
RBCN: Rectified Binary Convolutional Networks for Enhancing the
Performance of 1-bit DCNNs

Chunlei Liu1 , Wenrui Ding2 , Xin Xia1 , Yuan Hu1 , Baochang Zhang3∗ ,
Jianzhuang Liu4 , Bohan Zhuang5 and Guodong Guo6,7

1 School of Electronic and Information Engineering, Beihang University
2 Unmanned System Research Institute, Beihang University

3 School of Automation Science and Electrical Engineering, Beihang University
4 Huawei Noah’s Ark Lab

5 The University of Adelaide, Australia
6 Institute of Deep Learning, Baidu Research

7 National Engineering Laboratory for Deep Learning Technology and Application
{liuchunlei, ding, xinxia, zy1602hy, bczhang}@buaa.edu.cn, liu.jianzhuang@huawei.com,

bohan.zhuang@adelaide.edu.au, guoguodong01@baidu.com

Abstract
Binarized convolutional neural networks (BCNNs)
are widely used to improve memory and com-
putation efficiency of deep convolutional neural
networks (DCNNs) for mobile and AI chips based
applications. However, current BCNNs are not able
to fully explore their corresponding full-precision
models, causing a significant performance gap
between them. In this paper, we propose rectified
binary convolutional networks (RBCNs), towards
optimized BCNNs, by combining full-precision
kernels and feature maps to rectify the binarization
process in a unified framework. In particular, we
use a GAN to train the 1-bit binary network with the
guidance of its corresponding full-precision model,
which significantly improves the performance of
BCNNs. The rectified convolutional layers are
generic and flexible, and can be easily incorporated
into existing DCNNs such as WideResNets and
ResNets. Extensive experiments demonstrate the
superior performance of the proposed RBCNs over
state-of-the-art BCNNs. In particular, our method
shows strong generalization on the object tracking
task.

1 Introduction
Deep convolutional neural networks (DCNNs) have been
successfully demonstrated on many computer vision tasks
such as object detection and image classification. DCNNs
deployed in practical environments, however, still face many
challenges. They usually involve millions of parameters
and billions of FLOPs during computation. This is critical
because models of vision applications may consume very
large amounts of memory and computation, making them
impractical for most embedded platforms.

∗Contact Author

Binary filters instead of using full-precision filter weights
have been investigated in DCNNs to compress the deep
models to handle the aforementioned problems. Many
works attempt to quantize the weights of a network while
keeping the activations (feature maps) to 32-bit floating
points [Zhou et al., 2017; Zhu et al., 2016; Wang et al.,
2018]. Although this scheme leads to less performance
decrease compared to its full-precision counterpart, it still
needs a substantial amount of computational resource to
handle the full-precision activations. Therefore, the so-
called 1-bit DCNNs, which target the problem of training
the networks with both 1-bit quantized weights and 1-bit
activations, become more promising and significant in the
field of DCNNs compression. As presented in [Rastegari
et al., 2016], by reconstructing the full-precision filters
with a single scaling factor, XNOR provides an efficient
implementation of convolutional operations. More recently,
Bi-Real Net [Liu et al., 2018] explores a new variant of
residual structure to preserve the real activations before the
sign function. And the researchers in [Hou et al., 2016]
propose a new value approximation method that considers the
effect of binarization on the loss to further obtain binarized
weights. PCNN [Gu et al., 2019] learns a set of diverse
quantized kernels by exploiting multiple projections with
discrete back propagation.

The investigation into prior arts reveals that how to use the
full-precision models is the key issue to obtain the optimized
BCNNs. Most existing methods use the full-precision models
as an initialization [Rastegari et al., 2016] [Liu et al., 2018],
or for kernel approximation [Gu et al., 2019] [Rastegari et
al., 2016]. Besides, knowledge distillation uses a teacher
model (e.g., a full-precision model) to provide a guidance to
quantize the network [Polino et al., 2018; Zhuang et al., 2018;
Mishra and Marr, 2017]. While these methods generally use
a regularization term to minimize the difference between the
student’s and teacher’s posterior probabilities or intermediate
feature representations, they fail to consider the full-precision

