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Abstract
We study revenue-optimal pricing and driver com-
pensation in ridesharing platforms when drivers
have heterogeneous preferences over locations. If
a platform ignores drivers’ location preferences,
it may make inefficient trip dispatches; moreover,
drivers may strategize so as to route towards their
preferred locations. In a model with stationary and
continuous demand and supply, we present a mech-
anism that incentivizes drivers to both (i) report
their location preferences truthfully and (ii) always
provide service. In settings with unconstrained
driver supply or symmetric demand patterns, our
mechanism achieves the full-information, first-best
revenue. Under supply constraints and unbalanced
demand, we show via simulation that our mecha-
nism improves over existing mechanisms and has
performance close to the first-best.

1 Introduction
Uber connected its first rider to a driver in the summer of
2009,1 and since then, ridesharing platforms have dramat-
ically changed the way people get around in urban areas.
Ridesharing platforms allow a wide array of people to be-
come drivers and—in contrast to traditional taxi systems—
use dynamic “surge pricing” at times when demand exceeds
supply. Properly designed, dynamic pricing improves sys-
tem efficiency [Castillo et al., 2017], increases driver sup-
ply [Chen and Sheldon, 2015], and makes the system reliable
for riders [Hall et al., 2015].

A growing literature studies how to structure prices for rid-
ers and compensation for drivers so as to optimally account
for variation in supply and demand [Banerjee et al., 2015;
Bimpikis et al., 2016; Castillo et al., 2017; Ma et al., 2019].
However, existing models leave aside driver heterogeneity. In
practice, some drivers may prefer to drive in the city and oth-
ers in the suburbs, and many prefer to end their days close to
home. A matching system that treats drivers as homogeneous
makes inefficient dispatches, with drivers preferring to fulfill
each other’s dispatches instead of their own.
∗The full version of this paper is available at arXiv:1905.13191.
1https://www.uber.com/newsroom/history/, visited 02/25/2019.

The problem goes beyond simple efficiency loss. A core
feature of ridesharing platforms is that drivers retain the flex-
ibility to choose when and where to provide service. Every
ride the platform proposes needs to be accepted voluntarily,
forming an optimal response for the driver [Ma et al., 2019].
This incentive alignment simplifies participation for drivers
and also makes behavior more predictable. Without account-
ing for heterogeneity, a platform cannot fully understand a
driver’s preferences or achieve full incentive alignment.

Indeed, platforms have experimented with methods to in-
corporate driver heterogeneity. As of Summer 2019, Uber al-
lows drivers to indicate—twice a day—that they would like to
take trips in the direction of a particular location.2 However,
mechanisms that account for driver preferences can also have
unintended consequences if not designed properly. By saying
“I want to drive South,” a driver biases her dispatches in a
way that could in principle promote more profitable trips.3

In this paper, we introduce the study of driver location pref-
erence in a mechanism design framework. In Section 2, we
adapt a model originally conceived by Bimpikis et al. [2016]
to an economy where drivers prefer a particular location.
In Section 3, we present the Preference-Attentive Rideshar-
ing Mechanism (PARM), which elicits driver preferences
and sets a revenue-optimal pricing policy. We show that
PARM is incentive-compatible, and that it achieves the full-
information, first-best revenue when supply is unconstrained
or when demand is symmetric. In Section 4, we study set-
tings with constrained supply and asymmetric demand, using
simulations to compare the revenue and welfare performance
of PARM to existing ridesharing mechanisms. We show that
PARM achieves close to first-best revenue and typically out-
performs even the best case for preference-oblivious pricing
(where strategic behavior hurts efficiency). Proofs not pre-
sented in the text are deferred to Appendix A of the full paper.

1.1 Related Work
Existing research on pricing and dispatching in ridesharing
platforms does not account for driver heterogeneity.

We build on work of Bimpikis et al. [2016], who show that
under a continuum model, and with stationary demand and

2https://help.uber.com/partners/article/set-a-driver-destination?
nodeId=f3df375b-5bd4-4460-a5e9-afd84ba439b9, visited 2/25/19.

3https://therideshareguy.com/uber-drops-destination-filters-
back-to-2-trips-per-day/, visited 2/25/19.
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unlimited supply, a ridesharing platform’s revenue is maxi-
mized when the demand pattern across different locations is
balanced. They show via simulation that in comparison to set-
ting a uniform price for all locations, pricing trips differently
depending on trip origins improves revenue. Relative to the
Bimpikis et al. [2016] model, we allow limited driver supply;
moreover, each driver in our model has a preferred location.
We thus introduce a reporting phase, in which drivers report
their preferred locations. We then modify the matching and
pricing formulations in order to align incentives.

