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Abstract
Congestion games have many important applica-
tions to systems where only limited knowledge may
be available to players. Here we study traffic net-
works with multiple origin-destination pairs, re-
laxing the simplifying assumption of agents hav-
ing complete knowledge of the network structure.
We identify a ubiquitous class of networks, i.e.,
rings, for which we can safely increase the agents’
knowledge without affecting their own overall per-
formance – known as immunity to Informational
Braess’ Paradox – closing a gap in the literature.
By extension of this performance measure to in-
clude the welfare of all agents, i.e., minimisation
of social cost, we show that IBP is a widespread
phenomenon and no network is immune to it.

1 Introduction
With the rising popularity of GPS route-guidance systems,
many travellers rely on information about route choice to help
them make navigation decisions. It is natural to assume that
more information about paths available to a driver would only
reduce their expected journey time. However, this has been
shown not to be the case [Acemoglu et al., 2018]: presenting
new options can change the decision-making of some self-
interested agents, causing an overall re-routing which makes
them worse off.

Congestion games are the standard framework of algorith-
mic game theory to study the equilibria of traffic flows. These
are non-cooperative games of perfect information where self-
interested actors choose sets of available resources, where the
cost of each resource depends on its overall usage. In the
traffic-specific Wardrop model [Wardrop, 1952], resources
form an undirected network in which the players wish to
travel between origin and destination nodes, and the cost of
each edge typically represents the expected travel time. Ra-
tional players seek to minimise their overall cost by select-
ing the appropriate path. On top of that, all players have an
origin-destination (OD) pair which corresponds to the nodes
they wish to travel between, and players with the same OD
pair are grouped into populations.
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It is likely that travel costs will change over time e.g.
from road improvements or temporary construction works.
Braess’ Paradox (BP) [Braess, 1968] occurs when the cost
of a resource is reduced but the total cost to the population
increases. BP assumes the state of the system is in a user
equilibrium (or Wardrop equilibrium), where every player has
minimised personal costs of travel given the actions of oth-
ers. BP is based on the assumption that agents have complete
information about the network structure. However, this as-
sumption is often not met in practical situations, when, typ-
ically, actors have incomplete knowledge of their available
paths. Recently, information constrained user equilibrium
(ICUE) [Acemoglu et al., 2018] has been introduced, where
each player minimises their travel costs given their current
knowledge. The equilibrium is reached through one-step im-
provements and gives rise to Informational Braess’ Paradox
(IBP) which occurs when users’ cost at ICUE increase as a
result of their information set expanding.

ICUE is certainly a more realistic tool to predict traffic
flows, but the study of equilibria in congestion games with
incomplete information is still at its infancy. In particular,
while the relationship between network structure and immu-
nity to IBP has been characterised for single-population con-
gestion games [Acemoglu et al., 2018], for the more complex
and realistic multi-population variant the exact conditions are
still unknown. On top of that, IBP has only been formulated
looking at one group, i.e., the one that acquires new knowl-
edge, but not at the welfare of all agents, which is the standard
social cost metric used for congestion games.

Our contribution. In this paper, we advance the analysis of
congestion games played by heterogeneous boundedly ratio-
nal agents, in two important ways. Firstly, we establish how
a ubiquitous class of networks, rings, are immune to IBP, set-
tling a conjecture in [Acemoglu et al., 2018]. Secondly, we
extend the analysis of IBP to take into account the welfare of
all agents, rather than a subset of them, showing that under
this measure IBP is a widespread phenomenon and no net-
work is immune to it. Our analysis is an important first step
for the design of road systems that do not penalise the acqui-
sition of new knowledge.

