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Abstract

Learning to adapt to a series of different goals
in visual navigation is challenging. In this work,
we present a model-embedded actor-critic archi-
tecture for the multi-goal visual navigation task.
To enhance the task cooperation in multi-goal
learning, we introduce two new designs to the
reinforcement learning scheme: inverse dynam-
ics model (InvDM) and multi-goal co-learning
(MgCl). Specifically, InvDM is proposed to cap-
ture the navigation-relevant association between
state and goal, and provide additional training sig-
nals to relieve the sparse reward issue. MgCl
aims at improving the sample efficiency and sup-
ports the agent to learn from unintentional posi-
tive experiences. Extensive results on the interac-
tive platform AI2-THOR demonstrate that the pro-
posed method converges faster than state-of-the-
art methods while producing more direct routes
to navigate to the goal. The video demonstra-
tion is available at: https://youtube.com/channel/
UCtpTMOsctt3yPzXqe JMD3w/videos.

1 Introduction
Visual navigation is an intelligent ability to determine the
current position and then to plan a path towards some goal
location from image or video inputs [Gupta et al., 2017;
Anderson et al., 2018]. Due to the limitation of camera’s
angle of view, it is hard to navigate with only visual in-
puts as the environment is partially observable. Inspired by
the recent success of deep reinforcement learning in multi-
ple fields, such as tracking [Zhang et al., 2018], Atari games
[Mnih et al., 2015] and computer Go [Silver et al., 2016],
the early efforts were made to train an agent to learn the
skill of navigating to a specific goal [Mirowski et al., 2016;
Banino et al., 2018].

Compared to the regular navigation task, goal-dependent
navigation is more challenging, which requires the agent
learn to adapt to a series of different goals. That is, after
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Figure 1: Illustration of the proposed goal-dependent navigation
model. Please enlarge to see details.

training, the agent is expected to own the capability of nav-
igating to a series of different goals from a randomly sam-
pled position and orientation as shown in Figure 1. Therefore,
with such technique, it is unnecessary to retrain the model for
different goals. There existed some pioneering works trying
to solve the problem of goal-dependent navigation based on
deep reinforcement learning. Specifically, Zhu et al. used a
siamese actor-critic architecture with shaped rewards to sup-
port navigating to different goals [Zhu et al., 2017]. Mirowski
et al. introduced an auxiliary task and used a curriculum
training scheme to relieve the problem of sparse rewards in
goal-dependent navigation tasks [Mirowski et al., 2018]. Al-
though these methods have achieved impressive performance,
there remain some issues to be addressed for goal-dependent
navigation from visual inputs. First, since the agent must
learn to navigate to several different goals from a random
state, the agent needs to learn the association between state
and goal, as well as the association between state and action;
Second, the agent interacts with environments and generates a
number of samples for each goal. However, the specific sam-
ples are only used to train their corresponding goals, which is
a sample inefficient way to train the agent.

To relieve the above limitations, we present a new model-
embedded actor-critic scheme that allows the agent to learn
the skill of navigating to multiple goals cooperatively based
on visual observation only. First, as shown in Figure 1, we
introduce an inverse dynamics model (InvDM) to the actor-
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critic architecture, which is trained as an auxiliary task of pre-
dicting the last action of the agent given its last and current
state. The benefits of such dynamics model are three-fold: 1)
The action could be considered as an appropriate criterion to
distinguish the difference of the sequential states. After train-
ing, the inverse model could better predict the difference of
the current state and goal, i.e., the navigation-relevant asso-
ciation between state and goal; 2) Since the auxiliary task of
predicting the last action is trained by self-supervised learn-
ing, it could be leveraged as a guidance to push the agent
to explore more efficiently. So the agent training could con-
tinue to develop in the absence of extrinsic rewards. That is,
such auxiliary task could provide additional training signals
to relieve the sparse reward issue, which is a common lim-
itation shared by reinforcement learning methods; 3) Since
a goal only changes the reward function instead of the tran-
sition structure of Markov Decision Process (MDP), the dy-
namics model can be trained cooperatively by sharing the In-
vDM when training an agent to adapt to different navigation
goals.

