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Abstract
To choose a suitable multi-winner voting rule is a
hard and ambiguous task. Depending on the con-
text, it varies widely what constitutes the choice
of an “optimal” subset. In this paper, we of-
fer a new perspective on measuring the quality of
such subsets and—consequently—of multi-winner
rules. We provide a quantitative analysis using
methods from the theory of approximation algo-
rithms and estimate how well multi-winner rules
approximate two extreme objectives: diversity as
captured by the Approval Chamberlin–Courant rule
and individual excellence as captured by Multi-
winner Approval Voting. With both theoretical and
experimental methods we classify multi-winner
rules in terms of their quantitative alignment with
these two opposing objectives.

1 Introduction
A multi-winner rule is a voting method for selecting a fixed-
size subset of alternatives, a so-called committee. More for-
mally, it is a function that given a set of objects, preferences
of a population of voters over these objects, and an integer k,
returns a subset of exactly k objects. Ideally, a multi-winner
rule should select the “best” committee, but the suitability
of a chosen committee strongly depends on the specific con-
text. For instance, if voters are experts (e.g., judges in a sport
competition) whose preferences reflect their estimates of the
objective qualities of candidates, then the goal is typically
to pick k individually best candidates, e.g., those candidates
who receive the highest scores from judges. Intuitively and
somewhat simplified, in this and similar scenarios the qual-
ity of candidates can be assessed separately, and a suitable
multi-winner rule should pick the k best-rated ones. On the
contrary, if the voters are citizens and the goal is to choose
locations for k public facilities (say, hospitals), then our goal
is very different: assessing the candidates separately can re-
sult in building all the facilities in one densely populated area;
yet, it is preferable to spread them in order to ensure that as
many citizens as possible have access to some facility in their
vicinity.

These two examples illustrate two very different goals of
multi-winner rules, which can be informally described as fol-

lows [Faliszewski et al., 2017]: Diversity requires that a rule
should select a committee which represents as many voters
as possible; this translates to choosing a hospital distribution
that covers as many citizens as possible. Individual excel-
lence suggests picking those candidates that individually re-
ceive the highest total support from the voters; this translates
to selecting a group of best contestants in the previous exam-
ple. However, many real-life scenarios do not fall clearly into
one of the two categories. For example, rankings provided by
a search engine should list the most relevant websites but also
provide every user at least one helpful link. In such cases, a
mechanism designer would be interested in choosing a rule
that guarantees some degree of diversity and individual ex-
cellence at the same time, putting more emphasis on either of
them depending on the particular context.

Consequently, to properly match rules with specific appli-
cations, it is essential to understand to which degree com-
mittees chosen by established multi-winner rules are diverse
or individually excellent. In this paper, we (1) develop a set
of tools that allows a mechanism designer to better under-
stand the nature of multi-winner rules and to assess the trade-
offs with respect to diversity and individual excellence, and
(2) provide a classification that clarifies the behavior of well-
known rules with respect to the two criteria. We focus on the
case where voters express their preferences by providing sub-
sets of approved candidates (the approval-based model), yet
our approach is applicable to other preference models as well.

1.1 Methodology and Contribution
In our approach, we choose two approval-based multi-winner
rules, Chamberlin–Courant (CC) and Multi-winner Approval
Voting (AV), as distinctive representatives of the principles
of diversity and individual excellence, respectively. We mea-
sure how close certain rules are to AV and CC—we measure
this distance by using the concept of the worst-case approx-
imation. Thus, by investigating how well certain rules ap-
proximate AV or CC, we provide guarantees of how individ-
ually excellent or diverse these rules are; such guarantees can
be viewed as quantitative properties of voting rules. This
approach is fundamentally different from the traditional ax-
iomatic approach, which is qualitative: a voting rule can ei-
ther satisfy a property (axiom) or not. Our approach provides
much more fine-grained information and allows us to esti-
mate the degree to which a certain property is satisfied. With
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these methods, we understand voting rules as a compromise
between different (often contradictory) goals.

There are several reasons for our choice of AV and CC:
First, both AV and CC are well-known, well understood rules.
Second, due to their different nature they are a good choice
for a two-dimensional evaluation. Third, they can be char-
acterized by properties that capture individual excellence and
diversity [Lackner and Skowron, 2018a]. Finally, they em-
body the ideas of utility-maximization and egalitarian max-
imization (as in the classic works on collective utility func-
tions), which in turn capture the spirit of excellence and di-
versity.

