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Abstract
Search ads have evolved in recent years from sim-
ple text formats to rich ads that allow deep site
links, ratings, images and videos. In this paper, we
consider a model where several slots are available
on the search results page, as in the classic general-
ized second-price auction (GSP), but now a bidder
can be allocated several consecutive slots, which
are interpreted as a rich ad. As in the GSP, each bid-
der submits a bid-per-click, but the click-through
rate (CTR) function is generalized from a simple
CTR for each slot to a general CTR function over
sets of consecutive slots. We study allocation and
pricing in this model under subadditive and frac-
tionally subadditive CTRs. We design and analyze
a constant-factor approximation algorithm for the
efficient allocation problem under fractionally sub-
additive CTRs, and a log-approximation algorithm
for the subadditive case. Building on these results,
we show that approximate competitive equilibrium
prices exist and can be computed for subadditive
and fractionally subadditive CTRs, with the same
guarantees as for allocation.

1 Introduction
As search results pages have evolved from ‘ten blue links’ to
rich informational layouts including images, video, product
listings and the like, so have the advertising units on the page.
Search ads today go beyond the standard template of title-
link-description and can admit various enhancements known
as rich ads or ad extensions. For instance, a location exten-
sion shows a business’ address and distance; a seller’s rating
extension shows star ratings and review snippets. A com-
mon and important variant is the site links extension, which
adds additional lines to the ad with more links to the business
(e.g., to a hotel restaurant or reservations). Rich ads offer bet-
ter information to the user and higher click-through rates for
advertisers, and are now commonplace on Google, Bing, and
Yahoo.

Rich ads pose a market design challenge because the stan-
dard auction for text ads, namely the Generalized Second
Price auction (GSP), does not directly extend to ads of vari-
ous sizes. The GSP proceeds by ranking text ads according to

the product of the advertiser’s bid and the ad’s click-through
rate. An advertiser is charged, per click, the lowest bid that
would maintain its ad’s rank. The GSP is therefore intimately
connected with the notion of ranking, but with rich ads the
problem moves from ranking to general allocation. With ex-
tensions allowed, it is conceivable that the highest bidder may
be placed below the top slot, but with a larger ad including
extensions like site links. The GSP pricing rule is now ill-
defined: because ad extensions lead to higher click-through
rates (CTRs), GSP pricing taken verbatim may counterintu-
itively lead to a lower price-per-click for extensions, even
though they occupy more space on the page. These kinds
of complications indicate the need to rethink allocation and
pricing together in the presence of rich ads.

In this paper, we cast the problem of allocating and pric-
ing ads and ad extensions on the page as a generalization of
the standard slot-allocation problem handled by GSP, where
each agent can now obtain multiple consecutive slots. When
an agent obtains several slots, the interpretation is that its ad
is shown with extensions (i.e., as a rich ad). Since the num-
ber of slots on the page is constrained, the allocation prob-
lem remains interesting and does not simply call for every
ad to be shown with an extension. The bidding language re-
mains the same as GSP: each agent submits a single bid per
click (agents do not directly express any preferences for ex-
tensions). The crucial generalization to GSP is that the CTR
function is now defined over sets of slots, beyond just in-
dividual slots. There are two structural extremes for CTR
functions: unit-demand and additive. When CTRs are unit-
demand, we recover the standard GSP model. When CTRs
are additive, the allocation problem becomes trivial and un-
realistic, because all slots go to the highest bidder. We there-
fore, consider families of subadditive CTR functions in this
work.

We first consider the question of efficiently allocating rich
ads, just as GSP ranks ads efficiently in the single-slot case.
We initially consider allocation separately from questions of
pricing and equilibrium. Because search results pages need
to be rendered within milliseconds, we eschew general ap-
proaches based on integer programming and seek poly-time
allocation schemes. Our first result is a randomized allocation
scheme that achieves a 1/4 approximation to efficiency under
fractionally subadditive CTRs (also known as XOS, which
includes submodular and substitutes CTRs as special cases).