Related literature. Since the seminal work by Braess
[Braess, 1968], the topic of routing paradoxes has been ex-
tensively explored [Murchland, 1970; Zhao et al., 2014].
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Congestion games appear often in transportation systems
[Fisk, 1980; Pas and Principio, 1997; Zhao et al., 2014;
Yao et al., 2018] but they also apply to a wide variety of
real-world systems, with applications to telecommunication
[Orda et al., 1993] and electrical networks [Roughgarden,
2005]. Player heterogeneity has been a topic of much in-
terest, e.g. through player-specific resource cost functions
[Milchtaich, 1996] representing varied preferences [Cole et
al., 2018] or uncertainties [Beier et al., 2004; Sekar et al.,
2018], while more complex models may consider driver’s un-
certainties over road conditions or demand [Meir and Parkes,
2015]. There is evidence that providing incomplete informa-
tion to drivers about road capacities may be worse than pro-
viding no information at all [Arnott et al., 1991]. Along the
same line, Liu et al. [Liu et al., 2016] studied heterogene-
ity among players regarding the quality of information they
receive and how that affects the equilibrium costs.

Paper structure. Section 2 presents the preliminary no-
tions and definitions needed for our results. Section 3 proves
that multi-population congestion games on ring networks will
not allow travellers acquiring knowledge to be negatively im-
pacted by information. An alternative performance measure,
i.e., social cost, is posed in Section 4, which induces losses in
utility by some agent independently of the network topology.
We conclude discussing future research directions.

2 Preliminaries
2.1 Congestion Games
Let N = {1, ..., n} be a nonempty finite set of agents popu-
lations. In each population, we suppose there exists hetero-
geneity among knowledge of the resources (due to previous
experience, use of GPS systems etc.), i.e., Ki ≥ 1 informa-
tion types of players in each population i. We refer to a player
from population i of type k as (i, k), which we abbreviate ik,
where the demand for a type, i.e., the traffic rate associated
with that population, is dik ≥ 0.

Each population has a nonempty finite resource set Ei,
where information types can restrict such knowledge, i.e.,
each population-type pair is associated with a known set
Eik ⊆ Ei. We assume that each Ei is made of relevant
resources, i.e., those which are used in at least one strat-
egy, and that strategy sets Sik ⊆ 2Eik only contain re-
sources from their information set and are disjoint for dis-
tinct populations. Denote E as the irredundant resource
set E =

⋃
i∈N Ei. Finally, resource cost functions ce :

R≥0 → R≥0 ∪ {∞} such that e ∈ E are assumed to
be continuous, non-decreasing and non-negative. Formally,
a nonatomic congestion game is defined as a tuple M =
(N, (Ki), (Eik), (Sik), (ce)e∈E , (dik)), with i ∈ N and k ∈
Ki.

The outcome of all players of type (i, k) choosing
strategies leads to a strategy distribution xik satisfying∑
sik∈Sik x

ik
sik

= dik and xiksik ≥ 0, ∀sik ∈ Sik. A strat-
egy distribution or outcome x = (xik){i∈N, k∈Ki} is feasible
if
∑
sik∈Sik x

ik
sik

= dik, ∀i ∈ N, k ∈ Ki. Henceforth, we
focus, without loss of generality, on feasible strategies.
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Figure 1: Braess’ paradox on the Wheatstone network. When d = 1,
the social cost of travel is 3

2
before and 2 after reducing the costs of

the middle edge.

Denote the load on e in an outcome x to be fe(x) =∑
i∈N

∑
si∈Si x

i
si1si(e) where 1 is the indicator function.

In x, a player from population i receives a cost function
C(sik,x) = Cik(sik,x) =

∑
e∈sik ce(fe(x)) when select-

ing strategy sik ∈ Sik.
An information constrained user equilibrium (ICUE) is a

strategy distribution x such that all players choose a strat-
egy of minimum cost: ∀i ∈ N, k ∈ Ki and strategies
sik, s

′
ik ∈ S(i,k) such that xisik > 0 we have Cik(sik,x) ≤

Cik(s
′
ik,x). The social cost is the total cost incurred to all

players SC(x) =
∑
i∈N

∑
k∈Ki Cik(x)dik.

Braess’ paradox is a phenomenon that arises when the
cost of a resource is strictly decreased yet results in a
strict increase in the social cost of the equilibria. This
can be observed in the Wheatstone network in Figure
1. A set of systems (E,Si)i∈N admits Braess’ para-
dox (BP) if there are two nonatomic congestion games
M = (N,E, (Si)i∈N , (ce)e∈E , (di)i∈N ) and M′ =
(N,E, (Si)i∈N , (c′e)e∈E , (d

′
i)i∈N ) where c′e(t) ≤ ce(t),

∀t ≥ 0 and d′i ≤ di, ∀i ∈ N , and two UE x and x′, such
that SC(x) < SC(x′). If no suchM andM′ exist, then we
say that the network is immune to Braess’ paradox.

