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Abstract
Online communities use trust and reputation sys-
tems to assist their users in evaluating other par-
ties. Due to the preponderance of these systems,
malicious entities have a strong incentive to attempt
to influence them, and strategies employed are in-
creasingly sophisticated. Current practice is to
evaluate trust and reputation systems against known
attacks, and hence are heavily reliant on expert ana-
lysts. We present a novel method for automatically
identifying vulnerabilities in such systems by for-
mulating the problem as a derivative-free optimisa-
tion problem and applying efficient sampling meth-
ods. We illustrate the application of this method for
attacks that involve the injection of false evidence,
and identify vulnerabilities in existing trust mod-
els. In this way, we provide reliable and objective
means to assess how robust trust and reputation sys-
tems are to different kinds of attacks.

1 Introduction
Trust and reputation systems (TRSs) are widely adopted by
companies that host online communities for their customers.
Users are encouraged to provide feedback on services and
goods that are visible to others in aggregate, with commen-
taries often associated with individual ratings. The underly-
ing philosophy is to drive increased service quality and to in-
crease users’ confidence in positive outcomes of future trans-
actions. Companies such as Amazon, Ebay and Airbnb incor-
porate this idea within they own infrastructure, while com-
panies such as TrustPilot, TripAdvisor, Yelp and Google of-
fer TRS services to other organisations. Where users have a
choice among a range of similar options, relative ratings can
have a big impact on decisions. This, of course, introduces a
strong incentive for companies and individual services/goods
providers to game the system.

A wide variety of strategies have been reported, some sim-
plistic such as injecting negative reviews for rival service
providers, so called bad mouthing, or purchasing good “re-
views”. In response, TRS owners introduce controls; for
example, only to permit reviews from confirmed customers.
This has led to more sophisticated attacks, such as those re-
ported recently by the Wall Street Journal [Emont and Bürge,

2018], where items are purchased and then returned in order
to qualify to inject negative reviews. Users may report such
incidents, but the moderation process is manual, time con-
suming, and may be equally used by dishonest sellers.

The complexity of attacks is expected to increase and, ac-
cording to Brundage et. al. [2018], will soon exceed hu-
man capabilities through the malicious use of AI algorithms.
It would be realistic to predict that TRSs can be influenced
by sophisticated algorithms by, for example, automating the
process of finding effective combinations of attacks. The
current means by which TRSs are evaluated is by assessing
the accuracy of predictions across a population of simulated
agents, or through the use of data sets collected from rat-
ing sites. Robustness to certain kinds of known attacks such
as whitewashing (exchanging a poor reputation for a default
via a new identity) have been explored [Burnett et al., 2010;
Liu et al., 2009]. While these methods are offer important
benefits, they focus on a simple attack by a single actor, es-
chewing the possibility of strategic attacks.

Strategic attacks may involve multiple actors with coordi-
nated objectives. Devising defensive strategies against them
would require a different approach than assessing the vulnera-
bilities of a system to a set of known weaknesses. Alternative
methods have been proposed in information security, how-
ever, including fuzz testing where the space of possible inputs
to a system is searched to identify insecure states [Godefroid
et al., 2008]. We use a similar approach here: we start with
a description of the space of possible ways to manipulate a
TRS, and propose methods for efficiently searching this space
driven by the objective of increasing the relative ranking of
some target agent. In this way, we identify effective strate-
gies that represent TRS vulnerabilities.

The contributions we present are threefold. First, we model
coordinated, strategic attacks with a specific objective as a
derivative-free optimization problem. We then propose two
search methods for efficiently identifying coordinated attacks
in complex attack spaces through sampling-based optimiza-
tion. Finally, we use this novel method to analyze a selection
of existing trust models, providing evidence for the kinds of
complex attacks they are vulnerable to. The primary contri-
bution is our new method for rigorously assessing trust and
reputation systems, but before presenting this, we place our
work in the context of existing research.
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2 Related Work

Investigating Trust and Reputation Systems (TRSs) attacks is
a key driver in the development of contemporary algorithms
for assessing the trustworthiness of actors in online environ-
ments. Numerous kinds of attacks and defence strategies have
been explored [Hoffman et al., 2009], but robustness analyses
of individual TRSs tend to consider relatively simple attack
profiles. The Beta Reputation System with filtering [Whitby
et al., 2004], for example, focusses on identifying and exclud-
ing attackers who provide unfair feedback by badmouthing or
ballot-stuffing. TRAVOS [Teacy et al., 2006] takes a similar
approach, but discounts outlying ratings in making trust as-
sessments (cf. Muller et al. [2015]). The HABIT [Teacy et
al., 2012] model uses hierarchical Bayesian model to identify
participants with various profiles of reliability, and factor this
into aggregated ratings. In this way, evidence from unreliable
participants are not simply filtered out, but their biases taken
into account. These and other models, in essence, only con-
sider the fact that participants may provide unreliable ratings.