Furthermore, to improve the sample efficiency, we intro-
duce a sample augmentation method named Multi-goal Co-
learning (MgCl) which could make the agent learn from un-
intentional positive experience when interacting with the en-
vironment. The idea can be explained by Figure 1, where
an agent has multiple navigation goals to learn. When the
agent is trying to approach goal C, it may pass through goal
B unintentionally. So, the generated trajectories for navigat-
ing to goal C are also valuable for learning to achieve goal B.
That is, the samples generated for one goal could be used to
train the agent for another navigation goal. Hence, the sam-
ple efficiency can be improved significantly. Experimental re-
sults show that the proposed architecture could accelerate the
learning speed in goal-dependent navigation tasks and main-
tain robust as the number of the goals increases. Moreover,
we allow the agent to learn multiple goals in multiple differ-
ent environments simultaneously with only binary reward.

2 Related Work
There has been a number of methods focusing on the task
of visual navigation [Bonin-Font et al., 2008; Savinov et
al., 2018]. Gupta et al. designed a unified joint architec-
ture [Gupta et al., 2017] for mapping and planning in un-
known environments. Recently, deep reinforcement learn-
ing methods were introduced for navigation in simulated 3D
scenes [Wu et al., 2018a; Pathak et al., 2017]. However,
due to the sparse reward signals in navigation tasks, the
recent navigational agents seek for aids from auxiliary su-
pervised tasks for training [Dosovitskiy and Koltun, 2016;
Jaderberg et al., 2017]. Mirowski et al. proposed to train
agent with auxiliary depth prediction and loop closure clas-
sification tasks [Mirowski et al., 2016]. Banino et al. intro-
duced a grid cell network which was trained as an auxiliary
task [Banino et al., 2018] that enabled the agent to plan di-
rect trajectories to the goals. All these demonstrated auxil-
iary tasks can be used to facilitate learning [Xu et al., 2018;
Wu et al., 2018b]. Unlike the previous work relying on ex-
ternal signals to assist training, we advocate using the action

signals to explore the difference of the current state and goal,
and introduce an auxiliary task of action prediction for train-
ing.

Recently, some efforts were made to handle the more chal-
lenging navigation tasks, the goal-dependent visual naviga-
tion [Anderson et al., 2018]. Zhu et al. used a feedforward
siamese actor-critic architecture incorporating a pretrained
ResNet [Zhu et al., 2017] to support navigation to differ-
ent goals in a discredited 3D environment. Mirowski et al.
[Mirowski et al., 2018] presented a dual-pathway agent ar-
chitecture that enable agent to navigate to a series of goals
in a city-scale, real-world visual environment. Pathak et al.
presented a method to learn the trajectory between state and
goal, and then employed the expert demonstration to com-
municate the goal for navigation [Pathak et al., 2018]. Savi-
nov et al. proposed a semi-parametric topological memory
(SPTM) which is trained in supervised fashion and acts as
a planning module in goal-directed navigation [Savinov et
al., 2018]. Compared to these methods, we propose a self-
supervised InvDM to better predict the difference of the cur-
rent state and goal. Besides, a sample augmentation scheme
MgCl, is introduced to improve the sample efficiency and
make the agent learn from unintentional positive experiences.

It is noted that some previous works have investigated the
sample efficiency problem in reinforcement learning [Schaul
et al., 2015b; Wang et al., 2016]. For example, Andrychow-
icz et al. presented a technique coined Hindsight Experience
Replay (HER) [Andrychowicz et al., 2017] to improve the
sample efficiency when learning multi-goal policies [Schaul
et al., 2015a]. Riedmiller et al. developed a hierarchi-
cal extension of HER in order to further speed up training
[Andrychowicz et al., 2017]. However, HER is a method that
each trajectory is used to generate samples for arbitrarily as-
sumed goals and the samples are stored in a replay buffer,
which make it only applicable to off-policy reinforcement
learning scheme. By contrast, the proposed MgCl could train
the generated samples immediately without experience re-
play. Hence, it is suitable to the online methods like A3C.