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

854

Figure 1: The framework of Rectified Binary Convolutional Network (RBCN). The full-precision model provides the “real” feature maps,
while the 1-bit model (as the generator) provides the “fake” feature maps, to the discriminators that try to distinguish the “real” from the
“fake”. Meanwhile, the generator tries to make the discriminators unable to work well. By repeating this process, both the full-precision
feature maps and kernels (across all the convolutional layers) are sufficiently employed to enhance the capacity of the 1-bit binary model.
Note that (1) the full-precision model is used only in learning but not in inference; (2) after training, the full-precision learned filters W are
discarded, and only the binarized filters Ŵ and the shared learnable matrixs C (C∗) are kept in RBCN for the calculation of the feature maps
in inference.

feature maps (activations) in a comprehensive way. This
might be the reason why the knowledge distillation methods
have not been employed to obtain the extreme 1-bit CNNs
yet. To narrow down the performance gap between a
BCNN and its full-precision model, we propose that the full-
precision kernels and feature maps should be considered in a
more comprehensive way, in order to fully exploit the multi-
cue information.

In this paper, we introduce a rectified binary convolutional
network (RBCN) to calculate an optimized BCNN in which
a novel learning architecture is introduced to combine the
full-precision feature maps and the kernels approximation in
an end-to-end manner. Based on the powerful probability
fitting ability of generative adversarial network (GAN), we
discover that training a BCNN network with GAN, a better
performance can be obtained by fitting the distribution
of feature maps between full-precision and 1-bit binary
networks. By doing so, GAN is introduced to distill RBCN
from full-precision network by exploiting their full-precision
feature maps. To the best of our knowledge, we are the first to
use a GAN to do binary approximation of the full-precision
model. The whole process is illustrated in Fig. 1, where the
full-precision model and the 1-bit binary model (generator)
respectively provide “real” and “fake” feature maps to the
discriminators. The discriminators try to distinguish the
“real” from the “fake”, and the generator tries to make the
discriminators unable to work well. By repeating this process,
the multi-cue information (full-precision kernels and feature
maps) is sufficiently employed in the training process to
enhance the representational ability of the 1-bit binary model.
Besides, kernel (filter) approximation (RBConv in Fig. 1) is
integrated in the framework. Also, multiple discriminators
are used to further improve the performance of RBCN. This

process involving the GAN and the kernel approximation is
a rectified process, which can lead to a unique architecture
with more precise estimation of the full-precision model. The
contributions of this paper are summarized as follows.

(1) A novel BCNN learning architecture, referred to as
rectified binary convolutional network (RBCN), is proposed,
which employs the full-precision kernels and feature maps
to rectify the binarization process in a comprehensive frame-
work.

(2) To the best of our knowledge, we are the first to use a
GAN to calculate a BCNN. Besides, we discover that using
multiple discriminators in the GAN can significantly improve
the performance of the 1-bit binary model.

(3) Extensive experiments demonstrate the superior perfor-
mance of the proposed RBCNs over state-of-the-art BCNNs
on the object classification and tracking tasks.

2 Rectified Binary Convolutional Networks
(RBCNs)

We design RBCNs via kernel approximation and training
with GANs to rectify BCNNs in a unified framework.
During this process, the multi-cue information of the full-
precision feature maps and kernels1 is exploited to improve
the performance degraded by binarization. The rectified
convolutional layers are generic and flexible, which can be
easily incorporated into existing CNNs, such as WideResNets
and ResNets. First of all, Table 1 gives the main notation used
in this paper.

1In this paper, the terms “filter” and “kernel” are exchangeable.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

855

L : loss function Ŵ : binarized filters T : feature maps from RBCN to D(·)
W : learned filters C : learnable matrixs R : feature maps from the full-precision model
D(·) : discriminators δC : gradient of C
i : filter index η : learning rate F : feature maps before and after convolution in RBCN
t : tth iteration L : number of layers Y : filters of the discriminators
l : layer index δW : gradient of W

Table 1: A brief description of the variables and operators used in the paper.

2.1 Loss Function of RBCNs
The rectified process combines the full-precision kernels and
feature maps to rectify the binarization process. It includes
kernel approximation and adversarial learning. This learnable
kernel approximation can lead to an unique architecture with
more precise estimation of the original convolutional filters
through minimizing a kernel loss. The discriminators D(·)
with filters Y are introduced to distinguish the feature maps
R of the full-precision model from those T of RBCN. The
generator (RBCN) with filters W and learnable matrixs C
is learned together with Y by using the knowledge from the
supervised feature maps R. Therefore, W , C and Y are
learned by solving the following optimization problem:

arg min
W,Ŵ ,C

max
Y

L = LAdv(W, Ŵ ,C, Y)

+LKernel(W, Ŵ ,C) + LS(W, Ŵ ,C),
(1)

where LAdv(W, Ŵ ,C, Y) is the adversarial loss:

LAdv(W, Ŵ ,C, Y) = log(D(R;Y)) + log(1−D(T ;Y)), (2)

where D(·) consists of four basic blocks, each of which has
a linear layer and a LeakyRelu layer.

