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Abstract

Incentives are explored in the sharing economy to
inspire users for better resource allocation. Previ-
ous works build a budget-feasible incentive mech-
anism to learn users’ cost distribution. However,
they only consider a special case that all tasks are
considered as the same. The general problem asks
for finding a solution when the cost for different
tasks varies. In this paper, we investigate this gen-
eral problem by considering a system with k levels
of difficulty. We present two incentivizing strate-
gies for offline and online implementation, and for-
mally derive the ratio of utility between them in dif-
ferent scenarios. We propose a regret-minimizing
mechanism to decide incentives by dynamically ad-
justing budget assignment and learning from users’
cost distributions. Our experiment demonstrates
utility improvement about 7 times and time saving
of 54% to meet a utility objective compared to the
previous works.

1 Introduction
The sharing economy has become one of the fastest growing
business, with the success of Airbnb, Uber, Pace (bike shar-
ing) and Bird (e-scooter sharing). These platforms provide
new ways of accommodation and transportation. However,
as users tend to act on their own interest, utility is a major
problem that many businesses are facing. For example, some
bike-sharing systems allow customers to drop off at any lo-
cation. Though these policies best cater to the customer ex-
perience, for consistent utility in the system, companies need
to commit significant resources to rebalance the bike distri-
bution [Li et al., 2018] or send maintenance crew for charg-
ing the e-scooters. Such large maintenance overhead drives
several bike-sharing platforms to the verge of bankruptcy re-
cently [Spero, 2019].
Previous research proposed to seek user cooperation with

monetary incentives. Incentives are provided in mobile sens-
ing tasks [Zhang et al., 2014; Zhou et al., 2018; 2019], which
typically assume that users bid truthfully to execute tasks.
Yet, the private cost of users is often unknown to the system.
Building on the budget feasible methods [Archer and Tardos,

2007; Singer, 2010], incentives are explored in crowdsourc-
ing tasks to learn private cost distribution and maximize util-
ity [Singla and Krause, 2013]. They design fixed incentives
to explore the users’ costs. Incentive has been utilized to im-
prove efficiency in the sharing economy recently. In bike
sharing systems, incentives are given to the riders who are
willing to cooperate and reposition their bikes to designated
locations, thus rebalancing the distributions of bikes among
different stations [Singla et al., 2015]. Similarly, incentives
are offered to encourage users for taking different options
such as renting an apartment with no review rating [Hirn-
schall et al., 2018].
Although these works laid the foundations of incentivizing

users for maximizing utility, they only consider a special case
that all tasks are treated uniformly and a single distribution is
learned to represent the cost profiles. In general, tasks could
entail heterogeneous amount of efforts from users. For in-
stance, in bike sharing, if there are several stations available,
riders are more willing to reposition their bikes to the ones
that are closer; riding to stations in further distance demands
more efforts. While encouraging tenants to take different
rental options, they may rank their own lists based on com-
mute distance and safety. These external factors are reflected
on users’ choices (or implicitly, their cost for different tasks),
which in turn, determine the amount of incentives to maxi-
mize the overall utility. Leveraging such context information
helps learn the cost distributions more accurately. Therefore,
based on the efforts required, we partition the tasks into dif-
ferent levels of difficulty and learn a cost distribution on each
level. To solve this new problem, a naive solution is to invoke
the mechanism of [Singla and Krause, 2013] independently
across all levels. Yet, how to satisfy the total budget, and
at the same time, maximize utility is still a difficult problem.
Hence, the main challenge is to find an online budget-feasible
incentivizing mechanism by considering heterogenous levels
of difficulty and assigning appropriate budget for each level,
such that the system utility is maximized.