Informational Braess’ paradox (IBP) occurs when one
player’s type has its information set expanded, without loss of
generality type (1, 1), and this paradoxically increases their
strategy cost. More formally, IBP occurs if there exist ex-
panded information sets (Ẽ(i,k)){i∈N, k∈Ki} with E(1,1) ⊂
Ẽ(1,1) and E(i,k) = Ẽ(i,k) for any (i, k) 6= (1, 1) with associ-
ated ICUE x and x̃, where the costs increase for the expanded
information player C(1,1)(x) < C(1,1)(x̃).

2.2 Graph Theory
A simple network G = (V,E) is an undirected graph with at
most one edge between any pair of nodes and no self-loops. A
path is an ordered collection of edges such that adjacent pairs
of edges share a node. If a path visits no node more than once
then it is called acyclic. A tree is a connected simple network
that has only acyclic paths. A ring is a network such that
every node connects to exactly two others, forming a single
continuous loop.

A network congestion game is played on an undirected net-
work G = (V,E), where the resources are edges and play-
ers move between the distinct origin and destination terminal
nodes oi, di ∈ V for any i ∈ N . The strategies of players
are choices of paths such that no vertex is visited more than
once and such that the start and end nodes are the associated
origin and destination. If a network is two-terminal then there
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Figure 2: A Wheatstone network is embedded in any grid.

is a single origin and destination pair for players to travel be-
tween. An asymmetric or multi-population game is one in
which there are multiple OD pairs.

We say that a two-terminal network is linearly independent
(LI) if each path has at least one edge that does not belong
to any other path. A network is series linearly independent
(SLI) if and only if (i) it comprises a single LI network, or
(ii) it is constructed by connecting two SLI networks in se-
ries. For two SLI networks Gi and Gj , a coincident block
is a common LI subnetwork of Gi and Gj with the same set
of terminal nodes. An embedding is a collection of injective
maps from the sets of relevant resources to the irredundant
resources. For example, Figure 2 shows how the Wheatstone
network is embedded in a grid road system.

2.3 Immunity to IBP
The following theorems from the literature specify the known
conditions for IBP to not occur. The first result is for conges-
tion games with only one population of players. For multi-
ple populations, the conditions for immunity to IBP are un-
known, with Theorem 2 establishing a fairly direct sufficient
condition for the multi-population case.
Theorem 1. [Acemoglu et al., 2018] A two-terminal network
congestion game played on network G is immune to IBP if
and only if G is an SLI network.
Theorem 2. [Acemoglu et al., 2018] For any asymmetric
network congestion game on network G, where ∀i ∈ N
Gi = (Vi, Ei) is the relevant network, IBP does not occur
if the following hold:
(a) ∀i ∈ N , Gi is SLI
(b) For all distinct i, j ∈ N , either Ei ∩ Ej = ∅, or Ei ∩ Ej
consists of all coincident blocks of Gi and Gj .

Notice that the conditions from Theorem 2 do not depend
on information restrictions. The result does, however, depend
on the maximal information sets of populations which com-
bine to form the relevant network.

3 Circuit Games and IBP
In this section, we formally introduce circuits, most com-
monly found in matroid theory, for which immunity to IBP
was an open question [Acemoglu et al., 2018]. As discussed
with more detail, later on, circuits model common transporta-
tion networks, such as stadiums exit routes.

Consider a set system (E,C), where E is the set of re-
sources and C ⊆ 2E , with the following axioms:
• ∅ /∈ C;
• If C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2,
• For any two distinct C1, C2 ∈ C such that e ∈ C1 ∩ C2,

there is a member C3 ∈ C such that C3 ⊆ (C1∪C2)\{e}.