In addition, LKernel(W, Ŵ ,C) is the kernel loss between
the learned full-precision filters W and the binarized filters
Ŵ , which is expressed by MSE:

LKernel(W, Ŵ ,C) =
1

2
λ1||W − CŴ ||2. (3)

Finally, LS(W, Ŵ ,C) is a traditional problem-dependent
loss such as the softmax loss.

For simplicity, the update of the discriminators is omitted
in the following description until Algorithm 1. Besides, we
find that the log in Equ. 2 has little effect during training and
so it is omitted too. Then, based on the Lagrangian method,
the optimization problem in Equ. 1 is rewritten as:

min LS(W, Ŵ ,C)

+ λ1/2
∑
l

∑
i

||W l
i − ClŴ l

i ||2

+ λ2/2
∑
l

∑
i

||1−D(T l
i ;Y)||2.

(4)

In Equ. 4, the target is to obtain W , Ŵ and C with Y fixed,
which is why the term D(R;Y) in Equ. 2 can be ignored.
The update of Y can be found in Algorithm 1. The advantage
of our formulation in Equ. 4 lies in that the loss function
is trainable, meaning that it can be easily incorporated into
existing learning frameworks.

2.2 Forward Propagation in RBCNs
In RBCNs, a binary filter Ŵ l

i is calculated as:

Ŵ l
i = sign(W l

i), (5)

where W l
i is the corresponding full-precision filter, and the

values of Ŵ l
i are 1 or −1. Both W l

i and Ŵ l
i are jointly

obtained in the end-to-end learning.
In RBCNs, the convolution is implemented based on Cl

and F l
in to calculate the feature maps F l

out:

F l
out = RBConv(F l

in; Ŵ
l, Cl)

= Conv(F l
in, Ŵ � Cl),

(6)

where RBConv denotes the convolution operation imple-
mented as a new module, F l

in and F l
out are the feature maps

before and after the convolution, respectively, and � is the
element-by-element product. Note that F l

in is binary after the
sign operation (see Fig. 1), and C is actually C∗, which will
be elaborated at the end of section 3.3.

2.3 Backward Propagation in RBCNs
In RBCNs, what need to be learned and updated are the full-
precision filters W and the learnable matrixs C. These two
sets of parameters are jointly learned. In each convolutional
layer, an RBCN updates W first and then C.

First we updates the full-precision filters W . Let δW l
i

be the gradient of the full-precision filter W l
i . During

backpropagation, the gradients pass to Ŵ l
i first and then to

W l
i . Thus:

δW l
i
=

∂L

∂W l
i

=
∂L

∂Ŵ l
i

∂Ŵ l
i

∂W l
i

, (7)

where

∂Ŵ l
i

∂W l
i

=

2 + 2W l
i , −1 ≤W l

i < 0,
2− 2W l

i , 0 ≤W l
i < 1,

0, otherwise,
(8)

which is an approximation of the 2×dirac-delta function [Liu
et al., 2018]. Furthermore,

∂L

∂Ŵ l
i

=
∂LS

∂Ŵ l
i

+
∂LKernel

∂Ŵ l
i

+
∂LAdv

∂Ŵ l
i

, (9)

and
W l

i ←W l
i − η1δW l

i
, (10)

where η1 is a learning rate. Then:

∂LKernel

∂Ŵ l
i

= −λ1(W l
i − ClŴ l

i)C
l, (11)

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

856

∂LAdv

∂Ŵ l
i

= −λ2(1−D(T l
i ;Y))

∂D

∂Ŵ l
. (12)

We further update the learnable matrix Cl with W l fixed.
Let δCl be the gradient of Cl. Then we have:

δCl =
∂LS

∂Cl
+
∂LM

∂Cl
+
∂LAdv

∂Cl
, (13)

and
Cl ← Cl − η2δCl , (14)

where η2 is another learning rate. Further,
∂LKernel

∂Cl
= −λ1

∑
i

(W l
i − ClŴ l

i)Ŵ
l
i , (15)

∂LAdv

∂Cl
= −λ2

∑
i

(1−D(T l
i ;Y))

∂D

∂Cl
. (16)

The above derivations show that the rectified process is
trainable in an end-to-end manner. The complete training
process is summarized in Algorithm 1, including the update
of the discriminators. Besides, in the implementation, the
batch normalization (BN) layers are updated with W and C
fixed after each epoch.