There are a few reported studies that analyze robustness
of TRSs against realistic attacks [Ruan and Durresi, 2016].
In general, the approach taken is to first identify the types
of vulnerability of interest. A strategy (or set of strategies)
to exploit the vulnerability is then devised, and the candi-
date model is assessed (either theoretically or empirically)
against them. Kerr & Cohen [2009], for example, explore
what they refer to as a reputation lag vulnerability, where the
attacker delays their actions within a transaction (e.g. ship-
ping items) to postpone negative feedback. They define a
sequence of predefined actions for how an attacker may ex-
ploit this vulnerability. This attacker-profiling approach is a
common method applied across a range of security contexts.
These studies are valuable in identifying specific attack strate-
gies, but a key challenge is in understanding how vulnerable
TRSs are to an intelligent, adaptive attacker.

One of the most common classes of attack on TRSs cen-
tres on the injection of false evidence [Jøsang and Golbeck,
2009]. These kinds of attack include the misleading feedback
attack, unfair rating attack, bad mouthing and ballot stuff-
ing [Wang et al., 2014], and are referred to by Hoffman et
al. [2009] as self-promotion and slandering. Muller et. al.
[2016] provide advice for the design of TRSs to mitigate these
kinds of attack, but not the means to identify vulnerabilities
from such attackers. Wang et. al. [2015] show how users and
services can hide their true behaviour using these strategies.

Various attacks including injecting false evidence and
whitewashing are considered by Bidgoly & Ladani [2016],
where these are modelled as primitive actions in a planning
mechanism (POMDP) that learns effective attack strategies
through trial and error. The use of a partially observable
MDP is relevant in designing a single attacker attempting
to exploit an unknown TRS, where the ordering of the at-
tacker’s actions influences the outcome. In practice, however,
the search space for even a single attacker is substantial, mak-
ing a POMDP-based method infeasible. Further, the focus of
this paper is on identifying vulnerabilities to coordinated at-
tacks on TRSs from multiple actors, which is an important
emerging threat to contemporary systems.

3 A Trust Environment

We are agnostic about the specific nature of the trust model
being employed, and so we characterise the trust assessment
problem in relatively abstract terms. We assume a set of
agents, A = {a1, ..., an}, consisting of (potentially over-
lapping) sets of consumers, C = {c1, ..., cl} and service
providers P = {p1, ..., pm}. Some consumers may also
act as witnesses W ⊆ C, and we identify a specific agent,
δ ∈ A as the decision maker. The series of direct (or re-
ported) observations made by a consumer (or witness), ci, of
the performance of a provider, pj , up to time t is O0:t

ci→pj .
We assume that observations are discrete, and the number
of possible values that an observation may have is bounded:
Otci→pj = 0, ..., k where k ≥ 2. All information that is,
in principle, available to form a prediction of the future be-
haviour of an agent (i.e. a trust assessment) at time t is, there-
fore, E =

{
O0:t
ci→pj | ci ∈ C, pj ∈ P

}
. The goal of a statisti-

cal trust model is to use such evidence to make assessments
of future performance; i.e. the aim is to compute, for ci in-
terested in the future performance of pj , the expectation of

Pr
(
Ot+1
ci→pj | E

)
.