Ma et al. [2019] study the incentive alignment of drivers
in the presence of spatial imbalance and temporal variation
of supply and demand. Castillo et al. [2017] show that dy-
namic pricing mitigates inefficient “wild goose chase” phe-
nomena for platforms that employ myopic dispatching strate-
gies. Modeling a shared vehicle system as a continuous-time
Markov chain, Banerjee et al. [2017] establish approxima-
tion guarantees for a static, state-independent pricing pol-
icy. Ostrovsky and Schwarz [2019] study the economy of
self-driving cars, focusing on car-pooling and market equilib-
rium. Queuing-theoretic approaches have also been adopted:
Banerjee et al. [2015] show the robustness of dynamic pric-
ing; Afèche et al. [2018] study the impact of driver autonomy
and platform control; and Besbes et al. [2018] analyze the
relationship between capacity and performance.

There are various empirical studies, analyzing the impact
of dynamic pricing [Hall et al., 2015; Chen and Sheldon,
2015], the labor market for drivers [Hall and Krueger, 2016;
Hall et al., 2017], consumer surplus [Cohen et al., 2016], the
value of flexible work [Chen et al., 2017], the gender earnings
gap [Cook et al., 2018], and the commission vs. medallion
lease-based compensation models [Angrist et al., 2017].

2 Model
We consider a discrete time, infinite horizon model of a
ridesharing network with discrete locations, L = {1, . . . , n}.
Following the baseline model of Bimpikis et al. [2016], we
assume unit distances, i.e., it takes one period of time to travel
in between any pair of locations. At the beginning of each
time period, for each location i ∈ L, there is a continuous
mass θi ≥ 0 of riders requesting trips from i. The fraction of
riders at iwith destination j ∈ L is given by αij ∈ [0, 1] (thus∑
j∈L αij = 1). We assume that the components of rider de-

mand θ = {θi}i∈L and α = {αij}i,j∈L are stationary and do
not change over time. Riders’ willingness to pay for trips are
i.i.d. random variables with CDF F . Thus, for any i, j ∈ L,
the number of trips demanded from i to j at price pij ≥ 0
would be θiαij(1 − F (pij)). (Riders who are unwilling to
pay the stated prices for their rides leave the market.)

Each driver has a preferred location τ ∈ L. Drivers receive
I ≥ 0 additional utility whenever they start a period in their
preferred locations (irrespective of whether they have a rider);
this preferred location is private information and represents a
driver’s type. For each location τ ∈ L, the total mass of avail-
able drivers of type τ is given by s(τ) ≥ 0. Drivers have a
discount factor of δ ∈ (0, 1), and an outside option that deliv-
ers utility w ≥ 0.4 We assume

∑∞
t=0 δ

tI = I/(1 − δ) < w,
4Throughout the paper, we consider δ to be very close to 1— this

meaning that the utility from being in one’s favorite location
at all times does not outweigh the outside opportunity.

A ridesharing mechanism elicits drivers’ preferred loca-
tions, matches drivers and riders to trips, sets riders’ trip
prices and drivers’ compensation, and (potentially) imposes
drivers’ penalties for strategic behavior. Before the beginning
of the first time period, the mechanism elicits the preferred
locations from potential drivers.

At the beginning of each period, a driver whose previous
trip ended at location i chooses whether or not to provide ser-
vice at location i. If a driver provides service, the mecha-
nism may dispatch that driver to (i) pick up some rider with
trip origin i, (ii) relocate to some location, or (iii) stay in the
same location. If a rider going from i to j is picked up by
some driver, then the rider pays the platform the trip price
pij ≥ 0. If a driver of reported type τ is dispatched from i to
j, the platform pays them c

(τ)
ij ≥ 0, regardless of if her dis-

patch was to pick up a rider or relocate.5 Drivers who choose
not to provide service in a period can relocate to any loca-
tion j in the network, are not compensated by the mechanism
in this period, and may be charged a penalty Pj .6 Denote
p , {pij}i,j∈L, c , {c(τ)ij }i,j,τ∈L and P , {Pj}j∈L.

Based on rider demand (θ, α) and the reported supply of
drivers of each type, a mechanism determines rider and driver
flow, trip prices p, driver compensation c, and driver penalties
P . Drivers decide whether or not to participate, consider-
ing pricing, penalties, and their outside options. Given entry
decisions by drivers, and decisions made by drivers since en-
try, the platform then dispatches drivers to trips and processes
payments and penalties accordingly in each period.