We note that in our implementation, the value of C will be
replaced by its average during the forward process, resulting
into a new matrix denoted by C∗2. By doing so, only a scalar
instead of a matrix involve into the convolution which thus
speed up the calculation.

3 Experiments
Our RBCNs are evaluated first on object classification using
MNIST [Lecun et al., 1998], CIFAR10/100 [Krizhevsky
and Hinton, 2009] and ILSVRC12 ImageNet datasets [Rus-
sakovsky et al., 2015], and then on object tracking. For
object classification, WideResNet (WRN) [Zagoruyko and
Komodakis, 2016] and ResNet [He et al., 2016] are employed
as the backbone networks to build our RBCNs. Also,
binarizing the neuron activations is carried out in all of our
experiments.

3.1 Datasets and Implementation Details
MINIST. The MINIST [Lecun et al., 1998] dataset is
composed of a training set of 60,000 and a testing set of
10,000 32× 32 grayscale images of hand-written digits from
0 to 9.
CIFAR. CIFAR10 [Krizhevsky and Hinton, 2009] is a
natural image classification dataset containing a training set
of 50, 000 and a testing set of 10, 000 32 × 32 color images
across the following 10 classes: airplanes, automobiles, birds,
cats, deers, dogs, frogs, horses, ships, and trucks, while
CIFAR100 consists of 100 classes.
ImageNet. ImageNet object classification dataset [Rus-
sakovsky et al., 2015] is more challenging due to its large
scale and greater diversity. There are 1000 classes and
1.2 million training images and 50k validation images in
it. We compare our method with the state-of-the-art on the
ImageNet dataset, and we adopt ResNet18 to validate the
superiority and effectiveness of RBCNs.

2its elements are equal

Algorithm 1 RBCN Training

Input: The training dataset, the feature maps R from the
full-precision model, and the hyper-parameters such as
initial learning rate, weight decay, convolution stride and
padding size.

Output: A binary 1-bit model RBCN with weights Ŵ and
learnable matrixs C.

1: Initialize W randomly;
2: repeat
3: Randomly sample a mini-batch data;
4: // Forward propagation
5: for all l = 1 to L convolutional layer do
6: F l

out = Conv(F l
in, Ŵ

l � Cl);
7: end for
8: // Back propagation
9: for all l = L to 1 do

10: Update the discriminators Dl(·) by ascending
their stochastic gradients:

11: ∇Dl(log(Dl(Rl;Y)) + log(1−Dl(T l;Y)));
12: Calculate the gradients δW l ; // Using Eq. 7
13: W l ←W l − ηδW l ; // Update the weights
14: Calculate the gradient δCl ; // Using Eq. 13
15: Cl ← Cl−η2δCl ; // Update the learnable matrixs
16: end for
17: Update all the parameters of the batch normalization

layers
18: until the maximum epoch
19: Ŵ = sign(W).

WRN Backbone. WRN is a network structure similar to
ResNet with a depth factor k to control the feature map
depth dimension expansion through 3 stages, within which
the dimensions remain unchanged. For simplicity we fix
the depth factor to 1. Each WRN has a parameter i which
indicates the channel dimension of the first stage, and we
set it to 16, leading to a network structures 16-16-32-64.
The training details are the same as in [Zagoruyko and
Komodakis, 2016]. λ1 and λ2 are set as 0.01 with a
degradation of 10% for every 60 epochs before reaching the
maximum epoch of 200 for CIFAR10/100. For example,
WRN22 is a network with 22 convolutional layers and
similarly for WRN40.
ResNet18 Backbone. SGD is used as the optimization
algorithm with a momentum of 0.9 and a weight decay 1e-
4. λ1 and λ2 are set as 0.1 with a degradation of 10% for
every 20 epochs before reaching the maximum epoch of 70
on ImageNet, while on CIFAR10/100, λ1 and λ2 are set as
0.01 with a degradation of 10% for every 60 epochs before
reaching the maximum epoch of 200.