To tackle this challenge, this paper studies an incentivizing
system with arbitrary k levels of difficulty satisfying an over-
all budget. First, we derive optimal offline and online solu-
tions with varied and fixed incentives, respectively. Then we
analyze the utility ratio between these approaches in the worst
case (bound of 2k given arbitrary budget assignment) and the
case with constant bound (bound of 2 given a reasonable bud-
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get assignment). To implement the fixed incentive strategy,
we propose a mechanism to determine incentives online by
exploring the cost distributions from the incoming users, and
dynamically allocating the budget assigned to different levels.
Finally, we conduct a case study of electric bike-sharing and
evaluate the proposed mechanism on a public dataset. Com-
pared to the previous works, the experiments demonstrate that
our mechanism not only achieves about 7 times utility, but
also saves 54% time to reach a utility objective.

2 Preliminary
2.1 Motivation
The previous works explore the distribution of user cost to
find the optimal incentivizing strategies. Nevertheless, they
assume each user has a private and static cost for all the tasks.
In fact, one’s cost is affected by many external factors, such
as weather condition/walking distance (bike reposition prob-
lem) or new review ratings (housing rental). These factors
could cause users’ cost to vary, depending on how users per-
ceive the task at a different time. The cost of users may fluc-
tuate substantially, leading to jitters or even divergence while
learning the cost distribution. If we discriminate the tasks
based on the efforts needed and learn multiple cost distribu-
tions, the distributions can be approximated more accurately
towards the profiles of the true cost at that states. Leverag-
ing these context information certainly helps the system make
better decisions as illustrated by the following example.

A motivating example is illustrated. Consider a bike-
sharing system that incentivizes users for bike rebalancing.
Through marketing research and survey, the company gains
some prior knowledge about the external factors with a major
impact on user cost, e.g., {weather, walking distance}1 After
returning the bikes to a different station, the user may have
to walk extra distance to her destination. In [Singla et al.,
2015], the same incentive is provided to all users regardless of
the external factors. However, during a raining day, it would
be more difficult to motivate users for repositioning, thus de-
manding a higher incentive from the budget; when it is sunny,
users are more willing to cooperate and earn rewards, thus
paying a lower incentive being sufficient to avoid wasting the
budget. Therefore, by considering external factors and incen-
tivizing users accordingly, the budget can be utilized more
efficiently for maximizing system utility.

There are some parallel works that assign workers to per-
form heterogeneous tasks [Ho and Vaughan, 2012; Goel et
al., 2014; Assadi et al., 2015]. They assume the users bid
truthfully based on their cost and the system assigns tasks
considering the bidding prices and the skill set of users. These
problems are usually solved offline with known cost distribu-
tion of users, aiming to find an optimal bipartite matching
between tasks and users. However, this paper studies an on-
line problem that the users do not reveal their cost and the
incentives are not fixed. Instead, they are learned through
distributing incentives and getting response from the users.

1Due to space limit, this paper does not attempt to come up with
an exhaustive list of external factors for specific applications. How-
ever, the proposed mechanism would work with more factors once
they are determined from data analytics.

2.2 System Model
Definition 1. Task difficulty. Each level of difficulty is defined
by a point in the space of external factors.

With n external factors, the i-th factor has mi levels. The
total k levels of difficulty are represented as a product from
all the levels, k =

∏n
i=1 mi. E.g., {{raining, sunny}, {<

500m,≥ 500m}} for the factors of weather and walking dis-
tance in bike-sharing systems (k = 4).

The system has certain budget to incentivize the users to
accomplish an objective, which consists of tasks with varied
levels of difficulty. When a user arrives, the system deter-
mines the difficulty of completing the task according to the
current situation. For instance, on a raining day, a station
within 500m needs reposition. An incentive is determined
based on the cost distribution learned online at that level. The
user either accepts the offer if the incentive is no less than her
cost, or declines if it is deficient. Our strategy is a posted price
mechanism that ensures truthfulness by making the offered
incentive independent of the cost claimed by the user [My-
erson, 1981; Badanidiyuru et al., 2012]. Instead of building
on truthful bidding/auction mechanisms such as second-price
auction [Dobzinski et al., 2006], the posted price mechanism
is adopted here due to: 1) users may not intend to reveal their
intrinsic cost due to privacy; 2) system handles incoming re-
quests one by one and an immediate decision is made; 3) if we
were to use auction, the system should maintain a time inter-
val to gather enough users, and establish interactive sessions
for the bidding process, which hurts the user experience.
Definition 2. k-level (incentivizing) system. Tasks have k
levels of difficulty. A user can conduct only one task at a
certain level. The cost in the system for the j-th user to finish
the task at the i-th level, C(i)