3 Method
This section presents the details of the proposed architecture
for the task of goal-dependent visual navigation. We propose
a shared model and a co-learning strategy for the same pur-
pose: enhancing the cooperation in multi-goal learning.

3.1 Preliminaries
The goal-dependent reinforcement learning aims to train
an agent interacting with an environment to maximize the
expected future rewards [Sutton and Barto, 2018] for a
goal. It is concerned with policy optimization in a Markov
Decision Process (MDP), which is formalized as a tuple
M(s, g, a, r, γ), where S = {s} denotes a set of finite states,
G = {g} denotes a set of possible goals, A = {a} de-
notes a set of actions, r denotes the state-reward function
and γ ∈ (0, 1] is a discount factor. The reward function
rg(s, a, s

′
) depends on the current goal and state. A stochas-

tic policy π(a|s, g) maps each pair of state and goal to an
action and defines the behavior of the agent.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

610



Xt-1 Xt

84×84×3 84×84×3

8×8×16 8×8×16

4×4×32 4×4×32
256 256

256
64

3
At-1

Xg

Xt

84×84×3 8×8×16 4×4×32 256 256
64

3

84×84×3 8×8×16 4×4×32 256 256 1

At-1

π

Vfs

fg hg

hs

ga(hg)

3

Trajectory for goal A

Trajectory for goal B

Sample augmentation

Multi-goal Co-learning

Predicting of the proposed model Training of inverse dynamics model

··········

······

····

Figure 2: Details of the proposed deep reinforcement learning model for goal-dependent navigation.

At each discrete time step t, the agent observes the state st
and chooses an action at according to its policy π(at|st, gt).
One time step later, the agent receives a numerical reward rt
and finds itself in a new state st+1. The process continues un-
til the agent achieves the given goal. The returnRt is the total
accumulated rewards from time step t. The aim of the agent is
to learn an optimal control policy π, which maximizes its ex-
pected return until the goal is completed. A3C could update
both the policy function π(at|st, gt; θπ) and the state-value
function V (st, gt; θv) by n-step returns. The policy and the
value function are updated after every tmax actions or when
a given goal is completed. The total accumulated return from
time step t is defined as:

Rt =
k−1∑
i=0

γirt+i + γkV (sk+t, gk+t; θv), (1)

where k may vary from state to state and is upper-bounded by
tmax.

The entropy H of the policy π [Mnih et al., 2016] is added
to the objective function to alleviate premature convergence
to suboptimal deterministic policies. The gradient of the full
objective function can be regarded as:

∇θπ logπ(at|st, gt; θπ)(Rt − V (st, gt; θv))

+β∇θπH(π(st, gt; θπ)),
(2)

where β controls the strength of the entropy regularization

term. The final gradient update rules are listed as follows:

θπ ← θπ + η∇θπ logπ(at|st, gt; θπ)(Rt−
V (st, gt; θv)) + β∇θπH(π(st, gt; θπ)),

(3)

θv ← θv + η∇θv (Rt − V (st, gt; θv))
2, (4)

where η denotes the learning rate.

3.2 Proposed Architecture
As illustrated in Figure 2, we design a new A3C-based deep
model for the goal-dependent visual navigation task. The
model takes the goal as part of the inputs and enables the
agent to learn a series of different goals jointly. Meanwhile,
the two pathways of the proposed model may learn two dif-
ferent types of feature representations: general and special.
The general feature representation (denoted by green) is only
rely on the current observation and could be used to support
cognitive processes such as scene understanding. The special
feature representation (denoted by red) relies on the current
observation and the goal, which is beneficial to long-range
planning.

The proposed model takes two inputs, an observation of
current state xt and an observation of goal xg , and produces
a probability distribution over the action space and a value
function. The value function can represent the utility of any
state s in achieving a given goal g. We train the proposed
model through end-to-end deep reinforcement learning by in-
corporating an auxiliary objective. The aim of training is
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to simultaneously maximize the cumulative reward using an
actor-critic approach and minimize an auxiliary loss defined
by the predicted last action and the true last action as defined
in Section 3.3.