Our main contribution lies in developing a new method for
evaluating multi-winner rules. Specifically, we provide two
types of analyses for a selection of prominent multi-winner
rules. In Section 3, we derive theoretical upper bounds on
how much an outcome of the considered multi-winner rules
can differ from the outcomes of CC and AV. We call these
bounds CC-guarantee and AV-guarantee. These can be in-
terpreted as worst-case (over all possible preference profiles)
guarantees for diversity and individual excellence. Our guar-
antees are given as functions of the committee size k and
return values between 0 and 1. Intuitively, a higher CC-
guarantee (resp. AV-guarantee) indicates a better perfor-
mance in terms of diversity (resp. individual excellence),
where 1 denotes that the rule performs as good as CC (resp.,
AV). Table 1 summarizes our results.

In Section 4, we complement the worst-case analysis from
Section 3 with an experimental study yielding approximation
ratios for actual data sets. In extensive experiments we es-
timate how on average the outcomes of the considered rules
differ from the outcomes of CC and AV.

Our most important findings can be summarized as fol-
lows. Among the studied voting rules, Proportional Ap-
proval Voting (PAV) achieves the best compromise between
AV and CC; this can be observed both from theoretical
and experimental results. The sequential rules seq-PAV and
Phragmén’s rule, however, achieve almost the same quality
while being polynomial-time computable (in contrast to PAV,
which is computationally intractable [Skowron et al., 2016;
Aziz et al., 2015]). Also the 2-Geometric rule achieves a
very good compromise, but is slightly leaning towards di-
versity. More generally, we show that the p-Geometric rule
spans the whole spectrum from AV to CC, controlled through
the parameter p. Hence, by adjusting the parameter p, one
can obtain any desired compromise between AV and CC.

Finally, we show that while proportional rules tend to
achieve a good compromise between individual excellence
(AV) and diversity (CC), proportionality does not yield an op-
timal compromise: we find a non-proportional rule that out-
performs any proportional rule with respect to both their AV-
and CC-guarantee.

1.2 Related Work
Our work is based on the idea of approximation algo-
rithms, where computationally hard problems are solved by
polynomial-time algorithms that can guarantee a certain (im-
perfect) solution quality. In our paper, we study how well
popular multi-winner rules can approximate other, archetyp-

ical rules. The work of Brânzei et al. [2013] on the dy-
namic price of anarchy can be viewed in such a perspec-
tive: to which degree can the outcome of voting rules
based on sincere preferences be approximated by the same
voting rules with insincere preference (obtained via “self-
ish” best-response dynamics)? In a similar vein, Oren and
Lucier [2014] study the performance of online social choice
procedures in comparison to optimal (offline) procedures.
Anshelevich et al. [2018] approximate an optimal social
choice in a metric model with voting rules using rankings as
input, i.e., using limited information.

The normative study of multi-winner election rules typi-
cally focuses on axiomatic analysis. For approval-based rules
a number of axioms describing proportionality have been re-
cently identified and explored, in particular in the context
of the rules that we study in this paper [Aziz et al., 2017a;
Sánchez-Fernández et al., 2017; Brill et al., 2017; Skowron
et al., 2017; Aziz et al., 2018; Lackner and Skowron, 2018a].
For a survey on properties of multi-winner rules, with the
focus on the ideas of individual excellence, diversity, and
proportionality, we refer the reader to a survey by Fal-
iszewski et al. [2017].

Another approach to understanding the nature of different
multi-winner rules is to analyze how these rules behave on
certain subdomains of preferences, where their behavior is
much easier to interpret, e.g., on two-dimensional geometric
preferences [Elkind et al., 2017], on party-list profiles [Brill
et al., 2018], or on single-peaked and single-crossing do-
mains [Aziz et al., 2017b]. Other approaches include quan-
tifying regret and distortion in utilitarian models [Caragian-
nis et al., 2017], assessing their robustness [Bredereck et al.,
2017], and evaluating them based on data collected from sur-
veys [Rapoport et al., 1988; Van der Straeten et al., 2018].