Then C is a circuit over E. A circuit game is a congestion
game in which every relevant network Gi = (Vi, Ei) ∀i ∈ N
is a circuit. We now establish this useful lemma, whose proof
we only sketch due to space limitations.

Proposition 1. A circuit game cannot exist on a network G
that is not simple.

Proof sketch. Let e1, e2 be two nodes in a non-simple net-
work which are connected multiple times. Let e1 ∈ Ei, and
therefore e2 ∈ Ei. By definition, the relevant network of i
must be a circuit Ci and it must be that e1, e2 ∈ Ci. It is easy
to see that C′i = {e1, e2} is a circuit. But then, if C′i ⊆ Ci then
Ci = C′i. So i can only travel between the end nodes of e1 and
e2. There must exist another population j 6= i whose strate-
gies also include e1 and e2 and must also travel on the circuit
Cj = {e1, e2} = Ci. But then i = j, which is a contradiction.
Hence, G must be simple.

Proposition 1, notice, implies that any ring forms a circuit
game. Now we are in a position to prove the following:

Proposition 2. Any two-terminal circuit game is immune to
IBP.

The proof of Proposition 2 follows from Theorem 1 since
it can be shown, using Proposition 1, that a circuit game net-
work is SLI. This result confirms the current classification of
IBP immunity from Theorem 2.

When considering multiple origin-destination pairs, the
circuit axioms now apply to slightly more complex structures
than simple rings. A circuit game can comprise connected
rings such that the OD pairs do not allow for traversal be-
tween rings. Before we can prove the immunity to IBP for
such structures, we pose the more general statement that not
all player types can be negatively impacted by a single infor-
mation expansion. We omit the proof for the general case, but
we give the idea behind the proof technique and present the
full reasoning for the case of n = 2.

Proposition 3. LetM be an asymmetric circuit game and let
(Ẽ(i,k)){i∈N, k∈Ki} be expanded information sets such that
E(1,1) ⊂ Ẽ(1,1) and E(i,k) = Ẽ(i,k) for any (i, k) 6= (1, 1),
with associated ICUE x and x̃. Then there exists at least
one player type (i, k) i ∈ N, k ∈ Ki such that C(i,k)(x̃) ≤
C(i,k)(x).

Proof idea. In a circuit, we can show that each population
has at most two strategies. Each population that has only one
strategy will not affect the equilibria before and after the in-
formation expansion, except the type (1, 1) whose strategy
set expands. So we can assume that for n populations there
are at most n + 1 types. Since there are n populations with
distinct OD pairs, the game must be embedded in a 2n-edge
circuit. Now if we compare the contradiction assumption for
each of the types, we know that the strategy they use before
the expansion must have strictly less flow on at least one of
the edges in the strategy than afterwards. Now if we com-
pare all n + 1 inequalities we will find that there is always a
contradiction since the demands of populations must be non-
negative.
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Figure 3: A circuit with two populations.

The following example shows that for the case where n =
2 as displayed in Figure 3. There can be up to four types when
n = 2, but it is sufficient to show the result for only two types
as the same reasoning holds with or without the other types.

Example 1. Let there be two populations each with distinct
OD pairs. Strategy sets of player type (1, 1) are S11 = {s1}
before and S̃11 = {s1, s2} after expansion with demand
d11 > 0. Player type (2, 2) strategies are S22 = {t1, t2} with
demand d22 > 0. In order to reach a contradiction, suppose
that there does not exist such a player as defined in Proposi-
tion 3. Namely, C11(x̃) > C11(x) and C22(x̃) > C22(x).

Consider the feasible strategy distributions x. Since type
(1, 1) has only one strategy, we have xs111 = d11. In order
for every player’s cost to increase, we must have that (1, 1)
strictly prefers to deviate to the other strategy. Now suppose
that (2, 2) plays xt122 = pd22, xt222 = (1 − p)d22 where p ∈
[0, 1]. The cost functions for players are:

C11(x) = ce1(f1) + ce2(f2)

C22(x) =

{
ce1(f1) + ce3(f3) p ∈ [0, 1)

ce2(f2) + ce4(f4) p ∈ (0, 1]

where
f1 = d11 + (1− p)d22 f3 = (1− p)d22
f2 = d11 + pd22 f4 = pd22.