2.1 Steady-State Equilibrium
In this section we will analyze a steady-state equilibrium
while ignoring penalties. This will be helpful because it es-
tablishes that under truthful reporting of types, drivers will
always follow the proposed dispatches. We will separately
handle incentives to report truthful types, considering the ef-
fect of penalties on aligning these incentives. It will turn out
that drivers are only charged penalties for the first time they
deviate, not for future deviations.

At the beginning of each period, let x(τ)i be the number
of drivers of reported type τ at location i, and let x(τ) ,∑
i∈L x

(τ)
i denote the total number of drivers of reported type

τ on the platform. Let the trip flow be f , {f (τ)ij }i,j,τ∈L,

where f (τ)ij ≥ 0 is the number of riders from i to j assigned

to drivers of type τ . Let y(τ)ij ≥ 0 be the mass of drivers

is natural, since an annual interest rate of 4% implies an exponential
discount factor of 0.9999992 over the course of ten minutes.

5It bears mentioning that c(τ)ij need not be a fixed proportion of
pij . In fact, Bimpikis et al. [2016] find that for certain types of net-
works, making driver compensation a fixed proportion of trip price
drastically reduces platform revenue.

6Drivers only choose whether to provide service at a location
and cannot decline dispatches based on the trip destination. This is
consistent with current ridesharing platforms, which hide trip desti-
nations because of concern that drivers will cherry pick rides.
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of type τ at i who are dispatched to relocate to j without a
rider, and set x , {x(τ)i }i,τ∈L and y , {y(τ)ij }i,j,τ∈L. No
driver or rider can be matched multiple times in the same pe-
riod, so assuming drivers always provide service, we have∑
j∈L f

(τ)
ij + y

(τ)
ij ≤ x

(τ)
i for all i ∈ L and all τ ∈ L, and∑

τ∈L f
(τ)
ij ≤ θiαij(1− F (pij)) and for all i, j ∈ L.

For a trip with origin i and destination j, if the total
rider demand exceeds driver supply (i.e., if

∑
τ∈L f

(τ)
ij <

θiαij(1−F (pij))), the mechanism may increase the trip price
pij and achieve higher revenue. Therefore for revenue op-
timization, we can assume without loss that

∑
τ∈L f

(τ)
ij =

θiαij(1 − F (pij)). When x
(τ)
i > 0, meaning that some

drivers with reported type τ are at location i, the probability
that a given driver of reported type τ is dispatched to destina-
tion j is (f (τ)ij + y

(τ)
ij )/x

(τ)
i . Assuming a driver of type τ has

truthfully reported her type and will provide service in all pe-
riods, her lifetime expected utility for starting from location i
is of the form

π
(τ)
i =

∑
j∈L

(c
(τ)
ij + δπ

(τ)
j )

f
(τ)
ij + y

(τ)
ij

x
(τ)
i

+ I · 1{i = τ}, (1)

where 1{·} is the indicator function. The first term in (1)
is the expected compensation and future utility a driver gets
when dispatched to one of the n possible destinations. The
second term corresponds to the idiosyncratic utility drivers
get from starting trips in their favorite locations.

Definition 1 (Steady-State Equilibrium). A steady-state
equilibrium under pricing policy (p, c) is a tuple (f, x, y) s.t.:

(C1) (Driver best-response) Drivers providing service always
maximizes their payoff, i.e. ∀i, τ ∈ L, x(τ)i > 0 ⇒
∀k ∈ L, π(τ)

i ≥ I · 1{i = τ}+ δπ
(τ)
k .

(C2) (Flow balance) For all locations i ∈ L and driver types
τ ∈ L, x(τ)i =

∑
j∈L f

(τ)
ji + y

(τ)
ji .

(C3) (Market-clearing)
∑
τ∈L f

(τ)
ij = θiαij(1− F (pij)).

(C4) (Individually rational driver entry) Participating drivers
get at least their outside option w; with excess supply
of drivers with type τ , all participating type-τ drivers
get exactly their outside option w.

(C5) (Feasibility) Rider and driver flows are non-negative,
i.e., ∀i, j, τ ∈ L, f (τ)ij , y(τ)ij , x(τ)i ≥ 0; the supply con-

straints are satisfied, i.e., ∀τ ∈ L,
∑
i∈L x

(τ)
i ≤ s(τ).