2 Preliminaries
For each t ∈ N, we let [t] = {1, . . . , t}. For a set X , we
write S(X) to denote the powerset of X , i.e., the set of all
subsets of X . By Sk(X) we denote the set of all k-element
subsets of X . Let C = {c1, . . . , cm} and N = {1, . . . , n} be
sets of m candidates and n voters, respectively. Voters reveal
their preferences by indicating which candidates they like: by
A(i) ⊆ C we denote the approval set of voter i (that is, the
set of candidates that i approves of). For a candidate c ∈ C,
by N(c) ⊆ N we denote the set of voters who approve c.
Given a set of candidates X ⊆ C, we write N(X) to denote
the set of voters who approve at least one candidate inX , that
is N(X) = {i ∈ N : X ∩ A(i) 6= ∅}. We call the collection
of approval sets A = (A(1), A(2), . . . , A(n)), one per each
voter, an approval profile. We use the symbol A to represent
the set of all possible approval profiles.

We call the elements of Sk(C) size-k committees.
Throughout the paper, we use the symbol k to represent the
desired size of the committee to be elected. An approval-
based committee rule (in short, an ABC rule) is a functionR
that takes as an input an approval profile and an integer k ∈ N
(the required committee size), and returns a set of size-k com-
mittees. Below, we recall the definitions of ABC rules which
are the objects of our study.
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AV-guarantee CC-guarantee
lower upper lower upper

AV 1 1 1
k

1
k

CC 1
k

1
k 1 1

seq-CC 1
k

1
k 1− 1/e 1− (1− 1/k)k

PAV 1
2+
√
k

2
b
√
kc −

1
k

1
2

1
2 + 1

4k−2

seq-PAV 1
2
√
k

2
b
√
kc −

1
k

1
log(k)+2

1
2 + 1

4k−2

p-Geometric W(k log(p))
k log(p)+W(k log(p))

1
k + 2W(k log(p))

k log(p)
p−1
p

p
p+ k

k+2

Monroe 1
k

1
k

1
2

1
2 + 1

k−1

seq-Phragmén 1
5
√
k+1

2
b
√
kc −

1
k

1
2

1
2 + 1

4k−2

Table 1: These worst-case guarantees are functions of the committee size k. A higher value means a better guarantee, with 1 denoting optimal
performance. In most cases we could only find (accurate) estimates instead of the exact values of the guarantees: the “lower” and “upper”
values in the table denote that the respective guarantee is between these two bounds.

Multi-winner Approval Voting (AV). This rule selects k
candidates which are approved by most voters. More for-
mally, for a profileA the AV-score of committeeW is defined
as scav(A,W ) =

∑
c∈W |N(c)|, and AV selects committees

W that maximize scav(A,W ).

Approval Chamberlin–Courant (CC). For a profile A we
define the CC-score of a committee W as sccc(A,W ) =∑
i∈N min

(
1, |A(i) ∩ W |

)
= |N(W )|; CC outputs com-

mittees W that maximize sccc(A,W ). In words, CC aims
at finding a committee W such that as many voters as pos-
sible have their representatives in W (a representative of a
voter is a candidate she approves of). The CC rule was first
mentioned by Thiele [1895], and then introduced in a more
general context by Chamberlin and Courant [1983].

Proportional Approval Voting (PAV). This rule [Thiele,
1895] selects committees with the highest PAV-scores, de-
fined as scpav(A,W ) =

∑
i∈N H (|W ∩A(i)|), where H(t)

is the t-th harmonic number, i.e., H(t) =
∑t
i=1

1/i. By using
the harmonic function H(·), voters who already have more
representatives in the committee get less voting power than
those with fewer representatives; this leads to strong propor-
tionality guarantees [Aziz et al., 2017a].

p-Geometric. This rule [Skowron et al., 2016] is defined
analogously to PAV but uses an exponentially decreasing
function instead of H(·). Formally, for a given parameter
p ≥ 1 the p-geometric rule assigns to each committee W the
score scp-geom(A,W ) =

∑
i∈N

∑|A(i)∩W |
j=1

1
pj , and picks the

committees with the highest scores. Note that the 1-geometric
rule is simply AV.

Sequential CC/PAV/p-Geometric. For each rule R ∈
{CC,AV,PAV, p-geometric}, we define its sequential vari-
ant, denoted as seq-R, as follows. We start with an empty
solution W = ∅ and in each of the k consecutive steps we
add to W a candidate c that maximizes scR(A,W ∪ {c}),

i.e., the candidate that improves the committee’s score most.
We break ties lexicographically.