j is sorted in an ascending order,

C
(i)
1 ≤ C

(i)
2 ≤ . . . ≤ C

(i)
ni . ni is the number of users that

perform the tasks at the i-th level. The difficulties of the tasks
are also arranged in an ascending order, i.e. the (i + 1)-th
level is more difficult than the i-th level.

According to Definition 2, we naturally assume that the
cost in level i + 1 is larger than the cost in level i for the
same position j in the sorted list,

C
(i)
j < C

(i+1)
j , ∀ j and ∀ 1 ≤ i ≤ k − 1. (1)

Definition 3. Utility. The number of tasks completed by the
users via the incentivizing mechanism.
Definition 4. Budget feasibility. With a total budget B, Bi is
the portion to be assigned to the i-th level. Their sum should
be within the total budget,

∑k
i=1 Bi ≤ B, and for any i, the

total incentives provided by any mechanism to the i-th level
should not exceed Bi.

The system has sufficient participants, ni ≥ Bi/C
(i)
1 for

each level, to make sure that all the budgets are utilized. The
number of participants is finite; otherwise, it would be a triv-
ial problem since we can simply assign the minimum incen-
tive to each user but still find enough participants.

3 Mechanism and Analysis
The goal is to design a truthful, budget-feasible mechanism
that achieves a constant approximation ratio to the optimal
solution. There are two strategies of assigning incentives.
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Definition 5. OPT-VAR. The optimal solution which achieves
the maximum utility for the k-level system by providing varied
incentives to each user.
Definition 6. OPT-FIX. The optimal solution which achieves
the maximum utility for the k-level system by providing fixed
incentives to each user at the same level.

We discuss how OPT-VAR and OPT-FIX are achieved in
the following lemmas.
Lemma 1. OPT-VAR is achieved by sorting the cost of all
users in an ascending order and providing incentives in the
sorted order until the budget is exhausted.

Proof. Prove by contradiction. Assume a budget-feasible so-
lution that achieves larger utility, but the cost does not follow
the sorted order, i.e., there must exist one user with lower cost
who is not chosen, but the one with higher cost has been cho-
sen. Then there is always a solution that maintains the utility
and budget feasibility by switching the user of higher cost
with the one of lower cost (that are not chosen), which still
follows the sorted order of the cost. It is an obvious contra-
diction to the assumption, so the lemma is proved.

Lemma 2. OPT-FIX can be achieved by providing the fixed
incentive C(i)

qi to the first qi users in the i-th level, where qi is
the largest number such that C(i)

qi ≤ Bi

qi
, ∀1 ≤ i ≤ k.

Proof. For any 1 ≤ j ≤ qi, sinceC
(i)
j ≤ C

(i)
qi , providingC

(i)
qi

ensures that the first qi users would accept the task. Mean-
while, C(i)

qi · qi ≤ Bi makes the mechanism budget-feasible.
Optimality can be proved by contradiction as well. As-

sume OPT-FIX is larger than the utility achieved by this
mechanism, there must be at least one q′i > qi such that
C

(i)
q′i
· q′i ≤ Bi. However, qi is the largest number satisfying

C
(i)
qi ≤ Bi

qi
for budget feasibility, thereby causing a contradic-

tion. The lemma is proved.

