
SynKit: LTL Synthesis as a Service

Alberto Camacho†, Christian Muise?, Jorge A. Baier‡, Sheila A. McIlraith†

†Department of Computer Science, University of Toronto
?CSAIL, Massachusetts Institute of Technology

‡Pontificia Universidad Católica de Chile
‡Chilean Center for Semantic Web Research

†{acamacho,sheila}@cs.toronto.edu, ?cjmuise@mit.edu, ‡jabaier@ing.puc.cl

Abstract
Automatic synthesis of software from specification
is one of the classic problems in computer science.
In the last decade, significant advances have been
made in the synthesis of programs from specifica-
tions expressed in Linear Temporal Logic (LTL).
LTL synthesis technology is central to a myriad of
applications from the automated generation of con-
trollers for Internet of Things devices, to the syn-
thesis of control software for robotic applications.
Unfortunately, the number of existing tools for LTL
synthesis is limited, and using them requires spe-
cialized expertise. In this paper we present SynKit,
a tool that offers LTL synthesis as a service. SynKit
integrates a RESTful API and a web service with an
editor, a solver, and a strategy visualizer.

1 Introduction
Automatic synthesis of software from specification is a clas-
sic problem in computer science that dates back to Church in
1957. Synthesis is a hard problem that has been well-studied,
and no efficient solution exists in the general case. In the
context of constructing strategies for reactive systems, Pnueli
and Rosner [1989] proposed Linear Temporal Logic (LTL)
synthesis where the specification is expressed in LTL. In the
last decade, there have been significant algorithmic advances
in LTL synthesis. In particular, so-called bounded synthesis
techniques transform the problem into a game, and limit the
search for solutions to spaces of bounded size [Kupferman
and Vardi, 2005; Schewe and Finkbeiner, 2007]. Bounded
synthesis was a major breakthrough in the development of
practical algorithms that we can see in most modern tools.

The synthesis research field is rapidly evolving with the
introduction of richer models that account for, e.g., environ-
ment assumptions in the model and quality of the solutions
(c.f. [Chatterjee and Henzinger, 2007; Almagor et al., 2016]).
The annual SYNTCOMP competition emerged in 2015 in
an effort to standardize models and stimulate progress in the
field. Yet, we find that there still exist important barriers that
make it difficult for practitioners to adopt state-of-the-art syn-
thesis tools in their workflow. Our purpose with SynKit is to
reduce these barriers by offering LTL synthesis as a service.

Figure 1: Capture of the SynKit tool for LTL synthesis.

1.1 Synthesis of LTL Specifications

LTL is a modal logic with standard logical connectives and
temporal operators next (d) and until (U). Intuitively, LTL
formula dα denotes that α has to hold in the next time step,
and αUβ denotes that α has to hold until β holds. Temporal
operators eventually (♦α := >Uα), always (�α := ¬♦¬α),
and others can be derived from the basic operators. The truth
of an LTL formula is evaluated over infinite traces.

Following the notation in [Camacho et al., 2018c], an
LTL specification is a tuple 〈X ,Y, ϕ〉s, where X and Y
are disjoint sets of variables and ϕ is an LTL formula over
X ∪ Y . LTL specifications are usually interpreted as two-
player games, where the environment player controls X and
the agent player controls Y . In each turn, players select a sub-
set of the variables they control. A play is an infinite sequence
w = (x1 ∪ y1)(x2 ∪ y2) · · · of subsets of X ∪Y . The play is
winning for the agent if w satisfies ϕ. LTL realizability con-
sists of determining if the agent player has a winning strategy
for the game, and LTL synthesis is the problem of computing
one such strategy. The order of turn taking is important, and
is indicated by the semantics, s. If the agent plays first, then
s = “Moore”; otherwise, s = “Mealy” (e.g. [Ehlers, 2011]).