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

301



The scheme is based on rounding of the solution to the associ-
ated configuration LP, and the constant factor approximation
relies on the consecutive-slot structure. We provide a closely
related scheme that achieves anO(log logm/ logm) approx-
imation for general subadditive valuations, with m slots.

We next turn to the question of pricing for rich ads to
achieve desirable equilibrium properties. The extension of
GSP pricing to multi-slot allocation is ill-defined because the
GSP auction is intimately linked to ad ranking rather than ad
allocation. We consider two natural generalizations, lowest
bid and incremental pricing, and show that they lack a crucial
property of the original GSP: for both variants, an efficient
pure-strategy Nash equilibrium (NE) may not exist. Recall
that a pure NE is efficient if the slots are allocated efficiently
with respect to the agents’ true underlying values-per-click,
which is not equivalent to efficient allocation with respect to
bids (because, like GSP, neither pricing rule is truthful). Un-
der the lowest bid pricing rule, an agent is charged (per click)
the lowest bid it could have placed and still obtained the same
set of slots, holding other agents’ bids fixed. We show that a
family of pricing rules that includes lowest-bid pricing fails
to guarantee an efficient pure NE. Under incremental pricing,
an agent is charged (per impression) for each slot the smallest
impression price that clinches the slot; the total charge is then
converted to a price per click according to the aggregate CTR
of all slots received (i.e., the final rich ad). Again, we show
that this pricing rule fails to guarantee an efficient pure NE.

With these results in mind, we turn to pricing rules specifi-
cally suited to combinatorial allocation. A natural first choice
is the VCG pricing rule since it supports efficient allocation
not just in pure NE, but in dominant strategies. However,
VCG has been considered and rejected for rich ads in sev-
eral papers for the same consistent reason: it is not a gener-
alization of GSP, and the switch from GSP to VCG (in the
standard setting with just text ads) would lead to significant
revenue losses [Varian and Harris, 2014; Cavallo et al., 2017;
Hartline et al., 2018]. Since rich ads allocation must han-
dle text ads as a special case, this is a fatal drawback. An
alternative known as core pricing, a standard scheme used
in practice for combinatorial auctions, was recently proposed
for rich ads [Hartline et al., 2018]. Core pricing is attractive
for rich ads because it admits natural efficient NE and guar-
antees a better revenue standard than VCG [Hartline et al.,
2018]. We consider competitive equilibrium pricing, a spe-
cial case of core pricing where prices are defined over sets of
slots such that each agent obtains its preferred (i.e., utility-
maximizing) set of slots as bid. This is closely related to the
original envy-freeness property of certain GSP equilibria in
the original text ads setting [Edelman et al., 2007].

Our main pricing result shows how to construct prices over
bundles of slots such that the approximately-efficient alloca-
tions constructed via our earlier algorithms are individually-
rational and envy-free. An allocation is individually-rational
if each agent’s allocated bundle has non-negative utility at the
given prices, and it is envy-free if each agent prefers its own
bundle to that of any other. To complete the result, we show
that the prices can be extended so that each agent obtains a
utility-maximizing bundle (over all possible bundles) at the
given prices, which forms a competitive equilibrium.

1.1 Related Work
The allocation, pricing, and incentive properties of the basic
GSP were studied in a series of celebrated early papers [Ag-
garwal et al., 2006; Edelman et al., 2007; Varian, 2007]. Our
aim in this paper is to stay true to this basic model and de-
part from it as slightly as possible. Our model has a fixed
set of slots on the page, and CTR is separable into agent-
and slot-dependent effects. This means that agents only place
a single bid-per-click as in the original GSP. More general
non-separable CTRs quickly lead to complications like inex-
istence of efficient equilibria [Cavallo and Wilkens, 2014].
Varian and Harris (2014) report that Google considered a
switch to VCG to accommodate rich ads in search results, but
this failed to launch because the revenue consequences were
too severe; on the other hand, they report that VCG is used
for contextual display advertising.