For the same level of difficulty, OPT-FIX provides fixed
amount of incentives. It is certainly not as efficient as OPT-
VAR since the incentives provided may exceed the actual
cost of users. Therefore, the utility of OPT-FIX cannot sur-
pass OPT-VAR. However, OPT-VAR requires all the cost to
be known, so more suitable for planning offline. Most plat-
forms take streaming requests and make decisions online. To
this end, we pursue fixed incentive as an online approach and
find the ratio between OPT-FIX to OPT-VAR for the k-level
system2. Budget assignment among all k levels is a difficult
problem since the cost distribution on each level is unknown.
To start, consider an arbitrary budget assignment below.
Theorem 1. For the k-level system, OPT-VAR ≤ 2k ·
OPT-FIX, i.e. l∗(k) ≤ 2k · l(k), for any distribution of
user cost with arbitrary budget assignment of Bi for any
1 ≤ i ≤ k. l∗(k) and l(k) are the utility of OPT-VAR and
OPT-FIX for the k-level system respectively.

2For simplicity, OPT-VAR and OPT-FIX also stand for utility
achieved by the mechanisms henceforth.

Proof. We prove this theorem by mathematical induction.
Base case: The work of [Singer, 2010] has proved this base
case when k = 1 (only one level of difficulty).
Inductive step: For k ≥ 1, assume that l∗(k) ≤ 2k · l(k)
holds, we want to prove that l∗(k + 1) ≤ 2(k + 1) · l(k + 1)
also holds, where in addition to the k levels, one new level is
added with a total of (k + 1) levels in the system.
The difference between l∗(k + 1) and l∗(k) is denoted as

∆l∗ = l∗(k + 1) − l∗(k). Rewrite this into, l∗(k + 1) =
l∗(k) + ∆l∗. To prove l∗(k + 1) ≤ 2(k + 1) · l(k + 1), it is
sufficient to prove that both 1): l∗(k) ≤ 2k · l(k + 1) and 2)
∆l∗ ≤ 2 · l(k + 1) hold.
1) We prove l∗(k) ≤ 2k · l(k + 1). Introducing the new

(k + 1)-th level means more options that users can choose
from (i.e., higher chances for the incentives to get accepted).
Hence, the utility of (k + 1)-level system is at least as good
as the k level: l(k) ≤ l(k + 1). Plug in this into baseline
assumption l∗(k) ≤ 2k · l(k), then l∗(k) ≤ 2k · l(k + 1) is
proved.

2) We prove∆l∗ ≤ 2 · l(k+1). The sketch is to apply Eq.
(1), which implies that the cost in the (k+1)-th level is larger
than the k-th level for the same position j in the sorted list.
Since the cost is relatively higher at (k+1)-th level, the num-
ber of tasks that can be successfully performed is no greater
than that from level k, i.e. l∗k+1(k+1) ≤ l∗k(k). Similarly, for
k levels, l∗k(k) ≤ l∗i (k) and l∗(k) =

∑k
i=1 l

∗
i (k), from which

it can be derived that l∗k(k) ≤
l∗(k)
k . That is, the tasks that can

be achieved at the k-th level are no greater than the average
number of tasks achieved at each level, because the k-th level
is the most difficult. Then from the upper bound of ∆l∗, the
second condition is proved as,

∆l∗ ≤ l∗k+1(k + 1) ≤ l∗k(k) ≤
l∗(k)

k
≤ 2 · l(k) ≤ 2 · l(k + 1). (2)

Both 1) and 2) are proved so the ratio of 2k is proved.

Theorem 1 states that an arbitrary budget assignment
among all the levels can still achieve a bounded ratio of 2k
proportional to fixed k. The next question is to what extent
OPT-FIX can achieve compared to OPT-VAR (constant ap-
proximation ratio). To find such ratio, we assume an optimal
budget assignment is given such that running this assignment
the budget will be fully utilized at each level without causing
an overall budget-infeasibility. We start with the special case
of k = 2 and extend it into the general case. The cost of level
1 and level 2 tasks are sorted as, C(1)