Monroe. Monroe’s approval-based rule [1995], similarly to
CC, aims at maximizing the number of voters who are repre-
sented in the elected committee. The difference is that Mon-
roe additionally imposes that each committee member should
represent roughly the same number of voters. Formally, a
Monroe assignment of the voters to a committee W is a func-
tion φ : N → W such that each candidate c ∈ W is as-
signed roughly the same number of voters, i.e., that bn/kc ≤
|φ−1(c)| ≤ dn/ke. Let Φ(W ) be the set of all possible Mon-
roe assignments to W . The Monroe-score of W is defined as
scMon(A,W ) = maxφ∈Φ(W )

∑
i∈N |A(i)∩{φ(i)}|; the rule

returns all committees W that maximize scMon(A,W ).

Phragmén’s Sequential Rule (seq-Phragmén). This rule
[Phragmén, 1894; Brill et al., 2017] can be understood as a
load distribution procedure. Each selected committee mem-
ber c is associated with one unit of load that needs to be dis-
tributed among those voters who approve c. The rule pro-
ceeds in k steps. In each step it selects one candidate and
distributes its load as follows: let `j(i − 1) denote the to-
tal load assigned to voter j just before the i-th step. In
the i-th step the rule selects a candidate c and finds a load
distribution {xj : j ∈ N} that satisfies the following three
conditions: (1) xj > 0 implies that voter j approves c,
(2)
∑
j∈N xj = 1, and (3) the maximum load assigned to

a voter, maxj∈N (`j(i − 1) + xj), is minimized. The new
total load assigned to a voter j ∈ N after the i-th step is
`j(i) = `j(i− 1) + xj .

3 Worst-Case Guarantees
In this section we analyze the multi-winner rules from Sec-
tion 2 with respect to how well they perform in terms of di-
versity and individual excellence. In our study we use the
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established idea of approximation in a novel way: by esti-
mating how well a given ruleR approximates CC (resp., AV),
we quantify how R performs with respect to diversity (resp.,
individual excellence). This differs from the typical use of
the idea of approximation in the following aspects: (1) We
do not seek new algorithms approximating a given objective
function as well as possible, but rather analyze how well the
existing known rules approximate given functions (even if it
is apparent that better and simpler approximation algorithms
exist, these algorithms might not share other important prop-
erties of the considered rules). (2) We are not approximating
computationally hard rules with rules easier to compute. On
the contrary, we will be even investigating how computation-
ally hard rules (such as PAV, Monroe, etc.) approximate the
algorithmically trivial AV rule.
Definition 1. Recall that for a profile A, scav(A,W ) and
sccc(A,W ) denote the AV-score and CC-score of committee
W , respectively. The AV-guarantee of an ABC rule R is a
function κav : N → [0, 1] that takes as input an integer k,
representing the size of the committee, and is defined as:

κav(k) = inf
A∈A

minW∈R(A,k) scav(A,W )

maxW∈Sk(C) scav(A,W )
.

Analogously, the CC-guarantee ofR is defined by

κcc(k) = inf
A∈A

minW∈R(A,k) sccc(A,W )

maxW∈Sk(C) sccc(A,W )
.

The AV and CC-guarantees can be viewed as quantitative
properties of multi-winner rules. In the remaining part of
this section we evaluate the previously defined rules against
their AV- and CC-guarantees. Clearly, the AV-guarantee of
Approval Voting and the CC-guarantee of the Chamberlin–
Courant rule are the constant-one function. We start by estab-
lishing the AV-guarantee of CC and vice versa. Due to space
constraints, most proofs had to be omitted, but can be found
in a longer version [Lackner and Skowron, 2018b].
Proposition 1. The CC-guarantee of AV is 1/k.
Proposition 2. The AV-guarantee of CC and seq-CC is 1/k.

Propositions 1 and 2 give a baseline for our further anal-
ysis. In particular, we would expect that “good” rules im-
plementing a tradeoff between diversity and individual excel-
lence should have AV and CC-guarantees better than 1/k.

We note that the CC-guarantee of seq-CC is 1− (1− 1/k)k

(which approaches 1 − 1/e ≈ 0.63 for large k). This
is the result of the fact that seq-CC is a (1− (1− 1/k)k)-
approximation algorithm for CC [Lu and Boutilier, 2011].