The problem of auction design for rich ads has attracted in-
creased attention in recent years. Cavallo et al. (2017) report
on a redesign of Yahoo’s sponsored search auction to han-
dle rich ads, using a local search algorithm for allocation and
pricing. Deng et al. (2010) and Bachrach et al. (2014) con-
sider intuitive generalizations of the GSP pricing rule for rich
ad allocation, different from the ones we examine but with
similar conclusions that efficient equilibria may not exist.

Recent work on rich ads pricing has examined core pric-
ing, drawing on ideas from the literature on combinatorial
auctions [Day and Raghavan, 2007; Day and Milgrom, 2008].
Goel et al. (2015) study the revenue performance of core pric-
ing for the problem of allocating text ads vs. larger image
ads. Hartline et al. (2018) give efficient algorithms for bidder-
optimal core pricing, specifically for rich ads. In contrast, our
work specifically focuses on competitive equilibrium pricing,
which connects with the original GSP papers given the close
connection between envy-freeness and competitive equilib-
rium [Edelman et al., 2007].

1.2 Preliminaries
Throughout this paper, we denote the set of advertisers by N
and the set of slots by M. Let n = |N | and m = |M|.
We refer to the advertisers by ai and to the slots by si, i.e.,
N = {a1, a2, . . . , an} andM = {s1, s2, . . . , sm}. Let bi be
the bid of agent ai in the auction. Without loss of generality
we assume that bi ≥ bj for each i < j. We also have a
monotone set function for the click-through rate (CTR) of the
slots. We denote by θS the CTR for set S of slots, and we
consider the following set functions for the CTR function:

• Additive: A set function V (·) is additive if V (S1) +
V (S2) = V (S1 ∪ S2) + V (S1 ∩ S2) for every two sets
S1, S2 ∈ ground(V ).

• Submodular: A set function V (·) is submodular if
V (S1) + V (S2) ≥ V (S1 ∪ S2) + V (S1 ∩ S2) for every
two sets S1, S2 ∈ ground(V ).

• Fractionally Subadditive (XOS): An XOS set function
V (·) can be shown via a finite set of additive functions
{V1, V2, . . . , Vα} where V (S) = maxαi=1 Vi(S) for any
set S ⊆ ground(V ).
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• Subadditive: A set function V (·) is subadditive if
V (S1) + V (S2) ≥ V (S1 ∪ S2) for every two sets
S1, S2 ⊆ ground(V ).

In this paper, the above definitions work for all the possi-
ble sets of slots (consecutive or non-consecutive). However,
in the setting of consecutive slots we assume that we cannot
allocate a set of slots with gaps to any advertiser. Hence, this
is a constraint that we have in the allocation, not in the CTR
functions.

We define wi(S) = biθS as the welfare of bundle S for
agent ai. Our CTR function might be additive, gross sub-
stitutes, submodular, XOS, or subadditive. We say that an
allocation of the slots to the agents is efficient if

∑
i wi(Si) is

maximized, where Si is the set of allocated slots to agent ai.
A competitive equilibrium (CE) consists of an allocation

of slots to the advertisers with a price for each allocated bun-
dle such that our allocation and pricing satisfy envy-freeness,
market clearance, individual rationality, and budget balance.

1.3 Our Results
In this work, first we consider the efficient allocation problem
under the rich ads model in Section 2. We give some compu-
tational results for approximating the efficiency for different
levels of CTR functions—additive, submodular, XOS, etc.
We give approximation results for XOS and subadditive CTR
functions, which generalize submodular CTR functions. For
the XOS CTR function over consecutive slots, we approxi-
mate the efficiency by a constant factor of 1/4, and for the
subadditive CTR function over consecutive slots, we approx-
imate the efficiency by a factor of O( log logm

logm ).
In the classic sponsored search auction, when we are al-

lowed to allocate at most one slot to each advertiser, the GSP
mechanism guarantees the existence of Nash Equilibrium.
For the rich ads model, we consider two natural generaliza-
tions of GSP, Lowest Bids (LB) and Incremental Pricing (IP),
and show that none of them guarantees the existence of an
efficient Nash Equilibrium. We elaborate on these general-
izations briefly in Section 3.