1 ≤ C
(1)
2 ≤ . . . ≤ C

(1)
n1

and C
(2)
1 ≤ C

(2)
2 ≤ . . . ≤ C

(2)
n2 . The total budget is B, in

which B1 is reserved for the level 1 tasks and B2 for the level
2 tasks (B = B1 + B2). The budget assigned by OPT-VAR
are B∗

1 and B∗
2 (B = B∗

1 + B∗
2 ). The total number of the

tasks assigned by OPT-VAR is denoted by l∗, where l∗1 and
l∗2 are the numbers of level 1 and level 2 tasks respectively
(l∗ = l∗1 + l∗2)

3. Similarly, OPT-FIX assigns l tasks in total,
where l = l1 + l2. In the following, we prove that the ratio of
OPT-VAR and OPT-FIX is bounded by 2.

3We omit the (k) notation here for clarity since we refer to the
k-level system hereafter.
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Figure 1: Cost of users in the incentivizing system when k = 2 (a)
level 1 tasks (b) level 2 tasks. Task # = 1 means the 1st task of level
1, with its incentive of C(1)

1 provided by OPT-VAR. The area of the
rectangular bar for each task is the budget required to complete that
task and their sum equals to the total budget B∗

1 or B∗
2 .

Lemma 3. When k = 2, OPT-VAR ≤ 2 · OPT-FIX for any
distribution of user cost if B1 ≥ l∗1

2 · C
(1)
l∗1/2

, B2 ≥ l∗2
2 · C

(2)
l∗2/2

,
and B1 + B2 ≤ B. There are always such B1 and B2 satis-
fying these constraints simultaneously. l∗i

2 (i = 1, 2) denotes
half of the tasks determined by OPT-VAR.

Proof. The proof is illustrated with the help of Fig. 1, in
which (a) and (b) show sorted lists of tasks vs. their ascend-
ing cost using OPT-VAR. We focus on level 1 and the same
principle follows for level 2. Connecting the costs from C

(1)
1

to C
(1)
l∗1

results the cost curve in blue. Because of adequate
user participation, the sum of all the rectangular bars can be
closely approximated by the integral of the cost curve (the
area beneath it).

If B1 =
l∗1
2 · C

(1)
l∗1/2

, OPT-FIX can provide incentive C(1)
l∗1/2

to all first l∗1/2 users in level 1. Its budget is represented by
the area in red (Fig. 1 (a)). Because of l∗1

2 is the mid-point, the
area of the red and green rectangles are the same. Thus, by
flipping the red into the green area, it is easy to see that B1 =
l∗1
2 · C

(1)
l∗1/2
≤ B∗

1 , and the utilities l1 achieved by B1 via the

OPT-FIX mechanism satisfies l1 =
l∗1
2 . Similarly, for level 2,

ifB2 =
l∗2
2 ·C

(2)
l∗2/2

, the utilities l2 achieved byB2 via OPT-FIX

satisfies l2 =
l∗2
2 and B2 ≤ B∗

2 . Thus, li =
l∗i
2 , for i = 1, 2.

The relation holds for both concave and convex curves since it
only relies on the first derivative of the curve (monotonically
increasing), but not the second derivative. When B1 and B2

are chosen as above, B1 + B2 ≤ B∗
1 + B∗

2 = B, and this
budget-feasible mechanism infers, l1 + l2 =

l∗1
2 +

l∗2
2 =⇒ l =

l∗

2

Lemma 3 can be conveniently extended for the general case
of k as discussed in the next theorem.
Theorem 2. For the incentivizing system of k levels,
OPT-VAR ≤ 2 · OPT-FIX for any distribution of user cost
if Bi ≥ l∗i

2 ·C
(i)
l∗i /2

, and
∑k

i=1 Bi ≤ B. There are always such
Bi satisfying these constraints simultaneously.

