation (FDR, or
SAS™T) [Bickstrom and Nebel, 1995; Edelkamp and Helmert,
1999; Helmert, 2009]. Given a set of mutex groups, the FDR
can be constructed by creating variables from those mutex
groups that cover all facts. A special value “none of those”
can be added to some variables, if needed, to cover a situa-
tion where none of the facts from the invariant is present in
the state.

State invariants (including mutex invariants) are also crit-
ical for improving the performance of SAT planners [Kautz
and Selman, 1992; Sideris and Dimopoulos, 2010].

Exploration of the state space in a symbolic search with
Binary Decision Diagrams (BDDs) is not carried out through
the expansion of single states but rather by construction of
BDDs representing sets of states, which potentially provides
an exponential saving in memory consumption. State invari-
ants encoded as BDDs can be used for the pruning of unreach-
able states during search and also during the preprocessing of
the planning task for pruning operators that generate dead-
end states [Torralba and Alcdzar, 2013]. The connection be-
tween state invariants and dead-end states was recently stud-
ied by Lipovetzky et al. [2016].

This work is aimed mainly at the analysis and inference
of mutex groups in the context of STRIPS planning [Fikes
and Nilsson, 1971]. We introduce a new type of mutex group
called the fact-alternating mutex group and we discuss its re-
lation to the general mutex group and to the mutexes inferred
by the heuristic h™ [Haslum and Geffner, 2000]. We also dis-
cuss the properties of fact-alternating mutex groups, in par-
ticular their connection to dead-end states.

We provide a complexity analysis showing that the in-
ference of the maximum sized mutex group is PSPACE-
Complete whereas inferring the maximum sized fact-
alternating mutex group is NP-Complete. The complexity
analysis leads to a novel inference algorithm that is complete
with respect to maximal fact-alternating mutex groups.

This paper is an extended abstract of the previously pub-
lished work [FiSer and Komenda, 2018], so it contains only
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the main results without any proofs. Detailed explanations
and proofs can be found in the original paper.

2 Mutex Groups

Definition 1. A STRIPS planning task II is specified by a
tuple II = (F, O, Sinit, Sgoal)> Where F = {f1,..., fn} isa
set of facts, and O = {oy, ..., 0, } is a set of grounded oper-
ators. A state s C F is a set of facts, s;,;; C F is an initial
state and s,,,; C F is a goal specification. An operator o
is a triple 0 = (pre(0), add(0), del(0)), where pre(o) C F is
a set of preconditions of the operator o, and add(o) C F and
del(o) C F are sets of add and delete effects, respectively.
All operators are well-formed, i.e., add(o) N del(o) = @ and
pre(o) Nadd(o) = 0. An operator o is applicable in a state s
if pre(o) C s. The resulting state of applying an applicable
operator o in a state s is the state o[s] = (s del(0)) Uadd(o).
A state s is a goal state iff 55,4 C s.

A sequence of operators ™ = (01, ..., 0,,) is applicable in a
state sq if there are states si, ..., s,, such that o; is applicable
in s;_1 and s; = 0;[s;—1] for 1 < i < n. The resulting state
of this application is 7[sg] = s,. A state s is called a reach-
able state if there exists an applicable operator sequence 7
such that 7[s;,;t] = s. A set of all reachable states is denoted
by R. An operator o is called a reachable operator iff it is
applicable in some reachable state. A state s is called a dead-
end state iff s,,; Z s and there does not exist any applicable
operator sequence 7 such that s g0, C 7[s].

Definition 2. A mutex M C F is a set of facts such that for
every reachable state s € R it holds that M ¢ s.

Definition 3. A mutex group M C F is a set of facts such
that for every reachable state s € R it holds that |[M N s| < 1.
A mutex group that is not a subset of any other mutex group
is called a maximal mutex group.

A mutex and a mutex group are both defined as invariants
with respect to all states reachable from the initial state by a
sequence of operators. A mutex invariant states that certain
facts cannot be part of the same reachable state at the same
time. So for example, a mutex { f1, fo, f3} states that there is
no reachable state containing all three facts, but a state con-
taining {f1, fo}, or {f1, f3}, or {f2, f3} can still be reach-
able.

A mutex group is defined as a set of facts out of which,
maximally, one can be true in any reachable state, i.e., the
facts from a mutex group are pairwise mutex. Itis also easy to
see that every mutex containing exactly two facts (mutex pair)
is also a mutex group, because if two facts cannot both be part
of the same reachable state, then, at most, one of them can be
a part of any reachable state, which is exactly the definition
of a mutex group

Proposition 4. Let M C F denote a set of facts such that
|M| > 2 and let DM denote a set of all pairs of all facts from
M, ie, DM ={p|p C M, |p| = 2}. M is a mutex group iff
every P € DM is a mutex group.