The full information first best revenue (FB) is the highest
revenue a mechanism can achieve in stationary-state equilib-
rium, if the mechanism has full knowledge of driver types
(therefore does not need to determine dispatching and com-
pensation in order to incentivize truthful reporting of types):

max
p,c

∑
i∈L

∑
j∈L

∑
τ∈L

pij · f (τ)ij − c
(τ)
ij (f

(τ)
ij + y

(τ)
ij ) (2)

s.t. (f, x, y) is a steady-state equilibrium under (p, c).

The design problem is to compute rider prices p, driver
compensation c, and driver penalties P to optimize plat-
form revenue in the steady state equilibrium, in a way that
drivers will truthfully report their location preferences and
will choose to always provide service.

3 The Preference-Attentive Ridesharing
Mechanism (PARM)

We now introduce our Preference-Attentive Ridesharing
Mechanism (PARM) and show that this mechanism (i) truth-
fully elicits drivers’ location preferences, (ii) incentivizes
drivers to provide service, and (iii) achieves first-best revenue
when supply is unconstrained or when demand is symmetric.

3.1 Alternate Form of the Optimization
The optimization problem (2) need not be convex, and more-
over, even when an optimal solution can be found, it may not
incentivize drivers to report their types truthfully. Denoting
W , w(1− δ), we present an alternative problem (3), which
guarantees that any optimal solution can be converted into
an optimal solution for (2) using compensation scheme (4)—
while preserving the objective. Specifically, we consider:

max
p,f,x,y

( ∑
i,j,τ∈L

f
(τ)
ij pij

)
−W

∑
i,τ∈L

x
(τ)
i +I

∑
τ∈L

x(τ)τ (3)

s.t. x
(τ)
i =

∑
j∈L

f
(τ)
ji +

∑
j∈L

y
(τ)
ji , ∀i ∈ L, ∀τ ∈ L∑

τ∈L
f
(τ)
ij = θiαij(1− F (pij)), ∀i, j ∈ L∑

i∈L
x
(τ)
i ≤ s(τ), ∀τ ∈ L∑

j∈L
y
(τ)
ij = x

(τ)
i −

∑
j∈L

f
(τ)
ij , ∀i ∈ L, ∀τ ∈ L

f
(τ)
ij , y

(τ)
ij , x

(τ)
i ≥ 0, ∀i, j ∈ L, ∀τ ∈ L.

Our approach is analogous to a similar move by Bimpikis
et al. [2016]— assuming that F is distributed U[0, 1], the
solution space is convex, and the optimization problem is
quadratic. We also go a step further by accounting for driver
heterogeneity and the possibility of zero demand at a location,
the latter by paying drivers for relocation dispatches.

Consider the following compensation scheme:

c
(τ)
ij =W− I · 1{i = τ}, ∀i, j, τ ∈ L. (4)

Lemma 1. Consider an optimal solution (p, f, x, y) to prob-
lem (3), and let c be the compensation scheme (4). Then:

(i) (p, c) is an optimal solution to optimization problem (2)
with steady-state equilibrium (f, x, y); and

(ii) The expected lifetime utility (payment and location
value) of a truthful driver is exactly w starting from ev-
ery location, i.e. π(τ)

i = w for all i, τ ∈ L.
Briefly, feasible solutions to (3) satisfy conditions (C2),

(C3) and (C5). Moreover, with W > I , the compensation
c as in (4) is non-negative. Given (4), drivers receive utility
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W in expectation per period (so w over their lifetimes); this
implies (C1) and (C4). Furthermore, the solution is optimal,
since no compensation scheme can lower the total payment
to drivers while fulfilling the same rider trip flow f .

3.2 Constructing PARM
Definition 2. Given rider demand (θ, α), the Preference-
Attentive Ridesharing Mechanism (PARM):
1. Elicits the location preferences from drivers.
2. Solves (3) with an additional constraint

x(τ)τ ≥ x(τ)i , ∀i ∈ L, ∀τ ∈ L (5)

for dispatching and pricing, and determine driver compen-
sation by (4).