In recommender systems it is reasonable to assume that all
reported evidence from witnesses is available to a decision-
maker/aggregator. In the multi-agent context this is not the
case, and hence we consider situations in which a single
decision-maker, δ, has a partial view of the evidence avail-
able, Eδ ⊂ E . In both recommender systems and multi-
agent systems, however, evidence may be misleading; i.e. a
reported observation may differ from the actual experience
of the consumer concerned. Furthermore, in the multi-agent
context, the veracity of each reported observation may differ
for each agent collating its own viewpoint on the evidence of
past interactions; i.e.Otci→pj may vary among agents because
ci ∈ W provided very different witness reports. Throughout
the paper we consider the perspective of the agent that is the
target of the attack (the decision maker, δ), and so O0:t

ci→pj is
always understood to be the observations reported by ci about
pj to δ; actual observations may be missing and inaccurate
ones may be added. We refer to the set of evidence available
to agent δ on the basis of reported observations from other
agents and its own direct experience as Eδ .

Given the evidence available, a decision maker needs to
make assessments of the relative trustworthiness of potential
providers, and use these to decide whom to trust. For sim-
plicity and ease of evaluation, we consider only the relative
ranking of potential providers, which is the typical output of
a trust assessment mechanism. We do, however, consider ad-
versarial witnesses that can inject spurious evidence into the
system. The challenge for an adversary (or a set of adver-
saries), therefore, is to find types of attack that significantly
influence the decision maker. The challenge for a trust and
reputation system, in contrast, is how to interpret evidence in
a manner that is robust to the possibility of adversaries search-
ing for means to exploit the system. Addressing both chal-
lenges is necessary to develop a generalised attacker model
for trust and reputation systems.
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3.1 The Attack Space
We define an attack as an alteration of the evidence available
to a decision maker. A successful attack is one for which the
relative trustworthiness of the provider agents is significantly
changed from the viewpoint of the decision maker, δ. If we
assume that the evidence available to δ prior to the attack is
Eδ , an attack is the introduction of E ′ so that Ẽδ = E ′ + Eδ ,
where E ′ contains our misleading/fake reviews. We make no
assumptions about the new evidence, E ′. It may be from mul-
tiple witnesses, either because it is a collaborative attack, or
because an attacker can, in some way, control the genera-
tion of these reports. Identifying the most rewarding attack
in some context is, clearly, a highly complex problem.

In reality, an attacker will be restricted by the number of
witness reports it can affect, and there will be limits to the
number of additional observations that it can inject into the
system. We, therefore, investigate cases in which an attacker
is limited by: (1) its power, or the number of observations that
it can add through the attack (ρ = |E ′|); and (2) its control
over the witnesses (W ′ ⊆ W). The space of possible attacks
is X , such that:

|X | =
(ρ+ k ·

∣∣∣{O0:t
wi→pj | wi ∈ W

′, pj ∈ P
}∣∣∣− 1

k ·
∣∣∣{O0:t

wi→pj | wi ∈ W ′, pj ∈ P
}∣∣∣

)
(1)

The space of possible attacks is then the weak composi-
tions of ρ into the space in which the selected witnesses are
controlled by the attacker to provide new reports. When |W ′|
is reasonably large, it is not feasible to sample even a small
percentage of this space. For this reason, we explore a restric-
tion on strategies that reduces this large attack space, while
avoiding the imposition of designed-in attacks as is done in
related research. The aim here is to retain the challenge for
the attacker, where in any realistic scenario its search would
be limited to the selection of witnesses to use in an attack,
because using a witness may be costly in some context (e.g.
cost of spoofing or bribing the witness.).

The space of attacks is defined in terms of:

1. The number of witnesses to be used, s; and

2. The distribution of the attack power, ρ, across these se-
lected witnesses, considering those they can report on:

(a) All restricted partitions of ρ into s (D = RPs(ρ))
and their permutations without repetition: PDs

(b) The distribution of these permutations to each
witness-provider pair, such that the number of pos-
sible distributions is (|P| · k)s

The number of attacks in this reduced space is, therefore:

|X | =
(
|W ′|
s

)
D · PDs · (|P| · k)s (2)

where restricted partitions of ρ into s parts is: RPs(ρ) =
RPs(ρ−s)+RPs−1(ρ−1), RP0(0) = 1 andRPs(ρ) = 0 if
ρ ≤ 0 or s ≤ 0. The number, ρ, of additional reported obser-
vations from witnesses is distributed across all partitions, re-
stricted by the number of selected witnesses and the number

of providers. By this reduction, each witness can provide a
portion of the malicious reviews to a single selected provider.