3.2 Ablation Study
In this section, we study the performance contributions of the
components in RBCNs, which include kernel approximation,
GAN, and the update of the BN layers. CIFAR100 and
ResNet18 with different kernel stages are used in this
experiment. The details are given below.

1) We only replace the convolution in Bi-Real Net with our

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

857

Kernel Stage Bi R R+G R+G+B
RBCN 32-32-64-128 54.92 56.54 59.13 61.64
RBCN 32-64-128-256 63.11 63.49 64.93 65.38
RBCN 64-64-128-256 63.81 64.13 65.02 66.27

Table 2: Performance (accuracy, %) contributions of the components
in RBCNs on CIFAR100, where Bi, R, G, and B denote the Bi-Real
Net, RBConv, GAN, update of the BN layers, respectively. The
bold numbers represent the best results.

Model Kernel Stage
Dataset

CIFAR CIFAR
-10 -100

ResNet18 32-32-64-128 92.67 67.07
ResNet18 32-64-128-256 93.88 72.51
ResNet18 64-64-128-256 94.57 72.89

RBCN (ResNet18) 32-32-64-128 89.03 61.09
RBCN (ResNet18) 32-64-128-256 90.67 65.38
RBCN (ResNet18) 64-64-128-256 90.40 66.27

WRN22 64-64-128-256 95.19 76.38
WRN40 64-64-128-256 94.92 74.91

RBCN (WRN22) 64-64-128-256 93.28 72.06
RBCN (WRN40) 64-64-128-256 93.69 73.08

XNOR (ResNet18) 32-32-64-128 71.01 43.58
XNOR (WRN22) 64-64-128-256 86.90 58.05

Bi-Real (ResNet18) 32-32-64-128 85.34 54.92
Bi-Real (WRN22) 64-64-128-256 90.65 68.51
PCNN (ResNet18) 32-32-64-128 85.50 55.66
PCNN (WRN22) 64-64-128-256 91.62 70.32

Scheme-A (ResNet18) 32-64-128-256 75.45 46.32
Scheme-A (WRN22) 64-64-128-256 87.83 59.54

Table 3: Classification accuracy (%) based on ResNet18 and
WRN40 on CIFAR10/100. The bold represent the best results
among the binary networks.

kernel approximation (RBConv) and compare the results.
As shown in the R column in Table 2, RBCN achieves
1.62% accuracy improvement over Bi-Real Net (56.54%
vs. 54.92%) using the same network structure as in ResNet18
with 32-32-64-128. This significant improvement verifies the
effectiveness of the learnable matrixs.

2) In RBCNs, if we use the GAN to help binarization,
we can find a more significant improvement from 56.54% to
59.13% with the kernel stage of 32-32-64-128, which shows
that the GAN can really enhance the binarized networks.

3) We find that a training trick can also improve RBCNs,
which is to update the BN layers with W and C fixed after
each epoch (line 17 in Algorithm 1). This trick makes RBCN
boost 2.51% (61.64% vs. 59.13%) in CIFAR100 with 32-32-
64-128.

3.3 Accuracy Comparison with State-of-the-Art
CIFAR10/100. The same parameter settings are used in
RBCNs on both CIFAR10 and CIFAR100. We first compare
our RBCNs with the original ResNet18 with different stage
kernels, followed by a comparison with the original WRNs
with the initial channel dimension 64 in Table 3. Thanks

Dataset Index SiamFC XNOR RB-SF

GOT-10K AO 0.348 0.251 0.327
SR 0.383 0.230 0.343

OTB50 Precision 0.761 0.457 0.706
SR 0.556 0.323 0.496

OTB100 Precision 0.808 0.541 0.786
SR 0.602 0.394 0.572

UAV123 Precision 0.745 0.547 0.688
SR 0.528 0.374 0.497

Table 5: Tracking performance comparison between XNOR and
RB-SF on different datasets.

to the rectified process, our results on both the datasets are
close to the full-precision networks ResNe18 and WRN40.
Then, we compare our results with other state-of-the-arts such
as Bi-Real Net [Liu et al., 2018], PCNN [Gu et al., 2019],
Scheme-A [Mishra and Marr, 2017] and XNOR [Rastegari
et al., 2016]. All these BCNNs have both binary filters and
binary activations. It is observed that at most 6.17% (=
61.09%−54.92%) accuracy improvement is gained with our
RBCN, and in other cases, larger margins are achieved.