Let us turn our attention to the Monroe rule, which is often
considered a proportional rule (e.g., it satisfies proportional
justified representation [Sánchez-Fernández et al., 2017]).
Hence, one could expect that this rule offers a good compro-
mise between AV and CC. Perhaps surprisingly, this is not the
case: Monroe does not offer a better AV-guarantee than CC.
Proposition 3. The AV-guarantee of Monroe is 1/k, its CC-
guarantee is between 1

2 and 1
2 + 1

k−1 .
Let us now move to multi-winner voting systems offering

asymptotically better guarantees than Monroe. As we will
see, the examination of such rules requires a more complex
combinatorial analysis. We start with PAV:

Theorem 1. The AV-guarantee of PAV is between 1
2+
√
k

and
2√
k

; its CC-guarantee between 1
2 and 1

2 + 1
4k−2 .

Proof. To give a flavor of the proof techniques used in this
paper, we show that the AV-guarantee of PAV is at least equal
to 1

2+
√
k

. Consider an approval profile A and a PAV-winning
committee Wpav; let n̄ = |N(Wpav)| denote the number of
voters who approve some member of Wpav. For each i ∈ N
we set wi = |A(i)∩Wpav|. Let Wav be a committee with the
highest AV-score. W.l.o.g., we can assume thatWav 6= Wpav.
Now, consider a candidate c ∈ Wav \Wpav with the highest
AV-score, and let nc = |N(c)| denote the number of voters
who approve c. If we replace a candidate c′ ∈ Wpav with c,
the PAV-score of Wpav will change by:

∆(c, c′) =
∑

i : c∈A(i)∧c′ /∈A(i)

1

wi + 1
−

∑
i : c′∈A(i)∧c/∈A(i)

1

wi

=
∑

i : c∈A(i)

1

wi + 1
−

∑
i : c′∈A(i)

1

wi

+
∑

i : {c,c′}⊆A(i)

1

wi
− 1

wi + 1

≥
∑

i∈N(c)

1

wi + 1
−

∑
i∈N(c′)

1

wi
.

Let us now compute the sum
∑
c′∈Wpav

∆(c, c′) =

=
∑

c′∈Wpav

∑
i∈N(c)

1

wi + 1
−

∑
c′∈Wpav

∑
i∈N(c′)

1

wi

= k
∑

i∈N(c)

1

wi + 1
−
∑
i∈N

∑
c′∈Wpav∩A(i)

1

wi

= k
∑

i∈N(c)

1

wi + 1
− n̄

We know that for each c′ ∈ W we have ∆(c, c′) ≤ 0, thus
k
∑
i∈N(c)

1
wi+1 − n̄ ≤ 0 and

∑
i∈N(c)

1
wi+1 ≤

n̄
k . We now

use the inequality between the harmonic and arithmetic mean
to obtain:

n̄

k
≥

∑
i∈N(c)

1

wi + 1
≥ n2

c∑
i∈N(c)(wi + 1)

.

This can be transformed to:

knc ≤
n̄
(∑

i∈N(c) wi + nc
)

nc
=
n̄
∑
i∈N(c) wi

nc
+ n̄.

Now, let us consider two cases. If n̄ ≤ nc
√
k, then we ob-

serve that:

scav(A,Wav)

scav(A,Wpav)
≤
∑
i∈N wi + knc∑

i∈N wi
= 1 +

knc∑
i∈N wi

≤ 1 +

n̄
∑

i∈N(c) wi

nc
+ n̄∑

i∈N wi
≤ 2 +

n̄

nc
≤
√
k + 2.
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(a) AV-guarantee

p1 2 3 4 5 6
0
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1

(b) CC-guarantee

Figure 1: Guarantees for the p-Geometric rule for k = 20 and vary-
ing p. In both figures, the upper and the lower line depict the upper
and lower bound from Theorem 3.

On the other hand, if n̄ ≥ nc
√
k, then:

scav(A,Wav)

scav(A,Wpav)
≤
∑
i∈N wi + knc∑

i∈N wi
= 1 +

knc∑
i∈N wi

≤ 1 + knc/n̄ ≤ 1 +
√
k.

In either case we have that scav(A,Wpav)
scav(A,Wav) ≥

1
2+
√
k

.