3. If a driver with reported type-τ did not provide service
and relocated to location i 6= τ ∈ L, the platform treats
her as a type-i driver from then on. If this is the first
deviation for this driver, the driver pays penalty Pτ ,
max{maxk∈L{P k→τ}, 0} for P k→τ as solved for in the
following linear system:

πk→τ
i =1{i 6= τ}

W + δ
∑
j

f
(τ)
ij + y

(τ)
ij

x
(τ)
i

πk→τ
j

+

1{i = τ}(δw−P k→τ )+1{i = k}I, ∀i, k ∈ L;

w =
∑
i

πk→τ
i x

(τ)
i /x(τ), ∀k ∈ L. (6)

The system (6) has n2 + n linear equations and n2 + n
unknowns (n2 of the πk→τ

i and n of the P k→τ ). Intuitively,
πk→τ
i is the expected utility of a driver of type k pretend-

ing to be of type τ and providing service everywhere except
τ , where she instead relocates to k. By construction, P k→τ

is the minimum penalty needed to equalize driver earnings
between this deviation and truth telling plus always provid-
ing service. We take the maximum over such penalties so no
driver can benefit from pretending to be of type τ and employ
this strategy. 7

If a driver declines to provide service but relocates to her
reported preferred location, she is charged no penalty. A
driver might have a legitimate (idiosyncratic) reason for not
being able to provide service in a period, but if she relocates
to a location she did not report as preferred, that is taken as
an indication that her original report was not truthful.

We now prove, under the assumption that drivers always
provide service and as a result are never charged any penalty,
that imposing (5) is sufficient to guarantee truthful reporting.
Theorem 1. Assuming all drivers always provide service, it
is a dominant strategy for drivers to report their location pref-
erences truthfully under PARM.

Proof. Observe that by being truthful, each driver gets utility
W = w(1 − δ) per period—getting paid W − I at preferred

7 The penalty Pτ is set to zero if P k→τ < 0 for all k ∈ L. This
case arises if this deviation is itself bad for drivers of all types, in
which case the only way to make the deviating drivers’ utility equal
to w is to pay those drivers.

locations, and W at every other location. As a result, π(τ)
i =

w for all i, τ ∈ L. Suppose an infinitesimal driver of type
k ∈ L reports she is of type τ 6= k. At all i 6= k, τ she
gains utility W per period. At k, she makes W + I because
the platform, treating her as a type-τ driver, is still paying her
W . At τ , she is paid W − I and does not get the extra utility
I .

With δ → 1, misreporting τ in place of k leads to an in-
crease in the expected payoff in static steady-state equilib-
rium if and only if in equilibrium, the driver with reported
type τ spends more time in location k than in location τ .
Considering the location of a driver with reported type τ as
a Markov chain, then {x(τ)i /x(τ)}i∈L is the stationary distri-
bution. (5) then guarantees that a driver with reported type τ
spends a plurality of her time at location τ , therefore no driver
benefits from misreporting her type if all drivers always pro-
vide service.

We now consider drivers who may strategically decline to
provide service and show such deviations are not useful under
PARM, which updates its belief about a driver’s type after
deviations and imposes a penalty on the first such deviation.
Theorem 2. Under PARM, it is an ex post Nash equilibrium
for drivers to report their types truthfully and to always pro-
vide service.

Briefly, Theorem 1 and the following Lemma 2 imply that
(i) a profitable misreport must be paired with post-reporting
deviation(s), and (ii) the most profitable deviation must be
the driver providing service everywhere except her reported
preferred location. The penalties ensure the driver does not
get a utility higher than w from this deviation (or any other),
so there does not exist a profitable deviation.

Drivers are never charged any penalty under the equilib-
rium outcome, but the threat of a penalty is necessary to en-
sure truthful reporting. In certain special economies, a misre-
porting driver might spend many periods at her true preferred
location before being sent to her reported preferred location.
Without penalties, she may simply decline service and relo-
cate back to her actual preferred location, thereby sacrificing
one period of income for the possibility of many periods of
extra idiosyncratic utility. See Appendix B of the full paper
for an example and discussions.
Lemma 2. Consider a driver of true type k ∈ L and re-
ported type τ ∈ L, and assume that the rest of the drivers
always provide service. If τ = k (truthful), always providing
service is a best response. If τ 6= k, one of the following is a
best-response: (i) always providing service, or (ii) providing
service at every location except τ , where the driver instead
drives to k.

We now outline the proof of Lemma 2. We first show that a
truthful driver earns W at every location, and it is always op-
timal for her to provide service.An untruthful driver gets the
least utility when at her reported preferred location τ , so relo-
cating to τ is worse than providing service; in any period, she
should either provide service or relocate to a location i 6= τ .
In fact, because she is charged the same penalty for relocating
to any location i 6= τ , her optimal relocation is her true pre-
ferred location k. Intuitively, if she relocates to i, she will be
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at i and treated as type i from then on, which is sub-optimal
for her unless i = k. Given that the optimal relocation is then
her true preferred location—after which she will makeW ev-
ery period—the only location where she might profitably not
provide service is τ , her reported preferred location and the
only place she currently makes less than W in-period.