Now examine the feasible strategy distributions x̃. Consider
x̃s111 = d11 as the strategy distribution for population 1. This
could only be an ICUE if it was a dominant strategy given
the total demand of population 2, which we know is not true
given the deviation from s1 in strategy distribution x. So we
must have x̃s111 = qd11 and x̃s111 = (1−q)d11 where q ∈ [0, 1).
For population 2, let the strategy distribution be xt122 = p̃d22,
xt222 = (1 − p̃)d22 where p̃ ∈ [0, 1]. The cost functions after
information expansion are:

C11(x̃) = ce3(f̃3) + ce4(f̃4)

C22(x̃) =

{
ce1(f̃1) + ce3(f̃3) p̃ ∈ [0, 1)

ce2(f̃2) + ce4(f̃4) p̃ ∈ (0, 1]

where

f̃1 = qd11 + (1− p̃)d22 f̃3 = (1− q)d11 + (1− p̃)d22
f̃2 = qd11 + p̃d22 f̃4 = (1− q)d11 + p̃d22.

The contradiction assumption, C11(x) < C11(x̃), gives us:

ce1(f1) + ce2(f2) < ce3(f̃3) + ce4(f̃4) ≤ ce1(f̃1) + ce2(f̃2).

Since cost functions are non-decreasing, this implies that we
must have either f1 < f̃1 or f2 < f̃2. In terms of demands,

either d11+(1−p)d22 < qd11+(1− p̃)d22 or d11+pd22 <

qd11 + p̃d22. If both these hold, we have p̃ + (1−q)d11
d22

< p

and p̃+ (1−q)d11
d22

> p, which leads to a contradiction.
Now suppose p, p̃ ∈ (0, 1). Then the second contradiction

assumption, C22(x) < C22(x̃), leads to:

ce1(f1) + ce3(f3) < ce1(f̃1) + ce3(f̃3),

ce2(f2) + ce4(f4) < ce2(f̃2) + ce4(f̃4).

Similarly, by nondecreasing cost functions, we must have
either f1 < f̃1 or f3 < f̃3. It must also be true that at
least one of f2 < f̃2 or f4 < f̃4 is true. Suppose we have
f1 < f̃1 and f4 < f̃4, this also leads to the contradiction of
p̃+ (1−q)d11

d22
< p and p̃+ (1−q)d11

d22
> p. So it must be true that

f3 < f̃3 and f2 < f̃2. But this gives us p̃ < (1−q)d11d22
+p and

p̃ > (1− q)d11d22
+ p, hence, we have reached a contradiction

for p, p̃ ∈ (0, 1).
Now suppose p = [0, 1), p̃ ∈ [0, 1). Then we have

ce1(f1) + ce3(f2) < ce1(f̃1) + ce3(f̃3).

This gives us (1−q)d11
d22

+ p̃ < p which means p > 0 since
d11, d22 > 0. So p̃ = 0, otherwise, we have the case as
above. However, this implies we have

ce2(f2) + ce4(f4) < ce2(f̃2) + ce4(f̃4),

which again, as above, will lead to a contradiction.
Now suppose p = (0, 1], p̃ ∈ (0, 1]. The contradiction

assumption now gives us:

ce2(f2) + ce4(f4) < ce2(f̃2) + ce4(f̃4).

Hence, qd11d22
+ p < p̃. Using similar reasoning as before, we

see that we must have p < 1 and p̃ = 1. Thus,

ce1(f1) + ce3(f3) < ce1(f̃1) + ce3(f̃3).

Hence, we reach a contradiction.
Now suppose p = [0, 1), p̃ = (0, 1]. Then we see that

ce1(f1) + ce3(f3) < ce1(f̃1) + ce3(f̃3).

So we must have that (i) and (iii) hold so we have (1−q)d11
d22

+

p̃ < p. Hence, we must have p, p̃ ∈ (0, 1) which we have
already shown to be contradictory.

Now suppose p = (0, 1], p̃ = [0, 1). Then we have

ce2(d11 + pd22) + ce4(pd22) < ce2(f̃2) + ce4(f̃4).