In Section 4, we obtain pricing rules that guarantee com-
petitive equilibrium along with efficiency in the rich ads
model, and we provide an algorithm which gives an alloca-
tion and pricing rule guaranteeing competitive equilibrium
and 1/4 approximation of the efficient allocation for XOS val-
uations and O( log logm

logm ) approximation for subadditive valu-
ations.

2 The Efficient Allocation
In this section, we study the efficient allocation of the slots
to the advertisers for different CTR functions. As mentioned
previously, an efficient allocation in the rich ads setting is an
allocation maximizing

∑
i biθSi

where Si is the set of allo-
cated slots to bidder i. We study the problem of finding the
efficient allocation for different CTR functions. First, we start
with additive CTR functions.

Observation 2.1. When the CTR function is additive, the ef-
ficient allocation allocates all the slots to the advertiser with
the highest bid, b1.

The problem of finding the efficient allocation becomes more
challenging when we have more general CTR functions.
The efficiency problem is closely related to the Welfare
Maximization Problem, which is formulated as follows:

The Welfare Maximization Problem: Given m
items and n players with monotone utility functions
wi : 2[m] → R+, we seek a partition of the items into disjoint
sets S1, S2, . . . , Sn in order to maximize

∑n
i=1 wi(Si).

The welfare maximization problem has been extensively
studied for different valuation functions.The Submodular
Welfare Problem was first studied by Lehmann et al. (2006).
They showed that a simple online greedy algorithm gives
a 1/2-approximation for this problem. Khot et al. (2008)
proved that the Submodular Welfare Problem cannot be ap-
proximated to a factor better than 1 − 1/e, unless P =
NP. Mirrokni et al. (2008) showed that a better than (1 −
1/e)-approximation would require exponentially many value
queries, regardless of P = NP.

[Feige, 2006] considers more general valuation functions.
He gives a (1−1/e)-approximation ratio for fractionally sub-
additive and a 1/2-approximation for subadditive valuation
functions.

As the first step, we consider the problem of finding the
efficient allocation when we are allowed to allocate non-
consecutive slots to the advertisers. This problem is NP-hard
for gross substitutes valuations (and clearly for more general
valuations) by a reduction from Knapsack Problem [Lehmann
et al., 2006].

Theorem 2.1. Using the results by [Feige, 2006], We can
guarantee (1− 1/e) and 1/2 approximation ratio of the effi-
cient allocation for respectively fractionally subadditive and
subadditive CTR functions.

The above theorem gives theoretical results for the effi-
cient allocation when the allocations can be non-consecutive.
However, in practice, we usually need to allocate consecutive
slots to each advertiser. With this constraint, unfortunately
these results do not apply anymore.

In sponsored search auctions, higher slots typically have
higher CTRs. In the classic version of the sponsored search
auction, we allocate at most one slot to each advertiser. In
such cases, GSP allocation guarantees the efficient allocation.
It allocates the first slot to the highest bidder, the second slot
to the second highest bidder, and so on. If we want to apply
such a method of allocation in the consecutive rich ads set-
ting, we should allocate the first consecutive bundle of slots to
the highest bidder, the second consecutive bundle of slots to
the second highest bidder, and so on. However, this method,
in the consecutive rich ads setting does not always guarantee
the efficiency.