3.2 An Example Attack
To illustrate the kinds of attack within this space, and the
potential effect of an attack from the perspective of the tar-
get, δ, consider the example illustrated in Figure 1. Here,
we have five providers, {p1 . . . p5} ∈ P and five witnesses,
{c1 . . . c5} ∈ W , the attacker has power, ρ = 5, and it
has control over (and/or has chosen) witnesses c1, c3 and c4
through which to target its attack. The aim is to improve the
relative position of provider p1 from the perspective of the
decision maker, δ.

In Figure 1, we show the ranking of each provider, r(pi),
before and after the attack, where this ranking is based on
the trustworthiness of each provider computed using a beta
distribution on the basis of positive (+1) and negative (−1)
observations reported by our witnesses. The detail being:

1. The attacker injects one positive rating from witness c1
regarding p1, increasing c1’s overall view of p1 to +2;

2. It injects one negative rating from witness c3 to p3, re-
ducing c3’s overall view of p3 down by −1; and

3. It injects three negative ratings from witness c4 regard-
ing p5, dropping this from +1 to −2.

One of the interesting characteristics of this attack (identi-
fied by our model) is that it distributes ρ across a number of
p1’s competitors as well as investing a small amount in pro-
moting p1. In this case the trust model is quite simple, but it
illustrates the kinds of orchestrated attack strategy that can be
identified. The questions remaining are: what is an optimal
attack, and how do we discover them efficiently?

3.3 Optimal Attacks
The optimal attack can be characterised in a number of ways.
We may consider setting the objective to maximise the abso-
lute trust rating of the attacker, pa:

E∗ =argmax
E′

τ(δ, pa, Ẽδ)− τ(δ, pa, Eδ)

subject to Ẽδ = E ′ + Eδ
(3)

where τ(δ, pa, E) is the decision maker’s trust in the at-
tacker, pa. This may, however, have no impact on the rank
of the attacker, even in the cases where the optimal attack is
found. This depends on the underlying formulation of the
TRS. To this end, we change the attacker’s objective to focus
on its rank, in this case, it will be improving its rank:

E∗ =argmax
E′

r(δ, pa, Eδ)− r(δ, pa, Ẽδ)

subject to Ẽδ = E ′ + Eδ
(4)

In this case, this attacker’s objective is a hard (in this
case, discrete) optimisation problem, which is strongly non-
convex. The difficulty stems from the fact that the objective
function in Equation (4) depends on the implemented TRS,
a “black box” whose formulation may be impossible to ac-
cess or intrinsically complex. Gradient-based methods are
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Figure 1: Agent δ’s relative rankings of service providers before and after a strategic attack, where the ρ=5
and s=3. The malicious attacker, p1, has control over witnesses c1, c3, c4 ∈ W ′.

unlikely to be suitable in this case, failing to escape from lo-
cal minima. For this reason, we apply two sampling-based
optimisation strategies to search for attacks.

3.4 Attack Search Strategies
Given the size of the space of possible attacks in realistic sce-
narios, an attacker will be able to sample only a small pro-
portion, the extent of which will depend on computational re-
sources available. To solve the attacker’s optimisation prob-
lem, we apply Monte Carlo and hierarchical sampling-based
optimisation techniques.

Monte Carlo Sampling, MCS, uses Monte Carlo simula-
tion to randomly sample the objective function, approximat-
ing the expected reward via the empirical mean [Kleywegt et
al., 2002].

Hierarchical Sampling, HS, is an optimisation technique
that is designed to exploit smoothness properties of an ob-
jective function (local Lipschitz) [Bubeck et al., 2011]. The
smoothness property, in our case, would be manifest if simi-
larly rewarding attacks are closely ordered in the space.

These sampling methods can, of course, be halted at any
time, returning the best attack identified.

4 Evaluation
In order to evaluate our model for identifying trust and rep-
utation system vulnerabilities we provide a simulation envi-
ronment, through which controlled experiments can be con-
ducted for attacks focused on a target decision maker, δ. This
simulation and analysis environment, along with implemen-
tations of the trust models used in this section, is freely avail-
able [Güneş et al., 2019].

Parameter Value Description
|P| 20 The number of provider agents
|W| 20 The number of witness agents
s 2 The number of witnesses under the

attacker’s control
t 10 The number of provider observa-

tions made by each witness

Table 1: Experimental constants.