ImageNet. Five state-of-the-art methods on ImageNet are
chosen for comparison: Bi-Real Net [Liu et al., 2018],
BinaryNet [Courbariaux et al., 2016], XNOR [Rastegari et
al., 2016], PCNN [Gu et al., 2019] and ABC-Net [Lin et al.,
2017]. Again, these networks are representative methods of
binarizing both network weights and activations and achieve
state-of-the-art results. All the methods in Table 4 perform
the binarization of ResNet18. The results in Table 4 are
quoted directly from their papers, except that the result of
BinaryNet is from [Lin et al., 2017]. The comparison clearly
indicates that the proposed RBCN outperforms the five binary
networks by a considerable margin in terms of both the top-1
and top-5 accuracies. Specifically, for top-1 accuracy, RBCN
outperforms BinaryNet and ABC-Net with a gap over 16%,
achieves 7.9% improvement over XNOR, 3.1% over the very
recent Bi-Real Net, and 2.2% over the latest PCNN. In Fig.
2, we plot the training and testing loss curves of XNOR
and RBCN. It clearly shows that using our rectified process,
RBCN converges faster than XNOR.

3.4 Experiments on Object Tracking
The key message conveyed in the proposed method is that
although the conventional binary training method has a
limited model capability, the proposed rectified process can
lead to a powerful model. In this section, we show that this
framework can also be used in object tracking. In particular,
we consider the problem of tracking an arbitrary object in
videos, where the object is identified solely by a rectangle in
the first frame. For object tracking, it is necessary to update
the weights of the network online, severely compromising
the speed of the system. To directly apply the proposed
framework to this application, we can construct a binary
convolution with the same structure to reduce the convolution
time. In this way, RBCN can be used to binarize the network
further to guarantee the tracking performance.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

858

Full-Precision XNOR ABC-Net BinaryNet Bi-Real PCNN RBCN

ResNet18 Top-1 69.3 51.2 42.7 42.2 56.4 57.3 59.5
Top-5 89.2 73.2 67.6 67.1 79.5 79.8 81.6

Table 4: Classification accuracy (%) on ImageNet. The bold represents the best result among the binary networks.

Figure 2: Training and Testing error curves of RBCN and XNOR based on the ResNet18 backbone on ImageNet.

In this paper, we use SiamFC Network as the backbone
for object tracking. We binarize SiamFC as Rectified Binary
Convolutional SiamFC Network (RB-SF). We evaluate RB-
SF on four datasets, GOT-10K [Huang et al., 2018], OTB50
[Wu et al., 2013], OTB100 [Wu et al., 2015], and UAV123
[Mueller et al., 2016], using accuracy occupy (AO) and
success rate (SR). The results are shown in Table 5. Intrigu-
ingly, our framework achieves about 7% AO improvement
over XNOR, both using the same network architecture as
in SiamFC Network on GOT-10k. Further, our framework
brings so much benefit that Bi-SF performs almost as well as
the full-precision SiamFC Network.

3.5 Efficiency Analysis

The memory usage is computed as the summation of 32 bits
times the number of real-valued parameters and 1 bit times
the number of binary parameters in the network. Further, we
use FLOPs to measure the speed. The results are given in
Table 6. The FLOPs are calculated as the amount of real-
valued floating point multiplications plus 1/64 of the amount
of 1-bit multiplications [Liu et al., 2018]. As shown in
Table 6, the proposed RBCN, along with XNOR, reduces
the memory usage of the full-precision ResNet18 by 11.10
times. For efficiency, both RBCN and XNOR gain 10.86×
speedup over ResNet18. Note the computational and storage
costs brought by learnable scalar C∗ can be negligible.

RBCN XNOR-Net ResNet18
Memory usage 33.7Mbits 33.7Mbits 374.1Mbits
Memory saving 11.10× 11.10× -

FLOPs 1.67× 108 1.67× 108 1.81× 109

Speedup 10.86× 10.86× -

Table 6: Comparison of memory usage and FLOPs calculation.

4 Conclusion
In this paper, we introduce rectified binary convolutional net-
works (RBCNs), towards optimized BCNNs, by exploiting
the full-precision kernels and feature maps in an end-to-end
manner. In particular, we use a GAN to train the 1-bit binary
network with the guidance of its corresponding full-precision
model, which significantly improves the performance of the
BCNN. Furthermore, as a general model, RBCNs can be used
not only in object classification but also in other tasks such as
object tracking. The experiments on both object classification
and object tracking demonstrate the superior performance of
the proposed RBCNs over state-of-the-art binary models.