This implies (1−q)d11
d22

+ p < p̃ must hold, which means that
we have p, p̃ ∈ (0, 1), leading to the final contradiction.

Now that we have shown that a circuit game will not in-
crease all player’s costs from information distribution simul-
taneously, we can prove that information cannot harm the
player who receives it.

Theorem 3. Any circuit game is immune to IBP.
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Proof. By the definition of IBP, there exists an informa-
tion type whose information set expands. Assume without
loss of generality that type (1, 1) are those players with ex-
panded information sets. To reach a contradiction, assume
that C(1,1)(x̃) > C(1,1)(x) where x and x̃ are the ICUEs
reached before and after the information set of type (1, 1) is
expanded respectively.

Since each player’s relevant network is a circuit, the pos-
sible paths are divided into the two directions that one can
travel around the circuit. By Proposition 1, there is only a sin-
gle edge that can connect any two nodes, so each population
must have two linearly independent paths available to them.
Player type (1, 1) with restricted information set has only one
possible path before expansion and player type (1, 2) has two
paths available to them: S(1,1) = {sa} and S(1,2) = {sa, sb}.

For any two distinct i, j ∈ N , either Ei ∩ Ej = ∅ or
Ei ∩ Ej = C. If E1 ∩ Ej = ∅, then we do not need to con-
sider population j as it will not affect the equilibrium costs of
(1, 1). So assume that for all j ∈ N we have E1 ∩ Ej = C.
Now suppose that type kj ∈ Kj only has one choice of path.
Then we can consider an equivalent game where the costs
of resources e ∈ E(j,kj) are increased to ce(fe(x) + djkj ).
Hence, we can assume that for any j ∈ N\{1}, there exists
only one information type (j, 2) where each player has full
information about relevant resources.

If (1, 1) does not choose sb after the information set ex-
pansion, then the ICUE remains unchanged and we are done.
Therefore, x̃sb11 > 0 and x̃sa11 < xsa11 = d11.

Suppose that
∑
e∈sa fe(x̃) ≤

∑
e∈sa fe(x). For x̃sa11 ≥ 0,

then, following on from the definition of ICUE, we have∑
e∈sb ce(fe(x̃)) ≤

∑
e∈sa ce(fe(x̃)). Since ce is contin-

uous and non-decreasing, we reach the following contradic-
tion:

C11(x̃) ≤
∑
e∈sa

ce(fe(x̃)) ≤
∑
e∈sa

ce(fe(x)) = C11(x).

Hence, we have that
∑
e∈sa fe(x̃) >

∑
e∈sa fe(x).Now

divide the player types into two sets as follows: A = {i ∈
N, j ∈ {1, 2} : Cij(x̃) > Cij(x)}; and B = {i ∈ N, j ∈
{1, 2} : Cij(x̃) ≤ Cij(x)}. By the contradiction assump-
tion, A is nonempty and Proposition 3 tells us that B is
nonempty.

All possible paths between any two nodes from the irre-
dundant network Ĝ form the set S . Divide this into two
distinct sets as SA = {s ∈ S : C(s, x̃) > C(s,x)} and
SB = {s ∈ S : C(s, x̃) ≤ C(s,x)}. Consequently,
we must have that maxs∈SA{C(s,x) − C(s, x̃)} < 0 and
mins∈SB{C(s,x)− C(s, x̃)} ≥ 0. Consider these two sim-
ple claims:

Claim 1: If i ∈ A and s ∈ SB then xsi = 0.
This immediately follows from definitions: by definition

of SB , C(s,x) ≥ C(s, x̃); by definition of ICUE, C(s,x) ≥
Ci(x̃); by definition of A, we must have Ci(x̃) > Ci(x).
Hence, xsi = 0.

Claim 2: If i ∈ B and s ∈ SA then x̃si = 0.
Again, this follows from definitions: by definition of SB ,

C(s, x̃) > C(s,x); by definition of ICUE, C(s,x) ≥ Ci(x);
and finally, by definition of A, Ci(x) > Ci(x̃). Hence, x̃si =
0.