It is well known that determining existence of a plan of
a STRIPS planning task is PSPACE-Complete [Bylander,
1994]. And as it turns out, finding the maximum sized mutex
group is also PSPACE-Complete.
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Theorem 5. Let Maximum-MuteX-Group denote the following
decision problem: Given a planning task 11 and an integer k,
does 11 contain a mutex group of size at least k? MaxiMum-
Murtex-Group is PSPACE-Complete.

Since the facts from a mutex group are pairwise mutex,
we can infer mutex groups in the following way. Given a
set of mutex pairs, we construct a graph where each node
corresponds to a fact and each edge connects two facts that
form a mutex pair. In such a graph, any set of nodes that is a
clique (a complete induced subgraph) corresponds to a set of
facts that is a mutex group.

Therefore it follows that if we somehow obtain a complete
set of mutex pairs, we can determine the maximum sized mu-
tex group simply by finding the maximum sized clique which
is NP-Complete [Karp, 1972]. However, finding the maxi-
mum sized mutex group is as hard as planning itself, there-
fore, it follows that inference of a complete set of mutex pairs
is also as hard as finding a plan.

In the next section we introduce a novel subclass of mutex
groups of which inference is NP-Complete.

3 Fact-Alternating Mutex Groups

Definition 6. A fact-alternating mutex group (fam-group)
M C Fis a set of facts such that |[M N s;p| < 1 and
|M Nadd(o)] < |M Npre(o) Ndel(o)| for every operator
o € O. A fam-group that is not a subset of any other fam-
group is called a maximal fam-group.

Proposition 7. Every fam-group is a mutex group.

The name fact-alternating mutex group was chosen to
stress its interesting property, which lies in the mechanism by
which facts from a fam-group appear and disappear in partic-
ular states after the application of the operators. Consider a
fam-group M and a state s that does not contain any fact from
M (M ns = (). Now we can ask whether any following state
7[s] can contain any fact from M. The answer is that it cannot
because any operator o applicable in s that could add a new
fact from M to the following state o[s] would need to have a
fact from M in its precondition (M N pre(o) # () which is
in contradiction with the assumption that s contains no fact
from M. So it follows that facts from each particular fam-
group alternate between each other as new states are created
and once the facts disappear from the state they cannot ever
reappear again in any following state.

Proposition 8. Let M denote a fact-alternating mutex group
and let s denote a state. If |M N s| = 0, then for every oper-
ator sequence w applicable in s it holds that |M N 7[s]| = 0.

Proposition 8 can be used for the detection of dead-end
states. A dead-end state is a state from which it is impossi-
ble to reach any goal state by a sequence of applied opera-
tors. Consider a fam-group M having a non-empty intersec-
tion with the goal (M N s40;| > 1) and a reachable state s
that does not contain any fact from M (|M N s| = 0). Such
a state must be clearly a dead-end state, because it follows
from Proposition 8 that all states reachable from s, includ-
ing the goal states, cannot contain any fact from M, which is
formally stated in the following simple corollary of Proposi-
tion 8.
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Corollary 9. Let M C F denote a set of facts and let s
denote a state. If M is a fam-group and |M N Sg0q)| > 1 and
|M N s| =0, then s is a dead-end state.

The operators that have more than one fact from some
mutex group (and, therefore, also from some fam-group) in
its preconditions cannot be applicable in any reachable state.
Similarly, the operators with add effects containing more than
one fact from some mutex group (fam-group) are also un-
reachable, because the resulting state would be in contradic-
tion with the mutex group (fam-group).' Such operators can
be safely removed from the planning task. These two simple
rules are not limited to the fact-alternating mutex groups, but
they can be used with any type of mutex group.

However, fam-groups provide one additional method for
pruning superfluous operators. Consider a fam-group M hav-
ing a non-empty intersection with the goal and an operator o
that does not have any fact from M in its add effects, but
it has a non-empty intersection with its preconditions, delete
effects, and the fam-group M. The resulting state of the ap-
plication of the operator o would not contain any fact from
the fam-group M. Therefore, such a state would be a dead-
end state for the reasons already explained. This means that
the operator o can be safely removed from the planning task
because it can only produce dead-end states. In other words,
the states resulting from the application of the operator are
not useful in finding a plan and, therefore, the operator itself
is not useful too.