3.3 Cases with First-Best Revenue and No Penalty
Although the IC constraint (5) may reduce revenue, we
can characterize some settings where imposing IC does not
lead to a revenue loss: when supply is unconstrained, or
when rider demand is symmetric, PARM achieves the full-
information first-best revenue. Furthermore, no penalty is
necessary to ensure incentive compatibility.

Theorem 3. Suppose s(τ) = ∞ for all τ ∈ L. Then PARM
achieves full-information first-best revenue, and no penalty is
necessary to ensure incentive compatibility.

Briefly, the IC constraint (5) does not bind because drivers
cost less to the platform when at their preferred locations. If
there are more drivers with reported type τ at location i than
at τ , the platform can improve its revenue by replacing the
type-τ drivers with type-i drivers (there are unlimited type-i
drivers). Incentive compatibility holds without penalties be-
cause each driver visits her reported preferred location before
visiting any other location too many times. Thus, she cannot
profitably use a misreport-plus-deviation to sacrifice one pe-
riod of income for many periods of idiosyncratic utility (as
described following Theorem 2). Note that the preceding ar-
gument makes no assumption on the demand pattern and re-
quires only the availability of supply.
Definition 3. Rider demand (θ, α) is symmetric if ∀i, j, k, l ∈
L we have θi = θk and αij = αkl.

Theorem 4. Suppose that rider demand is symmetric. Then
we can construct a solution to optimization problem (3)
with incentive compatibility constraint (5) such that PARM
achieves full-information first-best revenue, and no penalty is
necessary to ensure incentive compatibility.
To understand Theorem 4, we prove two additional lemmas.
Lemma 3. With symmetric demand, any optimal solution to
(3) satisfies f (τ)ii + y

(τ)
ii ≤ f

(τ)
ττ + y

(τ)
ττ for all i, τ ∈ L.

Intuitively, type-τ drivers cost less when at location τ , so it
is optimal for the marginal ride they give at location τ to have
a lower price than at other locations. If demand is symmetric,
this means drivers with reported type-τ provide more rides at
location τ than at any other location.
Lemma 4. If the demand pattern is symmetric, we can con-
struct an optimal solution to (3) such that for all i, j ∈ L and
all τ ∈ L, f (τ)ij = f

(τ)
ji and y(τ)ij = y

(τ)
ji = 0.

Intuitively, there is no need for drivers to relocate when
demand is fully symmetric. Moreover, given any optimal so-
lution to (3), we can construct an alternative optimal solution,
where the flow of drivers of each type can be decomposed as
cycles with length 2, i.e., f (τ)ij = f

(τ)
ji .

We can now sketch the proof of Theorem 4. With symmet-
ric demand, Lemma 3 implies driver flow for within-location

trips satisfies the IC constraint (5). For all inter-location trips,
Lemma 4 lets us focus only on bilateral driver flow between
pairs of locations i and j. Type-τ drivers cost less at τ , so
they will naturally fill more rides between τ and j than be-
tween i and j—and this holds for all j, so type-τ drivers fill
more rides in and out of τ than i. Combining the two cases,
drivers of type τ do not spend more time at another location
i 6= τ than they do at τ , so imposing the IC constraint (5) is
without loss of revenue. As in Theorem 3, incentive compat-
ibility holds without penalties because each driver will visit
her reported preferred location before visiting any other too
many times. Thus, she cannot profitably use a misreport-plus-
deviation to sacrifice one period of income for many periods
of idiosyncratic utility (as described following Theorem 2).

4 Simulation Results
In this section, we use simulations to analyze the revenue and
social welfare under PARM for settings outside the cases cov-
ered by Theorems 3 and 4—i.e., settings with limited supply
and unbalanced demand.

Social welfare is defined as the total rider value plus
drivers’ utilities from being in their preferred locations, mi-
nus the total opportunity costs incurred by drivers. We
compare PARM with the full-information first-best, and also
a Preference-Oblivious Ridesharing Mechanism (PORM)
which sets prices as in Bimpikis et al. [2016] without con-
sidering drivers’ location preferences, while assuming that
drivers always follow dispatches. In Section 4.2, we also
study the equilibrium outcome under PORM, allowing driver
autonomy. For ease of illustration, we consider two locations
L = {0, 1} throughout the analysis.

4.1 Varying Demand Patterns
Suppose that there are an equal number of drivers favoring
each location: s(0)=s(1)=100. Drivers have outside option
w=40, discount factor δ=0.99, and gain utility I =0.2W =
0.2w(1−δ) per period from being in their preferred locations.
Each rider has value independently drawn ∼ U[0, 1].