The simulation environment is designed to assess the ef-
fect of a series of attack trials (determined by the sampling
method employed). Before each attack, a set of witnesses,
W , interact with a set of providers, P , over a number of
rounds. Observations made by witnesses are drawn from
Bernoulli distributions characterising the behaviour of each
provider. The parameters of these Bernoulli distributions are
drawn from either a Uniform distribution or a Dirichlet with
all its parameters set to 20 to produce providers that behave
in a similar manner.

To capture variety in connectivity between witnesses and
providers, we introduce an indirect knowledge degree, d,
that denotes the chance of each witness interacting with a
provider, and t is the number of times they interact (see Ta-
ble 1). Witnesses transform observations received from each
provider via a k-by-k behaviour matrix θci , which allows us
to control how each witness reports observed behaviour from
each provider. Their reports are categorically distributed by
this matrix, with values for each row in θci drawn from a dis-
tribution such that the sum of each row is 1.0. If, for example,
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we have binary observations, k = 2, and if θci =
[
0 1.0
1.0 0

]
the witness reports the reverse of their true observation with-
out noise. Note, therefore, that all providers behave in a sim-
ilar manner, but witnesses vary in reliability.

We consider four experimental variables: the strategy used
to search for attacks (MCS or HS); the connectivity between
witnesses and providers (d); the power of the attacker (ρ);
and the behaviour of witnesses (θci ). Other parameters are
fixed as specified in Table 1. We further restrict the attacker
to explore only 1% of the search space for all strategies across
all experiments.

Four widely studied TRSs along with a simple baseline
(average) function are selected for our investigation. These
models (summarised below) represent a variety of commonly
employed techniques for handling malicious witnesses. We
implemented them based on information from respective pa-
pers, choosing reasonable values for parameters after a set of
runs to ensure that performance is not hindered, and all im-
plementations are freely available [Güneş et al., 2019].

BRS [Jøsang and Ismail, 2002] uses Bayesian update to
fuse observations from different providers and witnesses. The
work by Whitby et. al. [2004] extends the model by adding
a filtering mechanism where evidence that deviates from the
majority up to a degree is discarded.

TRAVOS [Teacy et al., 2006] discounts the influence of wit-
nesses by heuristically calculating the similarity between dis-
tributions of witness observations; in contrast, BRS discards
divergent reports. In TRAVOS, similarity is calculated by tab-
ulating the outcomes by using a particular selection of bins
that denote regions of the outcome distribution.

HABIT [Teacy et al., 2012] is a hierarchical Bayesian
model to estimate trustworthiness by similarities between
providers. The decision maker calculates the similarity be-
tween the opinions of witnesses about a provider in compari-
son to other providers and the weighted average is calculated.

EIGEN [Kamvar et al., 2003] uses power iteration to cap-
ture transitivity of trust between parties. The outcomes of
observations are normalised and stored in a global matrix. A
global trust value is then calculated using the left-principal
eigenvector of this matrix.

The objective of the attacker, pa, is to maximise rank gain
rTRS(δ, pa, E) − rTRS(δ, pa, Ea) from the perspective of δ.
The attacker has no knowledge about any theoretically identi-
fied vulnerabilities of TRSs, and has no predetermined strat-
egy. The attacker observes a snapshot of the system and cre-
ates a strategy, given ρ and s, in order to increase its rank.

To gain further insights into the TRSs considered, we cat-
egorise the most effective attack identified in each sampling
run to determine the type of attack it represents and its effect.
Our categories include, but extend those outlined by Hoffman
et al. [2009]. The definitions we use are: self-promoting SP,
positive reports to the attacker, self-slandering SS, negative
reports to the attacker, self-orchestrated SO, both negative
and positive reports to the attacker, slandering S negative re-
ports to other providers, promoting P, positive reports to other
provider, orchestrated O positive and negative reports to other
providers and complete-orchestrated CO negative or positive
reports to both the attacker and providers. The frequency of
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Figure 2: Comparing MCS and HS in varying TRSs. Triangles de-
note the mean of the corresponding distribution.

each type of attack identified and the degree of rank gain that
is achieved are measured.