For ease of notation, let demands for paths in SA and SB
be dA =

∑
s∈SA

∑
i∈N xsi , d̃A =

∑
s∈SA

∑
i∈N x̃si , dB =∑

s∈SB
∑
i∈N xsi and d̃B =

∑
s∈SB

∑
i∈N x̃si . It follows

from Claims 1 and 2 that we have d̃A ≤ dA and d̃B ≥ dB .
Since A and B are nonempty, it also follows that both SA and
SB are nonempty.

Claim 3: Let Sα, Sβ be any nonempty partition of S . If
we have d̃α ≤ dα and d̃β ≥ dβ , then

max
s∈Sα

{C(s,x)− C(s, x̃)} ≥ min
s∈Sβ

{C(s,x)− C(s, x̃)} .

We will prove Claim 3 by induction on the number of edges
and the number of populations. The base case is a circuit with
three edges and one population. All possible paths of the net-
work are S = {e1, e2, e3, e1e2, e1e3, e2e3}. Let the popula-
tion’s strategy set be S = {e1e2, e3}, and their information
set before expansion be E = {e1, e2}. This two-terminal
game is SLI, so by Theorem 2, it is immune to IBP. For any
s ∈ S such that s /∈ S, s contributes no demand to dα, d̃α, dβ
or d̃β , hence, any such s can be randomly assigned to one
of the sets Sα and Sα. Since e1e2 ∈ E, the demand for
this strategy can only reduce after the information expansion,
e1e2 ∈ Sα. The demand for e3 can only increase after the
information expansion, e3 ∈ Sβ . Since there is no IBP, we
must have

C(e1e2,x) ≥
{
C(e1e2, x̃) if C(e1e2, x̃) ≤ C(e3, x̃)

C(e3, x̃) if C(e1e2, x̃) ≥ C(e3, x̃).

If C(e1e2, x̃) ≤ C(e3, x̃) then C(e1e2,x) − C(e1e2, x̃) ≥
0. If C(e1e2, x̃) ≥ C(e3, x̃), then C(e3,x) ≤ C(e3, x̃) as
fe3(x) < fe3(x̃). Hence, maxs∈Sα {C(s,x)− C(s, x̃)} ≥
mins∈Sβ {C(s,x)− C(s, x̃)}.

Now consider a subdivision of this circuit. The same rea-
soning holds, hence, it is true for a circuit with any number
of edges. Now we assume that Claim 3 is true for n− 1 pop-
ulations on a circuit with an arbitrary number of edges and
we will show how the addition of another population will not
affect this property. WLOG, consider player type (1, 1) with
strategy sets S11 = {sα} and S̃11 = {sα, sβ}. If ∀s ∈ S
such that s /∈ S11 ∪ ... ∪ Sn2, then s contributes no demand
to dα, d̃α, dβ or d̃β . Hence, can be arbitrarily assigned to one
of the sets Sα and Sβ . We can assume C(sα,x) ≥ C(sβ ,x)
since otherwise C(s,x) − C(s, x̃) = 0 ∀s ∈ S and Claim
3 is immediately true. Hence, we know that the demand for
sα will strictly reduce, and the demand for sβ will strictly
increase.

For any i ∈ N\{1}, their strategy set is Si = {sαi, sβi}.
It must be the case that ∀i ∈ N\{1} if demand for sαi
increases, the demand for sβi must reduce. Suppose that
∃i ∈ N\{1} such that the demands for sαi, sβi remain the
same, then we can form an equivalent game of n − 1 popu-
lations, for which we assumed the claim to be true. There-
fore, in each population, we must have a strict increase in
demand for one strategy and strict decrease for the other.
Since we assumed d̃α ≤ dα, d̃β ≥ dβ , and that both Sα
and Sβ are nonempty, in every possible allocation of strate-
gies to Sα and Sβ there exists i ∈ N such that exactly
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Figure 4: A stadium is a ring, hence a circuit.

one strategy of Si belongs to Sα. Hence, there always ex-
ists a population i ∈ N whose strategies belong in both
Sα and Sβ . Without loss of generality, let the demand for
sαi increase and belong to Sα and demand for sβi reduce
and belong to Sβ . Then we must have that Ci(sαi, x̃) ≤
Ci(sβi, x̃) and Ci(sαi,x) ≥ Ci(sβi,x). Therefore we have
Ci(sαi,x) − Ci(sαi, x̃) ≥ Ci(sβi,x) − Ci(sβi, x̃). This
concludes the induction step and so we have proved Claim 3.