For sequential PAV we can prove an AV-guarantee qual-
itatively similar to the one for PAV. Concerning its CC-
guarantee, however, the gap between the lower and upper
bounds is large; finding a more accurate estimate remains an
interesting open question.
Theorem 2. The AV-guarantee of sequential PAV is between

1
2
√
k

and 2
b
√
kc−

1
k ; its CC-guarantee is between 1

log(k)+2 and
1
2 + 1

4k−2 .

The following theorem states guarantees for the p-
geometric rule. Let W(·) denote the Lambert W function,
a function that increases asymptotically slower than log.
Theorem 3. The AV-guarantee of the p-geometric rule is be-
tween

W(k log(p))

k log(p) +W(k log(p))
and

2W(k log(p))

k log(p)
+

1

k
,

its CC-guarantee is between p−1
p and p

p+ k
k+2

.

The guarantees of Theorem 3 are visualized in Figure 1.
We can see that p-geometric rules, for p ∈ [1,∞), form a
spectrum connecting AV and CC (with p → 1 we approach
AV and with p → ∞ we approach CC): by adjusting the
parameter p one can control the tradeoff between the diversity
and individual excellence.

Finally, we consider seq-Phragmén, also a rule aimed at
achieving proportional representation. It achieves guarantees
similar to PAV.
Theorem 4. The AV-guarantee of seq-Phragmén is between

1
5
√
k+1

and 2
b
√
kc −

1
k ; its CC-guarantee is between 1

2 and
1
2 + 1

4k−2 .

Let us conclude Section 3 with an investigation on how
proportionality relates to diversity and individual excellence.
In an initial stage of this study we conjectured that propor-
tionality can be characterized as a certain compromise be-
tween diversity and individual excellence. However, as we

will argue below, proportionality should be rather viewed as
a third, independent objective. Indeed, we will construct an
ABC rule that is strictly better than any proportional rules
with regard to both its AV- and CC-guarantee.

For each α ∈ [0, 1] we define α-CC-AV as a linear com-
bination of CC and AV. For an approval-based profile A, α-
CC-AV first computes a size-dαke committee W1 that max-
imizes sccc(A,W1), and a size-b(1 − α)kc committee W2

that maximizes scav(A,W2); then, the rule returns commit-
tee W = W1 ∪W2.
Proposition 4. The CC-guarantee of α-CC-AV is at least α;
its AV-guarantee is at least 1− α− 1/k.

Let us now examine what AV- and CC-guarantees a pro-
portional rule can achieve. We consider a very weak def-
inition of proportionality, called lower quota [Balinski and
Young, 1982]. Lower quota applies only to party-list pro-
files: approval profiles A in which for all voters i, j ∈
N it holds that either A(i) = A(j) or A(i) ∩ A(j) =
emptyset; identical voters belong to “same party”. Lower
quota guarantees each group N ′ ⊆ N to receive at least

min

(∣∣⋂
i∈N ′ A(i)

∣∣ ,⌊k|N ′|
|N |

⌋)
representatives in any win-

ning committee, i.e., they receive a fair proportion of the
committee seats (rounded down) as long as they have suffi-
cient joint candidates. Lower quota is strictly weaker than
proportionality axioms typically used for ABC rules (such as
extended and proportional justified representation [Sánchez-
Fernández et al., 2017; Aziz et al., 2017a]).
Proposition 5. The AV-guarantee of a rule that satisfies
lower quota is at most 2

b
√
kc −

1
k , its CC-guarantee is at most

3
4 + 3

8k−4 .

These bounds yield that α-CC-AV for α = 0.76 achieves
a better AV- and CC-guarantee for all k ≥ 81. In particu-
lar, the AV-guarantee of α-CC-AV is superior: it guarantees
a constant fraction of the optimal AV score. We conclude
that proportional rules can achieve a desirable compromise
between diversity and individual excellence (e.g., PAV), but
this compromise is not optimal (as we have just seen) and not
all proportional rules achieve good AV-guarantees (Monroe
performs no better than CC).