4.1 Results
Here, we present the results of our experiments. Each experi-
mental condition is repeated 3000 different instances, so that
we minimise the effect of the starting point of the attacker be-
fore the attack. In our results, we plot the distribution of rank
gain and mean rank gain over these scenarios to illustrate the
performance of our attacker model. To validate the statistical
significance, we performed pairwise Mann–Whitney U tests
with Bonferroni correction1.

Identifying an Effective Search Strategy
Figure 2 shows the performance of the attacker across dif-
ferent TRSs given the selected search strategy. The attacker
achieves a minimum of 2 rank gains on average for all TRSs,
but EIGEN and TRAVOS are significantly more vulnerable.
With respect to our search strategies, MCS performed at least
as well as HS for all TRSs, and showed a significantly higher
performance against BRS, EIGEN and TRAVOS. All three
of these cases were statistically significant with p < 0.001.
The cause of the differences between MCS and HS is, we be-
lieve, because there is little structure in the space of attacks
(smoothness property) that may be exploited by HS. In sub-
sequent experiments we use MCS as our search strategy.

Optimising Attack Strategies
Figure 3 shows the performance (rank gain) as power ρ (Fig-
ure 3a), population behaviour (Figure 3b) and connectivity
between witnesses and providers (Figure 3c) is varied. As is
expected, increasing the power of the attacker enables it to
achieve a greater rank gain against all TRSs (Figure 3a-b).
The rate of increase does, however, vary across the two popu-
lation profiles. When the results from Figure 3b is compared
with Figure 3a, the rank gain achieved against EIGEN on av-
erage decreased when providers have similar behaviours. Fig-
ure 3c shows Average and HABIT models had smaller mean
rank gain comparing to BRS, EIGEN and TRAVOS, starting
from t = 6.

1Our reason for choosing this test is that the resulting rank gain
distributions were not normally distributed according to the Shapiro-
Wilk test.
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Figure 4: Distributions of rank gain achieved when an attack type is
selected in varying TRSs.

Identifying Vulnerabilities
Figure 4 shows the types of attacks that are found by our
attacker model. In the top section, we show the count of
each type of attack and below the distribution of rank gain
achieved. Complete-orchestrated (CO) attacks were most ef-
fective for all TRSs, and utilising CO attacks returned higher
rank gain than other strategies. In the remaining cases, SP
was the second mostly selected attack strategy with a lower
expectation.

5 Discussion
The results show that, under challenging scenarios where the
attacker power and the number of controlled witnesses are
limited, our model was able to affect all TRSs considered
such that the attacker attained a rank position increase of at
least 2. Selected TRSs vary in their resilience to attacks, and
many perform poorly in in comparison to a simple averag-
ing mechanism. Further insight into the structure of effective
attacks can be acquired by clustering attack patterns around
specific categories. This reveals that the best attack strategies
(at least for a rank gain objective) consist of a combination
of actions against a range of providers. A robustness anal-
ysis of this kind provides a TRS designer with a useful tool

to understand the types of strategies that might be employed
by a sophisticated attacker, and hence focus development of
mitigation methods.

Assumptions made in this research include that the attacker
can observe all available evidence, and knows the TRS being
employed. The attacker can, therefore, calculate the ranks
of each provider whenever the evidence changes. In practice,
the attacker will have some uncertainty of the TRS being used
in the target system. From the perspective of the designer,
however, it is reasonable to analyse resilience of a TRS from
this worst-case perspective.

It is worth mentioning that our attacker model selects wit-
nesses according to the objective function without consider-
ing the cost of using a particular witness. Costs associated
with witness selection may vary; e.g. employing a witness
considered trustworthy may incur higher cost. This could,
however, be captured by adapting the objective function.

We view the TRS analysis method proposed as a basis for
reducing vulnerabilities in future trust models. Coordinated
attack patterns identified for a specific TRS may be used as a
basis for automated attack recognition mechanisms to supple-
ment the system. Suspicious patterns identified can be passed
on for further investigation.

6 Conclusion
We have introduced and demonstrated the practical value of
a new and generic method for identifying vulnerabilities in
TRSs. Given a characterisation of the space of possible at-
tacks, we define an attacker model. Our model may then be
employed to search for effective strategies through derivative-
free optimisation methods. The outcome is a set of attack
profiles and an estimate of the vulnerability of the TRS to
an attack of this kind. In this way, we contribute to the de-
velopment of future trust and reputation systems that are less
vulnerable to sophisticated external threats.
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