Finally, with the partition of SA and SB and the claims, we
reach the following contradiction:

0 > max
s∈SA

{C(s,x)− C(s, x̃)} ≥ min
s∈SB

{C(s,x)− C(s, x̃)}

max
s∈SA

{C(s,x)− C(s, x̃)} ≥ min
s∈SB

{C(s,x)− C(s, x̃)} ≥ 0.

An interesting application of this theorem is considering
pedestrian exit-routing in sports stadiums, such as in Figure 4.
Divide player populations as those who are seated in the same
block and wish to use the same mode of transport. Knowl-
edge of the layout can differ between people and can be dis-
tributed through signs or movement restrictions provided by
the stadium. If pedestrians are only allowed to exit their seat
block through a single exit, as in Figure 4, then the overlap-
ping network of all populations is a ring. Hence, information
cannot harm the expected travel times of exiting the stadium.
However, if visitors are allowed to walk between seat blocks
before exiting the stadium the network no longer has immu-
nity to IBP. These results, therefore, have useful implications
for planning purposes e.g., evacuation routes.

4 IBP for Social Cost
Thus far, we defined IBP to be the comparison between equi-
librium costs of a player whose information set is expanded.
A natural weakness of using IBP to analyse the system as a
whole is that it does not incorporate any effects that the in-
formation expansion has on all players. From a mechanism
design perspective, it is also relevant to compare the social

costs of the ICUEs. In this section, we define our own ver-
sion of the IBP, which is measured against social cost, and
show that its occurrence is independent of network topology.

Define Informational Braess’ Paradox for Social Cost
(IBPSC) as the case when one type of player has their in-
formation set strictly expanded which causes an increase to
the social cost, defined as the sum of all agents’ disutilities.
IBP is a special case of IBPSC that occurs when information
harms the informed player. In order to consider how the so-
cial cost will change in an ICUE equilibrium, we need the
following lemma for the simplest circuit network - two-node,
two-edge ring.

Lemma 1. Any two-terminal network with at least two dis-
tinct paths has the 2-edge ring embedded in it.

We can now prove IBPSC can occur on any two-terminal
network.

Theorem 4. For any two-terminal network there exists
(Ki)i∈N and (ce)e∈E such that IBPSC occurs.

To prove this, it suffices to show that there always exists
an assignment of information sets and cost functions on the
2-edge ring such that IBPSC exists. This is left as a simple
exercise to the interested reader.

The occurrence of IBPSC is independent of the topology of
the network due to inefficiencies. Through the assignment of
information sets, an ICUE outcome can be found with a cost
strictly less than any UE. Any ICUE that is not a UE must,
therefore, be unstable, as at least one player wishes to deviate
from it if they have their information set expanded. Hence,
there will always exist an assignment of information sets for
any network where the social cost expands as information sets
expand.

Theorem 5. No network is immune to IBPSC.

This result extends from the two-terminal case, implying
there is further research needed to understand the impact of
information distribution.

5 Conclusion
We have analysed nonatomic congestion games where mul-
tiple populations of individuals have incomplete knowledge
of the network structure, studying how the distribution of in-
formation affects utility. Specifically, we have identified a
natural class of networks, i.e., rings, that are immune to per-
formance deterioration for the agents acquiring new informa-
tion, known as Informational Braess’ Paradox, settling a con-
jecture in [Acemoglu et al., 2018]. We have also shown that
under an alternative definition of performance, analogous to
Braess’ Paradox, no network has immunity.

Potential future directions include the characterisation of
all immune structures, the extension of the analysis to atomic
congestion games and the connection to games with unaware-
ness. We believe that the identification of safe network struc-
ture is bound to fundamentally impact the design of trans-
portation networks; aiding decongestion of ring roads and
pedestrian evacuation in stadia.
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