Proof. According to Lemma 3,

Bi ≥
l∗i
2

· C(i)

l∗i /2
=⇒ li ≥

l∗i
2
. (3)

For budget feasibility, Bi should satisfy
∑k

i=1 Bi ≤ B and,

li ≥
l∗i
2

=⇒
k∑

i=1

li ≥
k∑

i=1

l∗i
2

=⇒ l ≥ l∗

2
. (4)

Such Bi always exists by simply setting Bi =
l∗i
2 · C

(i)
l∗i /2

for
any i. The relations in Fig. 1 still hold for any level i of the
k-level system,

l∗i
2

· C(i)

l∗i /2
≤ B∗

i =⇒ Bi ≤ B∗
i =⇒

k∑
i=1

Bi ≤ B. (5)

4 k-level Incentivizing Mechanism
We implement OPT-FIX under the framework of multi-armed
bandit (MAB). In MAB, the learner pulls an arm each time
and receives a stochastic reward. To maximize the reward,
she needs to exploit the best arm, and meanwhile, explore
other potentially optimal arms. We map the MAB frame-
work to the k-level incentivizing system. Here, the goal
is to learn users’ cost distributions by minimizing the re-
gret, which is the difference between the expected and ac-
tual utility from a chosen incentive [Kleinberg et al., 2010;
Deshmukh et al., 2018]. By dynamically adjusting the bud-
get assignment according to learned cost profiles, we want to
minimize the regrets across all the levels. The mechanism is
described below.

Users randomly arrive at the system one at a time. Based
on the external factors under the current setting, the incoming
user is dispatched to a desired difficulty level i. For example,
repositioning the bike to a station with shortage at 500m dis-
tance in a sunny day. The system distributes incentive vi to
the user according to the current cost distribution at the i-th
level (discussed next). The user compares the incentive with
her private cost and responds either “accept” or “decline” to
the system. The system then updates the cost distribution for
this level based on the response; the proportion of budgets
assigned to each level is adjusted according to the new cost
distribution. These steps are repeated until the budget is de-
pleted. Specifically, the incentive v(i) for the incoming re-
quest in level i is,

v(i) = argmax
C

(i)
min≤v≤C

(i)
max

min
{Bi

v
, Pi(v) · ni

}
. (6)

v is a discrete variable in the range of C(i)
min and C

(i)
max, which

are the minimum and maximum incentives allowed in level i.
Bi

v is the number of tasks that can be completed with budget
Bi by running with incentive v. ni is the number of users
performing level i tasks. Pi(v) is the probability that the ran-
domly arriving user accepts the level i task for the incentive
v according to the learned distribution for level i. Pi(v) · ni

is the expected number of users who would accept the tasks
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Algorithm 1: k-level online incentivizing mechanism
1 Input: # of levels k, total budge B, number of users

ni for level i, min and max allowed incentive C(i)
min

and C(i)
max for level i, incentive increment ∆v, set of

incoming users U .
2 Output: Incentive v(i) for incoming users at level i.
3 S ← 0, Si ← 0, N

(i)
j ← 0, l← 0, li ← 0, ∀i, j

4 for ∀ u ∈ U do
5 Determine the level i that u belongs to
6 v

(i)
j ← C

(i)
min + (j − 1) ·∆v, ∀j

7 v(i) ← argmax
C

(i)
min≤v

(i)
j ≤C

(i)
max

min
{

Bi

v
(i)
j

, Pi(v
(i)
j ) · ni

}
8 if Si + v(i) ≤ Bi then
9 Provide v(i) to u, and collect her response ru

10 Pi(v
(i))=Pi(v

(i))+ ru−Pi(v
(i))

N
(i)
j +1

,

N
(i)
j ← N

(i)
j + 1

11 l← l + ru, li ← li + ru //Update utility
12 if ru = 1 then
13 Si ← Si + v(i) //The total used budget

14 n
(i)
j ← ni(Pi(v

(i)
j )− Pi(v

(i)
j−1)), ∀ i, j

15 Sort v(i)j in an ascending order, getting sequence V
16 while S < B, & V ̸= ϕ do
17 Extract level i and order j from V1 //Finding l∗i
18 if S + n

(i)
j v

(i)
j < B then

19 S ← S + n
(i)
j v

(i)
j , l∗i ← l∗i + n

(i)
j , V ←

V \ V1

20 Bi ← l∗i
2 · C

(i)
l∗i /2

, ∀i //According to Theorem 1

21 β ← B/
∑k

i=1 Bi; Bi ← Bi · β, ∀i = 1, 2, . . . , k
22 U ← U \ u //Remove u, and process the next user

given incentive v at level i. The minimum of the two numbers
is the actual number of tasks that can be completed given v
and the system searches for incentive v(i) that maximizes the
number of tasks being accepted.