Varying Total Demand. We first assume an unbalanced
trip flow α00=α10 = 0.25 and α01=α11 = 0.75 (i.e., three
quarters of riders from each location would like to go to lo-
cation 1). Fixing the total demand at location 1 at θ1 =1000,
and varying θ0 from 0 to 1000, the revenue and welfare under
PARM and benchmarks are as in Figure 1. Although PARM
only necessarily achieves first-best revenue when θ0 = 1000
(symmetric demand), we see that PARM achieves the first-
best and outperforms PORM unless θ0 is very small, such
that demand from the two locations is highly asymmetric.

When θ0 � θ1, almost all rides originate and terminate
at location 1, thus the first-best and PORM dispatch most
drivers of both types to provide service at location 1. Fig-
ure 2 illustrates the rider trip flows fulfilled by drivers of
each type under different mechanisms, when θ0 = 50. To
satisfy PARM’s incentive compatibility (IC) constraint, how-
ever, drivers of type 0 must spend a plurality of their time at
location 0. Therefore, PARM completes fewer trips at loca-
tion 1, dispatches more type 0 drivers to fulfill (the less prof-
itable) between-location trips, and asks many type 0 drivers to
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(a) Revenue (b) Welfare

Figure 1: Revenue and welfare varying demand θ0 at location 0.
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(c) Type 0: PORM
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Figure 2: Total rider trips fulfilled by drivers of each type, with
(αi0, αi1) = (0.25, 0.75), θ = (50, 1000), and s = (100, 100).

(a) Revenue (b) Welfare

Figure 3: Revenue and welfare varying αi0 for i = 0, 1.

relocate back to 1 once they arrive at location 0 (the numbers
after the “+” sign represent driver relocation flow), resulting
in lower revenue and social welfare.
Varying Imbalance in Demand. Fixing θ0 = θ1 = 1000
and varying αi0 for i = 0, 1 (i.e., changing the proportion of
rides with destination 0), the revenue and welfare achieved
by different mechanisms are shown in Figure 3. Similar to
Figure 1, PARM achieves first-best revenue and outperforms
PORM for a wide range of αi0 (although demand is only
symmetric when αi0 = 0.5). For similar reasons as in the
above scenario, we see a decline of revenue and welfare under
PARM when demand becomes highly unbalanced—in this
case, when αi0 approaches 0 or 1 and almost all riders have
the same destination.

4.2 PORM in Equilibrium
In this section, we analyze a scenario for which we are able
to compute the equilibrium outcome given the pricing under
PORM, and under the setting where drivers are given the flex-
ibility to decide how to drive. Consider two locations L =

(a) Revenue (b) Welfare

Figure 4: Equilibrium revenue and welfare varying I/W .

0 1

12080

(a) Type 1: PARM

0 1

100100

(b) Type 1: PORM

0 1

100 + 2575

(c) Type 1: PORM Eq.

Figure 5: Rider trips fulfilled by type-1 drivers, with s = (0, 200),
θ = (1000, 1000), α00 =α11 =1, α01 =α10 =0, and I = 0.2W .

{0, 1} and drivers of type 1 only: s(0) = 0, s(1) = 200. All
trips start and end in the same location, i.e., α00 = α11 = 1.
Being oblivious to drivers’ preferences, PORM sets the same
trip price for the two locations and expects the spatial distri-
bution of drivers to be proportional to the distribution of de-
mand. In equilibrium, however, more drivers decide to drive
in location 1 (the preferred location), such that in each period
drivers in 1 are dispatched with probability less than 1 and
achieve the same expected utility as drivers in 0.

Varying Location Preference I . In Figure 4, we fix de-
mand θ0 = θ1 = 1000 and plot revenue and welfare as I ,
the idiosyncratic driver utility, varies from 0 to W . As I in-
creases, welfare and revenue under PARM coincide with the
first-best and increase as expected. However, revenue under
PORM (assuming driver compliance) remains constant since
the mechanism is oblivious to drivers’ preferences. We also
see a decrease in welfare and revenue achieved in equilib-
rium under PORM, since more drivers decide to supply in
location 1, instead of in location 0 as dispatched, resulting in
unfulfilled rides in 0 and idle drivers in 1. Beyond I = 0.5W ,
revenue and welfare remain constant, since all drivers are al-
ready supplying location 1.