Corollary 10. Let M C F denote a set of facts, let s de-
note a state and let o € O denote an operator applica-
ble in s. If M is a fam-group and |M N sgoq| > 1 and
|M N pre(o) Ndel(o)| > 1 and |M N add(o)| = 0, then o[s)]
is a dead-end state.

Since fam-groups are not defined using restrictions over all
reachable states, but only over the initial state and all opera-
tors, it is easy to see that given a set of facts, we can check
whether this set is a fam-group in a polynomial time. This
suggests that the inference of the maximum sized fam-group
is not as hard as the inference of the maximum sized mutex
group—and indeed, it is only NP-Complete.

Theorem 11. Let Maximum-FAM-Group denote the following
decision problem: Given a planning task 11 and an integer
k, does 11 contain a fam-group of size at least k? Maximum-
FAM-Group is NP-Complete.

Considering the tight relationship between graph cliques
and mutex groups, it is not surprising that the maximum pos-
sible number of mutex groups is exponential in the number
of facts. However, the same holds for fam-groups and this
number can be expressed exactly as is done in the following
proposition.

Proposition 12. Let IT = (F, O, Sinit, Sgoa1) denote a plan-
ning task and let n. = |F| denote a number of facts in I1. The
maximum possible number p(n) and s (n) of maximal mu-
tex groups and maximal fam-groups, respectively, for n > 2,

IThis is a special case of disambiguation proposed by Alcazar et
al. [2013].

is the following:

37/3 ifnmod 3 = 0;
p(n) = pra(n) =4 5-3"3, ifnmod 3 =1;
2.3"/3 ifnmod3=2.

4 h? Mutex Pairs and Fact-Alternating Mutex
Groups

The h™ heuristic [Haslum and Geffner, 2000] is able to pro-
duce a set of mutexes as its side effect. Specifically, the h?
heuristic is the most common method for generating pairs of
facts that cannot hold together in any reachable state, i.e., mu-
tex pairs. The mutex pairs generated by h? will be referred to
as h2-mutexes from now on. We already know that given a
set of mutex pairs (and therefore also h?-mutexes) we can in-
fer mutex groups using an algorithm for finding cliques in a
graph. An interesting question now is, what is the relationship
between fam-groups and h?-mutexes?

The formal definition of an h?-mutex below is based on an
alternative characterization of the h™ heuristic using a modi-
fied planning task introduced by Haslum [2009].

Definition 13. Let IT = (F, O, Sin4t, Sgoar) denote a plan-
ning task. The planning task 112 = (®, 2, ;,i¢, {}) consists
of a set of facts ® = {¢. | ¢ C F,|c| < 2}, a set of oper-
ators {2, an initial state ¥;nt = {¢c | ¢ C Sinit, c| < 2},
and an empty goal specification. For each operator o € O
and for each subset of facts ¢ C F such that |g| < 1 and g
is disjoint with add(o) and del(o), the planning task I1% con-
tains an operator w, , € Q with: pre(we ) = {¢c | ¢ C
(pre(0) U g), [e| < 2}, add(woy) = {¢c | ¢ © (add(0) U
g),cNadd(o) # 0, || < 2}, del(w,,4) = 0.

Let U denote a set of all reachable states in II12. A pair of
facts {f1, fo} C F such that f; # fo is an h?-mutex iff for
every reachable state ¢ € U, it holds that ¢y, r,1 & 9.

The definition is altered so that it contains empty goal spec-
ification, because it is not necessary for inference of mutex
pairs, and it is formulated specifically for h?, not for a gen-
eral h™. The I1? is an ordinary STRIPS planning task, but we
used Greek letters to describe its parts to prevent confusion
with the original planning task II.

Now once we have formally defined mutex pairs generated
by h?, we find that h? always produces a (possibly non-strict)
superset of decomposition of all fam-groups. More precisely,
any mutex pair that is a subset of a fam-group must be an h?-
mutex, but not the other way around. This also means that
if we infer h?-mutexes and use an algorithm for listing max-
imal cliques to join the h?-mutexes into larger mutex groups,
then the resulting mutex groups will be non-strict supersets
of fam-groups. However, the mutex groups created from h?-
mutexes do not necessarily have the same properties regard-
ing detection of dead-end states as fam-groups described in
Proposition 8, Corollary 9 and Corollary 10.