The details of the architecture are described as follows.
First, feature extractor consists of two convolutional layers
and a fully connected layer. It is shared to process the state
and goal images to produce the visual features fs and fg ,
respectively. The first convolutional layer has a kernel of
size 8x8, a stride of 4x4, and 16 feature maps. The second
layer has a kernel of size 4x4, a stride of 2x2, and 32 fea-
ture maps. The fully connected layer has 256 hidden units.
Rectified linear units (ReLU) separate the layers. Second,
the visual feature of the state fs(Xt) is concatenated to the
visual feature of goal fg(Xg). The fully connected hidden
layer has 256 hidden units with ReLU and outputs hidden ac-
tivation ha(fs, fg). The action predictor module ga(ha) is
a fully connected layer with 64 hidden units, and could pre-
dict the last action at−1 with a softmax layer. Final, the long
short-term memory (LSTM) has 256 hidden units and outputs
LSTM hidden activation hs(fs). The hidden activation ha is
concatenated to the LSTM hidden activation hs. The policy
π is predicted with the softmax layer. The value function V
is yielded by the fully connected layer.

3.3 Inverse Dynamics Model
For the visual navigation, if capturing the association between
the current state and the goal, the agent could well address
the interplay between planning and real-time action selection.
Hence, as shown in Figure 2, an inverse dynamics model (In-
vDM) is incorporated into the actor-critic architecture. The
InvDM is trained as an auxiliary task of predicting the last
action of the agent given its last state and current state. The
action prediction could be rendered as an appropriate assess-
ment to determine which is the critical differences between
sequential states. So, after training, the navigation-relevant
difference between the current state and the goal can be pre-
dicted by the InvDM, which is valuable for long-range plan-
ning.

In the implementation, the auxiliary task is trained in a
self-supervised manner and could produce extra continuous
gradients. Hence, the sparse reward issue in reinforcement
learning could be relieved by such auxiliary task that could
provide additional training signals. Meanwhile, as aforemen-
tioned, one goal only changes the reward function rather than
the transition structure of Markov Decision Process. So the
proposed InvDM could be shared and trained cooperatively
across all goals. That is the capability of navigating to one
goal may benefit the learning of navigating to another goal
by sharing the InvDM.

The training process of InvDM is illustrated in the right
part of Figure 2. It takes an observation of current state xt
and an observation of last state xt−1 as inputs, and produces
a probability distribution over the action prediction. The ac-
tion is predicted with an extra optimization objective function
defined by the cross entropy classification loss as below.

La = −
∑
i

ai · log āi, (5)

where i denotes the index of action, a and ā represent the true
action and predicted action, respectively.

3.4 Multi-goal Co-learning
For the goal-dependent navigation task, the agent interacts
with the environment and generates a number of samples for
each goal. However, as aforementioned, the generated sam-
ples are normally used to train a specific goal in the current
methods, which is apparently sample-inefficient for agent
training. Herein, we present a sample augmentation strat-
egy multi-goal co-learning (MgCl) to make the agent learn
from unintentional yet useful experiences when interacting
with the environment. That is, the generated samples of nav-
igating to one goal may benefit the learning of navigating to
the other goals. Hence, multiple goals could be learned by the
agent cooperatively. Suppose an agent has a number of goals
gA, gB , · · · ∈ G ⊆ S , each goal corresponds to a state and
only a goal-achieving reward rg(s, a, s

′
= rg(s, a, g) = 1 is

provided. When the agent is trying to achieve gA, it may
have a state s = gB by chance. The reward for gA is
rgA(s, a, gB) = 0, because the state s = gB is not the ter-
minal state for gA. Whereas, the MDP of navigating to gA is
the same to the MDP of going to gB , i.e.,M(s, gA, a, rgA , γ)
and M(s, gB , a, rgB , γ) are identical, except for the reward
function. So parts of the trajectory generated for gA can also
be served as the ones generated for gB . Especially, since the
reward of gB in the state s = gB is rgB (s, a, gB) = 1, it is
quite useful for the agent to learn to achieve gB . That is, the
samples generated for gA could be used to train the agent to
navigate to gB .