2.1 Welfare Maximization in Consecutive
Allocations

Now, in this part, we give an algorithm with 1/4 approxi-
mation ratio for the welfare maximization problem when the
allocation is consecutive and the CTR functions are fraction-
ally subadditive. We also give an algorithm for the same
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problem when the CTR functions are subadditive. Both of
these algorithms are based on the randomized rounding of
the configuration LP of the problem. For the welfare max-
imization problem, [Dobzinski et al., 2010] considered the
following configuration LP of the problem, that we call wel-
fare maximizing LP. By rounding this configuration LP, they
gave the first approximation ratios for general valuation set-
tings. Later, [Feige, 2006] used a better rounding method of
this configuration LP and improved the approximation ratios
for subadditive and fractionally subadditive valuation func-
tions. The LP is as follows:

max
xi,S≥0

∑
i,S

xi,Swi(S)

s.t.
∑

i,S|j∈S

xi,S ≤ 1 (j ∈M) (1)

∑
S

xi,S ≤ 1 (i ∈ N ) (2)

In the previous works, subset S could be any subset of items,
but here, we only consider the consecutive bundle of items
as feasible subsets in our LP. Here, xi,S is an indicator vari-
able specifying whether agent i gets set S. The constraints
in Inequality (1) are the item constraints, and the constraints
in Inequality (2) are the agent constraints. In each item con-
straint, we make sure each item is not allocated in more than
one allocation, and in agent constraints we make sure that
we have not allocated more than one set to each agent. Note
that we mean the summations of fractional allocations should
not be more than one. As mentioned in [Feige, 2006], we
can assume the solution given to the LP is such that all item
and agent constraints are satisfied with equality. This con-
vention can easily be made without loss of generality as fol-
lows: If the item constraint for item j is not satisfied with
equality, we can add a dummy agent aj with a utility func-
tion that is identically zero, and set the value of variable
xaj ,j = 1 −

∑
i,S|j∈S xi,S . Similarly, if the agent constraint

for agent i is not satisfied with equality, we can set the value
of variable xi,∅ to 1−

∑
S 6=∅ xi,S .

The previous works considered this configuration LP for
any subset S of items, but here, in our application, we only
consider the consecutive subsets as feasible subsets. Unfortu-
nately, here, in the consecutive allocation setting, we cannot
directly use their rounding methods. The reason is that in all
these methods, in a part of the algorithm, they allocate every
single item randomized. Here, since the allocation for each
agent should be consecutive, we cannot have such random-
izations in our solution. Hence, we should round our config-
uration LP in another way or somehow modify their solution.
To this end, we devise Algorithm 1 which provides a constant
approximation solution for the fractionally subadditive valua-
tions. In the first step of this algorithm, we find the fractional
solution of the LP. Then, for each agent, with probability 1/2
we do not allocate her any bundle, and with probability 1/2
we allocate her exactly one bundle. If we allocate one bundle
to agent i, the bundle (say bundle S) is chosen with probabil-
ity xi,S . Since we do not allocate any bundle to each agent
with probability 1/2 the actual probability for agent i and
bundle S is xi,S/2. Now, up to this point of the algorithm,

Algorithm 1: Consecutive Welfare Maximization with
XOS Valuations

Input: Set of agents N and set of itemsM (with a
specific order)

1 Find the fractional solution for the configuration LP;
2 for each agent i ∈ N do
3 With probability 1/2 do not allocate any item to her,

and with the remaining probability allocate her a
single consecutive subset S which is chosen with
probability xi,S ;

4 end
5 for each item j ∈M do
6 if item j was allocated to more than one agent then
7 Deallocate it from all the agents;
8 end
9 end

10 for each agent i ∈ N do
11 Allocate her all the items from x to y, if x was the

leftmost allocated item to i, and y was the rightmost
allocated item to her;

12 end
13 return the allocations;

each agent has at most one allocated bundle, but still, each
item may be allocated to more than one agent. To avoid this,
first, we deallocate all the items allocated to more than one
agent. However, this may make our allocations disconnected.
To handle this, if we had a disconnection in the allocation of
an agent, we allocate all the items in the gaps to the agent
to make it a connected allocation. In Theorem 2.3, we prove
this algorithm guarantees 1/4 approximation ratio of the opti-
mal solution. The following proposition is from [Feige, 2006]
which is useful in the proof of the theorem.