Acknowledgments
The work was supported by the National Key Research
and Development Program of China (Grant No. 2016YF-
B0502600) and the Natural Science Foundation of China
under Contract 61672079. Also, it is in part supported by
the Fundamental Research Funds for the Central Universities.
Baochang Zhang is the corresponding author.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

859

References
[Courbariaux et al., 2016] Matthieu Courbariaux, Itay

Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. Binarized neural networks: Training deep neural
networks with weights and activations constrained to +1
or -1. arXiv preprint arXiv:1602.02830, 2016.

[Gu et al., 2019] Jiaxin Gu, Baochang Zhang, and
Jianzhuang Liu. Projection convolutional neural networks.
In AAAI, 2019.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016.

[Hou et al., 2016] Lu Hou, Quanming Yao, and James T
Kwok. Loss-aware binarization of deep networks. arXiv
preprint arXiv:1611.01600, 2016.

[Huang et al., 2018] Lianghua Huang, Xin Zhao, and Kaiqi
Huang. Got-10k: A large high-diversity benchmark
for generic object tracking in the wild. arXiv preprint
arXiv:1810.11981, 2018.

[Krizhevsky and Hinton, 2009] Nair Krizhevsky and Hinton.
The cifar-10 dataset. online: http://www. cs. toronto.
edu/kriz/cifar. html, 2009.

[Lecun et al., 1998] Yann Lecun, Leon Bottou, Yoshua
Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[Lin et al., 2017] Xiaofan Lin, Cong Zhao, and Wei Pan.
Towards accurate binary convolutional neural network.
In Advances in Neural Information Processing Systems,
pages 345–353, 2017.

[Liu et al., 2018] Zechun Liu, Baoyuan Wu, Wenhan Luo,
Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-
real net: Enhancing the performance of 1-bit cnns
with improved representational capability and advanced
training algorithm. In Proceedings of the European
Conference on Computer Vision, pages 722–737, 2018.

[Mishra and Marr, 2017] Asit Mishra and Debbie Marr.
Apprentice: Using knowledge distillation techniques
to improve low-precision network accuracy. arX-
iv:1711.05852v1, 2017.

[Mueller et al., 2016] Matthias Mueller, Neil Smith, and
Bernard Ghanem. A benchmark and simulator for uav
tracking. In European conference on computer vision,
pages 445–461. Springer, 2016.

[Polino et al., 2018] Antonio Polino, Razvan Pascanu, and
Alistarh Dan. Model compression via distillation and
quantization. arXiv:1802.05668v1, 2018.

[Rastegari et al., 2016] Mohammad Rastegari, Vicente Or-
donez, Joseph Redmon, and Ali Farhadi. Xnor-net:
Imagenet classification using binary convolutional neural
networks. In European Conference on Computer Vision,
pages 525–542, 2016.

[Russakovsky et al., 2015] Olga Russakovsky, Jia Deng,
Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, and
Michael Bernstein. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision,
115(3):211–252, 2015.

[Wang et al., 2018] Xiaodi Wang, Baochang Zhang, Ce Li,
Rongrong Ji, Jungong Han, Xianbin Cao, and Jianzhuang
Liu. Modulated convolutional networks. In The IEEE
Conference on Computer Vision and Pattern Recognition,
June 2018.

[Wu et al., 2013] Yi Wu, Jongwoo Lim, and Ming-Hsuan
Yang. Online object tracking: A benchmark. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2411–2418, 2013.

[Wu et al., 2015] Yi Wu, Jongwoo Lim, and Ming-Hsuan
Yang. Object tracking benchmark. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 37(9):1834–
1848, 2015.

[Zagoruyko and Komodakis, 2016] Sergey Zagoruyko and
Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[Zhou et al., 2017] Aojun Zhou, Anbang Yao, Yiwen Guo,
Lin Xu, and Yurong Chen. Incremental network
quantization: Towards lossless cnns with low-precision
weights. arXiv preprint arXiv:1702.03044, 2017.

[Zhu et al., 2016] Chenzhuo Zhu, Song Han, Huizi Mao, and
William J Dally. Trained ternary quantization. arXiv
preprint arXiv:1612.01064, 2016.

[Zhuang et al., 2018] Bohan Zhuang, Chunhua Shen,
Mingkui Tan, Lingqiao Liu, and Ian Reid. Towards
effective low-bitwidth convolutional neural networks. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 7920–7928, 2018.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

860