4 Average Guarantees: An Experimental
Analysis

To complement the theoretical analysis of Section 3, we have
run experiments that aim at assessing AV-ratios and CC-ratios
achieved by several voting rules. These two ratios are per-
instance analogues of AV- and CC-guarantee and are defined
as follows: Given an ABC rule R and a profile A, the AV-
ratio forR(A, k) is defined as:

minW∈R(A,k) scav(A,W )

maxW∈Sk(C) scav(A,W )
;

the CC-ratio is defined analogously. In the following exper-
iments, we have calculated the AV- and CC-ratios for real-
world and randomly generated profiles and compared them
for different voting rules.
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Figure 2: Results for the preflib dataset (upper boxplot shows AV-ratios, the lower CC-ratios).

We have used two data sets: profiles obtained from preflib.
org [Mattei and Walsh, 2013] and profiles generated via a
uniform distribution. We restricted our attention to profiles
where both the AV-ratio of CC and the CC-ratio of AV is at
most 0.9. This excludes profiles where an (almost) perfect
compromise between AV and CC exists. The uniform dataset
consists of 500 profiles with 20 candidates and 50 voters,
each. Voters’ approval sets are of size 2–5 (chosen uniformly
at random); the approval sets of a given size are also chosen
uniformly at random. Experiments for the uniform dataset
use a committee size of k = 5.

As preflib.org does not offer approval-based datasets, we
extracted approval profiles from ranked ballots as follows:
for each ranked profile and i ∈ {1, . . . , k − 1}, we gener-
ated an approval profile assuming that voters approve all can-
didates that are ranked in the top i positions. As before, we
excluded profiles that allowed an almost perfect compromise
between AV and CC. For the preflib dataset we considered
k ∈ {3, . . . , 7}, obtaining a total number of 243 instances.

We considered the following ABC rules: AV, CC, seq-CC,
PAV, seq-PAV, seq-Phragmén, Monroe, and the 1.5-, 2-, and
5-Geometric rule. Our results are displayed as boxplots in
Figure 2 for the preflib dataset; results for the random data
set are largely similar. The top and bottom of boxes represent
first and third quantiles, the middle red bar shows the median.
The dashed intervals (whiskers) show the range of all values,
i.e., the minimum and maximum AV- /CC-ratios.

The main conclusion from the experiments is that the clas-
sification obtained from worst-case analytical bounds also
holds in our (average-case) experiments. PAV, seq-PAV, and
seq-Phragmén perform very well with respect to the AV-ratio,
beaten only by 1.5-Geometric and AV itself. This is mir-
rored by our theoretical results as only PAV, seq-PAV, and
seq-Phragmén achieve a Θ(1/

√
k) AV-guarantee. Also the 2-

Geometric rule achieves comparable AV-ratios. Even better
AV-ratios are achieved only by 1.5-Geometric and AV.

Considering the CC-ratio, we see almost optimal perfor-
mance of seq-CC, Monroe, and 5-Geometric, and good per-
formance of PAV, seq-PAV, seq-Phragmén, and 2-Geometric.
Minor variations within these groups seem to depend on the

chosen dataset. We also observe that 5-Geometric is better
than Monroe’s rule and seq-CC according to both criteria.

When looking at the three Geometric rules considered here,
we see the transition from AV to CC as our theoretical find-
ings predict (cf. Figure 1): 1.5-Geometric is close to AV,
whereas 5-Geometric resembles CC; 2-Geometric performs
very similarly to PAV, slightly favoring diversity over indi-
vidual excellence. To sum up, our experimental findings in-
dicate that PAV is the best compromise between AV and CC
among the considered rules. Yet, seq-PAV, seq-Phragmén,
and 2-Geometric achieve comparable ratios, and the former
two are much cheaper to compute.

5 Conclusion and Future Work
This work presents a new tool for assessing the level of di-
versity and individual excellence that multi-winner rules pro-
vide. Our results can help to understand the landscape of
multi-winner rules, specifically how they behave with respect
to two contradictory goals.

Our work can be extended in several directions. First, we
have focused on approval-based multi-winner rules—a natu-
ral next step is to perform a similar analysis for multi-winner
rules that take rankings over candidates as input. Second, we
have excluded some interesting voting rules from our anal-
ysis, in particular reverse-sequential PAV [Skowron et al.,
2017] and Minimax Approval Voting [Brams et al., 2007]; it
is unclear how they compare to rules considered in this paper.
Finally, we have chosen AV and CC as extreme notions that
represent diversity and individual excellence. Another natural
approach would be to take a proportional rule (such as PAV)
as a standard and see how well others rules approximate it.
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