Proposition 2.2. Let k ≥ 1 be an integer and let w be an
arbitrary fractionally subadditive utility function. For a set
S, consider a distribution over subsets S′ ⊂ S such that each
item of S is included in S′ with probability at least 1/k. Then
E[w(S′)] ≥ w(S)/k.

Theorem 2.3. Algorithm 1 guarantees a 1/4 approximation
ratio for the welfare maximization problem, when the allo-
cation is consecutive and valuation functions are fractionally
subadditive.

Proof. Assume that w(LP ) is the welfare of fractional so-
lution of our configuration LP, and w(IP ) is the welfare of
our integral solution. As the first step, Algorithm 1 finds the
fractional solution of the LP. We know w(LP ) ≥ w(IP ),
thus any approximation guarantee for w(LP ) gives a guaran-
tee for w(IP ). In the first rounding step of the algorithm, we
randomly round the LP and assign each bundle S with prob-
ability xi,S/2 to agent i. Hence, after this rounding, each
agent with probability 1/2 does not receive any bundle, and
with probability 1/2 exactly receives one bundle of consec-
utive items. Hence, we can argue the current allocation in
expectation has welfare w(LP )/2, but unfortunately, the al-
location may assign each item to multiple agents.
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Now, we prove for each agent i, each item j assigned to i is
not assigned to any other agent with probability at least 1/2.
The idea of the proof comes from the item constraints and the
way that we rounded the LP. The probability that we allocate
item j to any other agent i′ is pj,i′ =

∑
S|j∈S xi′,S/2. Hence,

with probability 1− pj,i′ , item j is not allocated to i′, and we
can conclude with probability

∏
i′ 6=i(1 − pj,i′), item j is not

allocated to any agent i′ 6= i. Since
∑
i′ 6=i pj,i′ ≤ 1/2, we

can argue that
∏
i′ 6=i(1− pj,i′) ≥ 1/2. With this in hand, and

using Proposition 2.2, we can argue that if we did not need to
allocate the items consecutively, the solution by ignoring the
items allocated to more than one agent is at least w(LP )/4.
In the last step of the algorithm, to make the allocated bundles
consecutive we may only allocate some items to each agent.
Hence after this step, our social welfare does not decrease,
and it is still at least w(LP )/4.

Note that Algorithm 1 does not necessarily allocate all the
items. If we want to make sure all the items are allocated, we
should allocate all the items in each gap to the agent who has
received the next or previous consecutive items.

Note that the above theorem is a result in expectation. To
have a result in the worst case, we should run the same algo-
rithm several times and take the best answer.

For subadditive valuations, similar to Algorithm 1, first,
we find the fractional solution for the configuration LP. How-
ever, here, we use a rounding technique which is also used
in [Feige, 2006]. We allocate consecutive bundle S to agent
i with probability xi,S . Please note that we allocate exactly
one bundle to each agent. This is doable because according to
the agent constraints, for each agent i, we have

∑
S xi,S = 1.

However, each item may be allocated to more than one agent.
According to [Feige, 2006], with probability at least 1−1/m,
no item belongs to more than k = O(logm/ log logm).
Now, we want to give a color to each agent such that two
agents do not have the same color if they share an item. To
this end, we define the intersection graph of the agents as
follows:

Definition 2.4. In the intersection graph of the agents, we
have a node for each agent, and we connect two agents with
an edge if and only if there exists a common item in their
allocations.

We color the vertices of the intersection graph. This is
doable with at most ∆ + 1 colors where ∆ is the maximum
degree of the graph. Since with high probability, the degree of
each vertex is k, with high probability the coloring is doable
with k + 1 colors. As the last step of the algorithm, we
choose one of the colors uniformly at random and deallocate
the items from the agents with unchosen colors.