Figure 5 illustrates rider trip flow fulfilled by the type 1
drivers when I = 0.2W . PARM assigns more drivers to lo-
cation 1 than location 0, but PORM does not. However, in
equilibrium more drivers end up at location 1 anyway, lead-
ing to 25 units of drivers idling at location 1.

Varying Demand Ratio θ0/θ1. In Figure 6, we fix θ1 =
1000, I/W = 0.2, and vary θ0 from 0 to 2000. We see that
PARM revenue coincides with the first-best and significantly
exceeds the revenue of PORM. The revenue and welfare of
the equilibrium outcome under PORM is much lower, how-
ever, because drivers over-supply the preferred location 1,
leaving rider trips in 0 unfulfilled. It is curious that with
highly unbalanced demand, an increase in θ0 initially leads
to reduced equilibrium revenue and welfare—this is because
with higher demand at location 0, PORM sets a higher price at
location 1 and accepts fewer location 1 trips in order to com-
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(a) Revenue (b) Welfare

Figure 6: Equilibrium revenue and welfare varying θ1/θ0

plete more trips in 0. The drivers, however, are only willing
to drive in 0 when θ0 is high enough that the low probability
of getting a ride in 1 offsets the extra utility I .

Varying Demand Ratio θ1/θ0. In Figure 7, we set I/W =
0.2, θ0 = 1000 and vary θ1 from 0 to 2000. We see a sim-
ilar trend as in Figure 1, with PARM doing worse than even
equilibrium PORM for very small values of θ1. Figure 8 il-
lustrates driver flow for θ1 = 100 = 0.1θ0— PARM employs
drivers to idle at location 1 in order to satisfy IC, and this is
very costly. It is worth noting that as θ1 increases, the social
welfare achieved by the equilibrium outcome under PORM
in fact does not increase, due to the increased amount of idle
drivers at location 1.

(a) Revenue (b) Welfare

Figure 7: Equilibrium revenue and welfare varying θ1/θ0.

0 1

18.2181.8

(a) Type 1: PORM

0 1

18.2 + 4.5177.3

(b) Type 1: PORM Eq.

0 1

50.0 + 50.0100.0

(c) Type 1: PARM

Figure 8: Rider trip and idle driver flows, with θ = (1000, 100),
α = [(1.0, 0.0), (0.0, 1.0)], s = (0, 200), and I = 0.2W .

Varying Driver Supply s1. We now examine the effect of
varying the supply of type 1 drivers (while still keeping the
supply of type 0 drivers at 0). In Figure 9, we set I = 0.2W ,
θ0 = θ1 = 1000, and vary s1 from 0 to 1000. Revenue and
welfare under PARM coincide with first-best and outperform
PORM. All the mechanisms improve in profit and welfare
as supply increases, but PARM is better able to use the ad-
ditional drivers. Under PORM in equilibrium, drivers again
over-supply the preferred location 1, causing rides at location
0 to get dropped. Eventually, there are so many drivers that
they can fill all the demand, even with drivers idling at loca-
tion 1. At this point, equilibrium PORM revenue coincides
with PORM revenue, though the welfare is still lower.

(a) Revenue (b) Welfare

Figure 9: Equilibrium revenue and welfare varying s1

5 Discussion
We have proposed the Preference-Attentive Ridesharing
Mechanism (PARM) for pricing and dispatch in the pres-
ence of driver location preferences. It is an equilibrium under
PARM for drivers to report their preferred locations truthfully
and always provide service. PARM achieves first-best rev-
enue in settings with unconstrained driver supply or symmet-
ric rider demand, and we show via simulations that even out-
side those scenarios, PARM achieves close to first-best wel-
fare and revenue and outperforms a mechanism that is obliv-
ious to location preferences.

Our analysis suggests that incorporating drivers’ location
preferences is compatible with other aspects of ridesharing
pricing and marketplace design—even though drivers could
in principle game the system by expressing preferences for
locations associated with more highly compensated rides.
There are two key elements to our approach that both seem
likely to provide practical insight beyond the specific frame-
work and mechanism considered here: First, we recognize
that respecting drivers’ location preferences creates value,
which can at least partially substitute for cash compensa-
tion. Then, we incentivize truthful location preference reve-
lation through a variation on a revealed preference approach.
PARM uses drivers’ deviations from proposed dispatches to
learn about their preference types—a driver who chooses to
drive to i instead of her assigned location is inferred to prefer
location i and subsequently faces the compensation profile of
other drivers with that preference. For this approach to work,
it is important that preferences do not change frequently over
the course of the day. Otherwise, it would be much harder to
enforce incentive compatibility by tracking endogenous re-
sponses to dispatch assignments.
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