Theorem 14. Let M C F denote a set of facts such that
M| > 2andlet H={p | p C M,|p| =2} If Misa
fam-group, then every h € H is an h®-mutex.
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Input: Planning task IT = (F, O, sinit, Sgoat)
Output: A set of fam-groups M
Initialize ILP with constraints according to Equations 1
and 2;
Set objective function of ILP to maximize > fieF Tis
M « 0;
Solve ILP and if a solution was found, save the resulting
fam-group into M,
while |M]| > 1 do
Add M to the output set M,
Add constraint according to Equation (3) using M;
M + 0;
Solve ILP and if a solution was found, save the
resulting fam-group into M
end
Algorithm 1: Inference of fam-groups using ILP.

5 Inference of FAM-Groups

In this section, we describe an algorithm for the inference
of fam-groups that is complete with respect to maximal fam-
groups. The main part of the algorithm consists of an integer
linear program (ILP) based on the definition of fam-groups
(Definition 6) rewritten into a set of constraints. The ILP is
constructed in the following way.

Each variable z; of the ILP corresponds to a fact f; € F
from the planning task. Variables can acquire binary values 0
or 1 only, 0 meaning that the corresponding fact is not present
in the fam-group and 1 meaning the corresponding fact is part
of the fam-group. Definition 6 can be rewritten into ILP con-

straints as follows:
> i<, (1)
fi€Sinit

Yoe O: Z r; < Z ;. )

fi€add(o) fi€del(o)Npre(o)

Equation (1) corresponds to the restriction on the initial
state, and Equation (2) to the restrictions on the operators.
The objective function of the ILP is to maximize ) fieF Tis
which enforces the inference of the maximal fam-group.

The solution to this ILP is only one fam-group, so the ILP
is solved repeatedly, each time with added constraints exclud-
ing already inferred fam-groups. The constraint excluding a
fam-group M and all its subsets from the next solution is the

following:
> wi>l 3)
figM
The whole algorithm is encapsulated in Algorithm 1. First,
the ILP constraints are constructed according to Equations 1
and 2, which ensures that the solutions of the ILP will be
fam-groups. Then, in turn, a maximal fam-group is inferred
through the ILP solution and consequently removed from fu-
ture solutions using the added constraint corresponding to
Equation (3). The cycle continues until the inferred fam-
groups consist of, at least, one fact.

Theorem 15. Algorithm 1 is complete with respect to the
maximal fact-alternating mutex groups.
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Figure 1: Comparison of fa and £d in terms of the number of in-
ferred mutex groups (left) and the number of operators after pruning
(right) for each problem from the dataset.

6 Experimental Results

The inference of fam-groups was experimentally evaluated
on all domains from the optimal deterministic track of the In-
ternational Planning Competition (IPC) 2011 and 2014 that
do not contain any conditional effects after grounding (using
Intel Xeon E5-4617 2.9GHz, 8§ GB RAM). Here we present
a singificantly reduced results from the original paper. We
compare the implementation of Algorithm 1 (fa) and the
state-of-the-art algorithm for inference of mutex groups from
the Fast Downward planner (£d) [Helmert, 2006].

Every mutex group that was generated by £d was also gen-
erated by fa or it was a subset of some mutex group gen-
erated by fa. Overall, fa generated a richer set of mutex
groups in 202 out of 540 problems (10 281 vs. 14 012).
However, fa was much slower than fd. £d computed mu-
tex groups under 1 second for almost all problems, but fa
spent at average 6 seconds on a problem. Fig. 1 (left) shows
a scatter plot of the number of inferred mutex groups in each
problem for fa and fd.

We also compared the algorithms in terms of their pruning
power. Mutex groups can be used for detection of operators
that are either not reachable because their preconditions can-
not be met, or the operators can generate only dead-end state,
so they cannot be part of any plan. Also in this case fa pro-
vides better results than £d as can be seen on the scatter plot
on Fig. 1 (right).

7 Conclusion

This paper is focused on the state invariants called mutex
groups in the context of STRIPS planning. We provide the
complexity analysis showing that the inference of the maxi-
mum sized mutex group is PSPACE-Complete. We introduce
a new weaker type of mutex group called a fact-alternating
mutex group (fam-group) and we show that the inference of
the maximum sized fam-group is NP-Complete. Moreover,
we describe an algorithm for inference of fam-groups that is
complete with respect to the maximal fam-groups.

We prove that the h? variant of h™ heuristics [Haslum and
Geffner, 2000] generates mutex pairs that are a superset of a
pair decomposition of fam-groups. However, we also show
that fam-groups has certain unique properties regarding de-
tection of dead-end states, which is experimentally evaluated.
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