Theorem 2.5. Algorithm 2 guarantees an
O(log logm/ logm) approximation ratio for the welfare
maximization problem, when the allocation is consecutive
and valuation functions are subadditive.

3 On Generalizations of GSP
In sponsored search auctions, Generalized Second Price
(GSP) auction is used to guarantee the existence of a Nash

Algorithm 2: Consecutive Welfare Maximization with
Subadditive Valuations

Input: Set of agents N and set of itemsM (with a
specific order)

1 Find the fractional solution for the configuration LP;
2 for each agent i ∈ N do
3 With probability xi,S , allocate a unique consecutive

subset S to agent i;
4 end
5 Color the intersection graph of the agents;
6 Choose one of the colors of the graph uniformly at

random;
7 Deallocate all the items from the agents with unchosen

colors;
8 return the allocations;

Equilibrium and efficiency. In order to generalize GSP, we
study two models that we call Lowest Bids Method and In-
cremental Pricing Method. Although these are intuitive gen-
eralizations, we provide counterexamples with two or three
advertisers and two slots to show that these methods do not
guarantee the existence of Nash Equilibrium.

The next theorem indicates that the efficient allocation with
additive CTR functions is to allocate all slots to the advertiser
with the highest bid.
Theorem 3.1. When the CTR function is additive the follow-
ing assignment and pricing rule is efficient and guarantees
Nash equilibrium: Allocate all the slots to the advertiser with
the highest bid with price b2 per click. The total payment is
b2θM.

Consequently, in this section, we focus on the generaliza-
tions of GSP for more general CTR functions.
Definition 3.2 (Lowest Bids Rule). Assume that pi is the
price of the ith slot when we run regular GSP (in the regular
GSP we allocate at most one slot to each agent). In Lowest
Bid rule, first we allocate the slots in an efficient way, then, we
charge each bidder the lowest bid with which the allocation
does not change.
Theorem 3.3. The Lowest Bid method does not guarantee
Nash Equilibrium.

Now, we consider another generalization of GSP that we
call Incremental Pricing Rule.
Definition 3.4 (Incremental Pricing Rule). Under incremen-
tal pricing, an agent is charged (per impression) for each slot
the smallest impression price that clinches the slot; the total
charge is then converted to a price per click according to the
aggregate CTR of all slots received. We note that IP does not
necessarily allocate consecutive slots.
Theorem 3.5. The Incremental Pricing method does not
guarantee the existence of pure Nash equilibrium even if the
non-consecutive allocation is allowed.

4 Competitive Equilibria
In this section, we study the pricing rules guaranteeing com-
petitive equilibrium along with efficiency in the rich ads set-
ting. First, consider additive CTR functions. In this setting,
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Algorithm 3: Efficient Envy-free Pricing Method
Input: Set of agents N and set of itemsM

1 Find the approximated efficient allocation;
2 Construct bipartite graph G based on the advertisers and

their allocated bundles of the slots;
3 Find the minimum weighted vertex cover of G;
4 for each bundle Si do
5 set ci

θSi
as its price, and ci is the assigned number by

the minimum weighted vertex cover to Si
6 end
7 Return the efficient allocation with the prices assigned to

the bundles;

if we allocate all the slots to advertiser a1 with the price per
click b2, clearly it is efficient and guarantees the competitive
equilibrium. Hence, we consider the problem for more gen-
eral CTR functions.

First we normalize the CTR functions such that θM = 1
and provide Algorithm 3. As the first step of the algo-
rithm, we find the approximately efficient allocation (using
the methods that we discussed in Section 2) and assign the
slots to the agents based on the allocation. This is our allo-
cation, and now our goal is to price the assigned bundles of
slots such that we have an envy-free allocation.