Example We want a smart home system to turn the lights
off if the room is not occupied, and to turn them on when
someone enters the room. Sensors indicate when the room
is occupied by activating event variable x. Lights are turned

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5817

on when signal y is active. This is captured by LTL specifi-
cation 〈{x}, {y},�(x↔ y)〉Mealy. The winning strategy out-
puts {y} if the environment selected {x} in the same time
step, and ∅ otherwise. This implements the desired behaviour.

2 LTL Synthesis as a Service
The main advantage of LTL synthesis over traditional pro-
gramming is that the code that is produced is correct by con-
struction, and programming is reduced to the task of declaring
and maintaining a specification. LTL synthesis is potentially
useful to generate controllers for robots, Internet of Things
devices, and other applications. Unfortunately, the number of
existing tools for LTL synthesis is limited, and often devoted
to academic use. Practitioners that want to explore the bene-
fits of LTL synthesis may experience a number of difficulties
along the way. These include but are not limited to:

• Installation: most existing synthesis tools do not work
on all platforms and require a number of dependencies.

• Scalability: synthesis of hard specifications requires a
significant amount of computational resources.

• Learning curve: Most existing LTL synthesis tools were
designed for academic use, and often have tunable pa-
rameters whose purpose and effect in the performance
of the tool is not trivial for an non-expert user to master.

• Verification and debugging of specification: LTL is a
compelling language to express temporal constraints,
but design of correct specifications can be challenging.

• Strategy export: not all synthesis tools export synthe-
sized strategies in a widely used standard format.

The purpose of SynKit is to mitigate for the difficulties
listed above, and facilitate rapid prototyping and synthesis of
controllers. Most similar to our tool is the online demo of
Acacia+ [Bohy et al., 2012], accessible through the website
of the first author, which produces controllers in Verilog from
a given specification in LTL or TLSF [Jacobs et al., 2016].

3 Functionality
SynKit determines realizability of LTL specifications, and re-
turns a winning strategy if one exists. Its functionalities are
accessible via web service (c.f. Figure 1) and also via API.1
For specifications that are not realizable, SynKit computes a
certificate of unrealizability. Unrealizability certificates are
strategies for the environment that prevent the agent from re-
alizing the specification. They are useful for understanding
why the specification is unrealizable – and, in particular, to
debug mistakes in the declaration of realizable specifications.

SynKit implements the algorithms for LTL realizability
and synthesis in [Camacho et al., 2018c], building on our
preliminary work in [Camacho et al., 2018b]. Algorithms
for finite LTL synthesis in [Camacho et al., 2018a] are also
implemented. LTL realizability and synthesis is reduced to
automata games, that are solved using fully observable non-
deterministic (FOND) planning machinery. In the following,
we discuss the most relevant functionality components.

1SynKit is accessible through the first author’s webpage, and:
http://www.cs.toronto.edu/~acamacho/synkit

Figure 2: Detail of the options (left) and results (right) panels.

Specifications Editor The user can write a custom LTL spec-
ification in the TLSF format, adopted by SYNTCOMP, or
select one of the preloaded SYNTCOMP benchmarks.

Realizability Guess: The user has to guess whether the spec-
ification is realizable or unrealizable. If the guess is wrong,
then SynKit’s search for strategies will not terminate. This
incompleteness is common to many tools based on bounded
synthesis (e.g. Acacia+), and can be avoided by interleaving
two searches with different guesses.

Game Reductions: The user can choose reductions to safety
games (i.e., games played on UkCW automata), or reacha-
bility games (i.e., games played on NkBW automata). Re-
ductions to safety games produce winning strategies or cer-
tificates of unrealizability. Reductions to reachability games
determine realizability, and do not return a strategy.

Optimizations: Reductions to automata games involve trans-
foming the LTL specification formula into automata. The user
can choose to perform decompositions into multiple automata
for better scalability in the automata transformations of the
LTL formula. However, the resulting game played on multi-
ple automata is not necessarily easier to solve in practice. In
addition, the user can force the use of a fixed ordering of the
actions in the compilations of games to FOND planning.