However, it does not imply that additional trajectories
would be generated certainly by the proposed MgCl. It takes
effect when the agent drops into a state where another goal
is achieved. So, as the agent becomes more skilled, the
agent would navigate to the goal with more direct routes and
hardly drop into other unintentional goals. That is, the pro-
posed MgCl would contributes more at the beginning of train-
ing, and gradually decreases as the training goes on. Mean-
while, for the goal-dependent visual navigation, not every
state could be regarded as a goal or a terminal state, e.g., the
white wall, a common interior structure and has few discrim-
inative features. So, it is meaningless to learn to navigate to
it. More details of MgCl can be found in Algorithm 1.

4 Experimental Results
This section tests the proposed method on AI2-THOR [Kolve
et al., 2017], which is an open-source set within the Unity3D
game engine, and enables navigation in a set of near-photo-
realistic indoor scenes. Here, we choose four different cat-
egories of scenes : Bathroom, Bedroom, Kitchen and Living
room to illustrate the navigation performance. It is worth not-
ing that the size of Bathroom is smallest while the Kitchen is
the biggest scene. The detailed settings of the environment in
the experiments are given as follows.

• Action space: There are three actions to learn: moving
forward, turning left, and turning right. The move action
has a constant step length (0.5 meters), and the turn ac-
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Figure 3: Testing of our model in different scenes. Due to space limit, ‘A3C+InvDM’ is abbreviated to ‘InvDM’, so do the other terms.

Algorithm 1: Multi-goal Co-learning (MgCl)
Given asynchronous advantage actor-critic (A3C).
Given a set of goals G = {gA, gB , · · · }.
for each update do

Interact and generate a trajectory TA =
{st, at, st+1, at+1, · · · , st+k−1, at+k−1, st+k}.

for i ∈ {0, · · · , k − 1} do
if si == g′ ∈ G then

Generate a pseudo trajectory T ′ =
{st, at, st+1, at+1, · · · , st+i−1, at+i−1, st+i}.

Set reward r′(st+i, a, g′)← 1.
Accumulate gradients for goal g′.

end
end

end

tion has a constant angle (90 degree). The scene space is
discretized into a grid-world representation.

• Observations and goals: Both observations and goals
are images taken in the first-person view. The actual in-
puts to the agent are 84×84 images down-sampled from
the original size 300 × 300. Given a target image, the
goal is to navigate to the location and viewpoint where
the target image is taken.

• Reward design: The environments only provide a goal-
achieving reward (1.0) upon task completion.

In the implementation, we set the discount factor γ = 0.99,
the RMSProp decay factor α = 0.99, the exploration rate
ε = 0.1, and the entropy regularization term β = 0.01. Be-
sides, we used 16 threads and performed updates after every
5 actions (i.e., tmax = 5). To relieve the bias behaviour, all

the goals and scenes were trained in turn in each thread in the
experiments. The performance could be evaluated quantita-
tively in terms of the number of the episodes that terminate in
every 2000 frames over all goals. For each goal, we random
initialize the starting location of the agent, the episodes will
not terminate until the agent reaches the goal. Each test was
repeated 5 times with different seeds. We report the average
final rewards and plot the mean and standard deviation of the
reward statistic.

4.1 Ablation Study of the Inverse Dynamics Model
To show the benefit of the proposed InvDM for the goal-
dependent visual navigation, an ablation study is made be-
tween A3C and A3C+InvDM (abbreviated to ‘InvDM’ in Fig-
ure 3) in the scenes of Bathroom, Bedroom, Kitchen and Liv-
ing room with different number of goals, i.e., 2 goals and 4
goals. It is noted that the A3C here is a goal-dependent vari-
ant of the standard baseline [Mnih et al., 2016]. The network
architectures of A3C and A3C+InvDM are identical except
that A3C+InvDM is trained with an additional auxiliary loss
defined by Eq. (5).

The learning curves in Figure 3 show that A3C+InvDM
obtained better performance than A3C in all cases, in terms
of both convergence speed and rewards. This might because
InvDM can well capture the navigation-relevant association
between state and goal, and encourage the cooperation when
training an agent to multiple goals. Meanwhile, the faster
convergence speed may also attribute to the denser training
signals offered by InvDM, which could relieve the common
sparse reward issue in reinforcement learning.