As the second step of the algorithm, we construct a bipar-
tite graph G as follows: The nodes of the first partition of the
graph represent our advertisers and the second partition of the
graph represent the assigned bundles. We connect each adver-
tiser ai to a bundle Sj using an edge with weight biθSj

, which
is the value of bundle S for advertiser ai. The maximum
weighted matching in graph G finds our (approximately-) ef-
ficient assignment. Now, as the next step, we find the mini-
mum weighted vertex cover of G. This algorithm assigns a
weight to each vertex of G. Assume that ci is the assigned
number to the vertex of bundle Si. We set pi = ci/θSi

as the
price of Si. We also assign infinite price to a bundle of items
S if there exists no node for S in G.

In the next lemma, we prove that our pricing rule guaran-
tees envy-freeness.

Lemma 4.1. Algorithm 3 guarantees envy-freeness and indi-
vidual rationality.

Proof. First, we prove the profit of each advertiser is non-
negative. In the minimum weighted vertex cover of a bipartite
graph, we know the summation of the assigned weights to the
endpoints of an edge is equal to the weight of the edge if the
edge is in the maximum weighted matching. Hence, we argue
that the assigned number to any bundle Si is not more than the
utility of the bundle for the advertiser receiving the bundle in
the efficient allocation. Assume that in the efficient allocation
Si is assigned to advertiser aj , and ci is the assigned number
to Si by the minimum weighted vertex cover algorithm. As
we mentioned, bjθSi

≥ ci. Since pi = ci/θSi
, we have bj ≥

pi. Hence, the profit of each advertiser is non-negative.
Now, for the sake of contradiction, assume that our auction

is not envy-free, and advertiser ai envies advertiser aj . As-
sume that Si′ and Sj′ are the assigned bundles to ai and aj in

the efficient allocation respectively. Now, we have:

biθSi′ − ci′ < biθSj′ − cj′ .

Hence, we have the following inequality:

bi(θSi′ − θSj′ ) < ci′ − cj′ (3)

Assume that ci, ci′ , and cj′ are the assigned numbers by the
minimum weighted vertex cover to ai, Si′ , and Sj′ respec-
tively. According to the properties of the minimum weighted
vertex cover, we have the following:

ci + ci′ = biθSi′ (4)
ci + cj′ ≥ biθSj′ (5)

Hence, using Equality [4] and Inequality [5], we have:

bi(θSi′ − θSj′ ) ≥ ci′ − cj′ (6)

As we see, Inequalities [3] and [6] clearly contradict each
other. Hence, our assignment is envy-free.

Algorithm 3 and Lemma 4.1 imply the following theorem:
Theorem 4.2. Algorithm 3 gives an allocation and non-
linear pricing rule guaranteeing competitive equilibrium and
1/4 approximation of the efficient allocation for XOS valua-
tions and O( log logm

logm ) approximation for subadditive valua-
tions.

5 Conclusions
This paper cast the problem of auctioning search ads
with extensions as a generalization of the standard GSP
model where advertisers can now obtain multiple consec-
utive slots, interpreted as a rich ad. We obtained a 1/4
approximation algorithm for the efficient allocation prob-
lem when CTR functions are fractionally subadditive, and a
O(log log(m)/ log(m)) approximation ratio when the CTR
functions are subadditive. Our final pricing result shows
how to support these approximately efficient allocations us-
ing bundle prices such that the allocation-price pairs are
individually-rational and envy-free.

A key open question concerns generalizations of GSP that
admit pure strategy Nash Equilibria (as opposed to competi-
tive equilibria). We showed that two natural generalizations
of the GSP pricing rule fail to guarantee Nash Equilibria even
under two slots, but with appropriate restrictions on the CTR
function (e.g., gross substitutes), we believe that a general-
ization of all the GSP properties (efficiency, envy-freeness,
Nash Equilibrium) may still be possible. Another interesting
direction would be to generalize the model and results to the
problem of whole page optimization in display advertising,
where ads need to be allocated in a two-dimensional layout
on the page.
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