Finding the optimal budget assignment for the maximum
utility turns out to be difficult (at least in the NP category).
For computational efficiency, we pursue the direction of ap-
proximation derivations and use them as a guideline for the
learning mechanism. Theorem 2 states that by assigning bud-
get Bi =

l∗i
2 · C

(i)
l∗i /2

to level i, the 2-approximation ratio is
achieved. l∗i is found by sorting incentives in an ascending
order, and providing incentives in that order until the over-
all budget B is exhausted. Since the learned distributions
of users’ cost vary over time, Bi is updated accordingly at
each level i. To fully utilize B, Bi is scaled by the factor of
β = B/

∑k
i=1 Bi. The mechanism is summarized in Algo-

rithm 1 and evaluated next.
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Figure 2: Analysis of dataset and survey (a) distribution of low-
energy E-bikes (b) average user cost under various external factors.

250m 500m 750m 1000m 1500m 2000m

Sunny 0.27 0.51 0.74 1.04 1.77 2.83
Rainy 0.42 0.71 1.05 1.70 3.22 5.19
Snowy 0.58 1.11 1.69 2.61 4.60 7.55

Table 1: The average expected cost ($) of users considering different
weather conditions and traveling distances.

5 Case Study of E-Bike Repositioning
To evaluate performance, we conduct a case study based on
the popular E-bike sharing system recently4. In addition to
the re-balancing problem, E-bikes require timely charging for
sustainable system utility. The existing solution dispatches
maintenance crew to traverse through all energy-demanding
stations. To improve efficiency, incentives can be given to
users for helping aggregate (low-energy) E-bikes towards
some designated stations. The process of determining such
incentives directly fits into the framework of the k-level sys-
tem, where the external factors of weather and (extra) walking
distance have impacts on the difficulty of the repositioning
tasks. Utility is defined as the number of E-bikes that have
been successfully repositioned under a fixed budget.

Due to its nascency and lack of public data for E-bike
sharing, we utilize the Mobike dataset5 instead, assuming the
types of bikes have limited impact on the points of interest.
The dataset contains 3.2M bicycle trips from May, 10th to
24th in 2017, Beijing, China. Each trip consists of ⟨bike
type, user id, order id, bike id, starting time, starting loca-
tion, ending location⟩. To simulate energy status of E-bikes ,
we establish an energy model based on the data crawled from
XQbike App (E-bike). By tracing each bike id with the energy
status, locations, the model can closely estimate the residual
energy of E-bikes. Note that, this transformation may have
limitations as our evaluation includes a subset of all possible
routes (without those longer rides using E-bikes). Fig. 2 (a)
presents a view of all the energy demand points, with each
pixel representing a 100 × 100m2 grid in Beijing. The anal-
ysis suggests that if E-bike sharing systems are deployed in
such large scale, the maintenance cost is huge with more than
40% E-bikes waiting for recharging.

To acquire realistic cost distribution of users considering
various external factors, we conduct a survey via the Ama-

4Bird scooter: https://www.bird.co/
5https://biendata.com/competition/mobike
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Figure 3: Performance comparison (a) learning cost distributions (b)
utility and approximation bounds.

zon Mechanical Turk (MTurk). The survey starts with in-
troductory questions about the participants’ familiarity with
the bike-sharing system, and follows by a random combina-
tion from different {weather, walking distance} to collect the
minimum incentives for a repositioning task. A total 385 re-
spondents are received. The average cost is shown in Table 1
and visualized in Fig. 2 (b). It shows that cost in rainy/snowy
days are about 2 and 3 times of the cost in sunny days. The
cost also grows faster regarding walking distance, which val-
idates that levels of difficulty are indeed heterogenous from
the users’ perspectives. Based on the surveyed cost distri-
butions, the user cost is randomly sampled from the relevant
distribution to simulate the run-time situation in the experi-
ment.