Strategy Visualization and File Export: Synthesized strate-
gies can be exported in Verilog format. To facilitate rapid de-
sign of correct specifications, the tool allows for inspection
of the policy graphs obtained from the solution to reduced
FOND problems. FOND problems can also be downloaded.

RESTful API: The current implementation includes a REST-
ful API with basic functionalities that will be extended.

4 Summary and Future Work

We presented SynKit, an LTL synthesis tool that facilitates
rapid prototyping and debugging of LTL specifications. It can
be used to generate controllers for robots, Internet of Things
devices, and other applications. With LTL synthesis, pro-
grams are constructed and maintained by updating the spec-
ification; code is generated automatically and is correct by
construction. In future work we plan to improve functionality
of the web service and API.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5818

References
[Almagor et al., 2016] Shaull Almagor, Udi Boker, and Orna

Kupferman. Formally reasoning about quality. Journal of
the ACM, 63(3):24:1–24:56, 2016.

[Bohy et al., 2012] Aaron Bohy, Véronique Bruyère, Em-
manuel Filiot, Naiyong Jin, and Jean-François Raskin.
Acacia+, a tool for LTL synthesis. In Proceedings of the
24th International Conference on Computer Aided Verifi-
cation (CAV), pages 652–657, 2012.

[Camacho et al., 2018a] Alberto Camacho, Jorge A. Baier,
Christian J. Muise, and Sheila A. McIlraith. Finite LTL
synthesis as planning. In Proceedings of the 28th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 2018. To appear.

[Camacho et al., 2018b] Alberto Camacho, Jorge A. Baier,
Christian J. Muise, and Sheila A. McIlraith. Synthesizing
controllers: On the correspondence between LTL synthe-
sis and non-deterministic planning. In Advances in Artifi-
cial Intelligence – Proceedings of the 31st Canadian Con-
ference on Artificial Intelligence, pages 45–59, 2018.

[Camacho et al., 2018c] Alberto Camacho, Christian J.
Muise, Jorge A. Baier, and Sheila A. McIlraith. LTL real-
izability via safety and reachability games. In Proceedings
of the 27th International Joint Conference on Artificial In-
telligence (IJCAI), 2018. To appear.

[Chatterjee and Henzinger, 2007] Krishnendu Chatterjee
and Thomas A. Henzinger. Assume-guarantee synthesis.
In Proceedings of the 13th International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), pages 261–275. Springer, 2007.

[Church, 1957] Alonzo Church. Applications of recursive
arithmetic to the problem of circuit synthesis. Summaries
of the Summer Institute of Symbolic Logic, Cornell Uni-
versity 1957, 1:3–50, 1957.

[Ehlers, 2011] Rüdiger Ehlers. Experimental aspects of syn-
thesis. In Proceedings of the International Workshop on
Interactions, Games and Protocol (IWIGP), pages 1–16,
2011.

[Jacobs et al., 2016] Swen Jacobs, Felix Klein, and Sebas-
tian Schirmer. A high-level LTL synthesis format: TLSF
v1.1. In Proceedings of the 5th Workshop on Synthesis
(SYNT), pages 112–132, 2016.

[Kupferman and Vardi, 2005] Orna Kupferman and
Moshe Y. Vardi. Safraless decision procedures. In
Proceedings of the 46th IEEE Symposium on Foundations
of Computer Science (FOCS), pages 531–542, 2005.

[Pnueli and Rosner, 1989] Amir Pnueli and Roni Rosner. On
the synthesis of a reactive module. In Conference Record
of the 16th Annual ACM Symposium on Principles of Pro-
gramming Languages (POPL), pages 179–190, 1989.

[Schewe and Finkbeiner, 2007] Sven Schewe and Bernd
Finkbeiner. Bounded synthesis. In Proceedings of the 5th
International Symposium on on Automated Technology for
Verification and Analysis (ATVA), pages 474–488, 2007.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5819