Besides, it is also found that the improvement of
A3C+InvDM over A3C in Kitchen is more obvious than that
in Bathroom. As Kitchen is bigger and more clustered than
Bathroom, such result implies InvDM has good potential in
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Figure 4: Comparison to state-of-the-art methods in multiple scenes with different number of goals.

challenging scenes. In addition, as the number of navigation
goals increases, A3C+InvDM maintains good performance,
while A3C drops rapidly. Hence, the robustness of InvDM
w.r.t the number of goals could be proved.

4.2 Ablation Study of the Multi-goal Co-learning
A similar study was conducted to investigate the effect of
MgCl for goal-dependent visual navigation tasks. We can
observe that A3C+MgCl converges faster than A3C while
achieving better final performance in all cases. Comparing
Bathroom with Kitchen, the advantage of A3C+MgCl over
A3C in Kitchen is also more significant than that in Bath-
room, which indicates that MgCl could improve the agent
training in complex scenes. In addition, similar to InvDM,
MgCl could help A3C maintain stable performance as the
number of goals increases. This proves that MgCl makes the
training of agent benefit from the training of agents with other
navigation goals, which finally leads to the improvement in
sample efficiency.

Moreover, to further prove the benefit of the combination
of InvDM and MgCl, we compare the performance of InvDM,
MgCl and InvDM+MgCl in the scenes of Bathroom, Bed-
room, Kitchen and Living room with two goals and four goals,
respectively. As shown in Figure 3, InvDM+MgCl signifi-
cantly outperforms InvDM and MgCl in all scenes, in terms
of both convergence speed and rewards.

4.3 Results of Learning in Multiple Scenes
In this section, the proposed method was tested to learn multi-
ple goals in different scenes simultaneously. Different scenes
may have different environmental dynamics. So when learn-
ing in multiple scenes at the same time, the network param-
eters of InvDM could be trained and shared in two manners:
full share with a single-branch model and partial share with a
multi-branch model as described below.

• Single-branch: All parameters of InvDM are shared by
all scenes, i.e., full share.

• Multi-branch: All parameters of InvDM are shared, ex-
cept the fully connected layers, i.e., partial share.

We compare the proposed two models in terms of conver-
gence speed and rewards. From Figure 4, the multi-branch
model outperforms the single-branch one in both two indexes

in the two different configurations. We hypothesize the partial
share scheme make it possible to capture the particular char-
acteristics in a scene that may vary across scene instances. It
can also be found that the multi-branch model is robust to the
increasing of the number of scenes, indicating that it is easy
to apply our method to the situation with more scenes

Furthermore, we compare the proposed model with state-
of-the-art methods such as A3C [Mnih et al., 2016], DQN
[Mnih et al., 2015]), ICM [Pathak et al., 2017], TdVN [Zhu
et al., 2017] and HER [Andrychowicz et al., 2017]. As shown
in Figure 4, DQN and A3C suffers from slow convergence. It
seems difficult for them to train with sparse and binary re-
wards. DQN+HER also performed poor though HER could
improve sample efficiency. ICM leads to a better performance
than the three methods above, as ICM trains an agent with in-
trinsic curiosity-based motivation and thus offers an efficient
way for exploring. TdVN showed the second best perfor-
mance, benefiting from its complicated deep siamese actor-
critic network architecture incorporating a pretrained ResNet.
With the proposed InvDM and MgCl, either the single-branch
or multi-branch model performed better than the others. The
results indicate that by enhancing the cooperation in multi-
goal learning, our model can learn multiple goals in different
scenes simultaneously with only binary reward, while yields
better performance than existing works.

5 Conclusion
In this work, we proposed a model-embedded actor-critic
scheme to enable the agent to learn the skill of navigating to
multiple goals cooperatively. We introduced two components
to the A3C architecture: InvDM and MgCl to enhance the
task cooperation in visual navigation. Experimental results
on the interactive AI2-THOR platform demonstrated the su-
periority of the proposed architecture over existing methods
in goal-dependent navigation task.
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