The cost distributions are continuously learned based on
users’ responses. The closer the learned distributions approx-
imate the private cost from users, the higher chances for the
incentivizing offers to get accepted, thus higher overall util-
ity. We use Kullback-Leibler (KL) divergence to measure the
difference between the two distributions as used in [Liu et
al., 2018]. Fig. 3 (a) depicts the evolution of KL divergence
as the number of users arrive from levels 1-6 vs. the “no-
difficulty” approach [Singla et al., 2015]. It is observed that
our mechanism converges much faster and provides a good
estimation of the true distribution with 500 users, whereas the
no-difficulty approach results 5 times larger KL-divergence
with 500 users. The curve also fluctuates due to the dynamic
repositioning demands at different stations, which makes it
hard to learn a combined distribution. By partitioning tasks
into various levels, cost distributions are learned efficiently.

Fig. 3 (b) compares the utility of our mechanism with the
no difficulty and equal assignment mechanisms. The latter
assigns equivalent budget to each level. Theoretical bounds
from Theorems 1, 2 and the optimal offline solution of OPT-
VAR are also plotted. Our mechanism achieves about 7 times
utility compared to “no difficulty” and results an actual 1.36
ratio to OPT-VAR in the evaluation. Introducing more levels,
the utility climbs up since our mechanism could adaptively
assign budgets among all the levels. In contrast, “equal as-
signment” trends down since the difficult levels demand more
budgets while the easy levels have surplus, thereby leading to
inefficient use of the budget among different levels. It con-
verges to the bottom line of “no difficulty” when more levels
are treated equally. The result validates substantial improve-
ment of utility by considering task difficulty as context infor-

no-diffi. equal asgmt. ours OPT-VAR∗

budget ($) 4438 3729 1733 890∗

incent. ($) 2.96 2.49 1.16 0.59∗

time (min) 325 177 151 67∗

Table 2: Budget and time required to achieve the utility objective.
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Figure 4: Maintenance overhead in E-bike reposition (a) no incen-
tive (b) no difficulty (c) k-level difficulty.

mation and highlights the importance of our mechanism that
utilizes the budget efficiently across all levels.

Table 2 further evaluates the budget and time required to
reach a utility objective of 1500 tasks. The average incen-
tive for each user is 1.16$ in our mechanism, 1.9 times of
the optimal solution; whereas no difficulty provides 2.96$, 5
times of the optimal. Our mechanism also saves 54% time
to accomplish the utility objective much faster since the pro-
vided incentives can reflect the true cost of users much better,
thereby receiving less “decline”.

Fig. 4 shows a running example if the maintenance crew
visits the stations where the E-bikes are aggregated by the in-
centivizing mechanisms. “No difficulty” mainly repositions
E-bikes in close distance, but fails to look further. Our mech-
anism surpasses no difficulty by aggregating the low-energy
E-bikes at fewer stations. The maintenance crew would travel
10.9, 9.5, and 4.3 km accordingly, with a sheer 55% and 61%
mileage saving regarding no difficulty and no incentive ap-
proaches.

6 Conclusion
In this paper, we partition the tasks into heterogeneous levels
of difficulty based on the external factors that may impact on
users’ cost. We formally analyze the ratios between assigning
varied and fixed incentives in different scenarios and design
a mechanism to learn users’ cost distributions via minimiz-
ing the regret. We present a case study based on the E-bike
sharing system using public dataset. The results demonstrate
dramatic improvement in utility and learning by considering
the levels of task difficulty.
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