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Abstract
Automated detection and segmentation of individ-
ual nuclei in histopathology images is important
for cancer diagnosis and prognosis. Due to the
high variability of nuclei appearances and numer-
ous overlapping objects, this task still remains chal-
lenging. Deep learning based semantic and in-
stance segmentation models have been proposed to
address the challenges, but these methods tend to
concentrate on either the global or local features
and hence still suffer from information loss. In this
work, we propose a panoptic segmentation model
which incorporates an auxiliary semantic segmen-
tation branch with the instance branch to integrate
global and local features. Furthermore, we design
a feature map fusion mechanism in the instance
branch and a new mask generator to prevent in-
formation loss. Experimental results on three dif-
ferent histopathology datasets demonstrate that our
method outperforms the state-of-the-art nuclei seg-
mentation methods and popular semantic and in-
stance segmentation models by a large margin.

1 Introduction
Cell morphology in histopathology images provides critical
information for cancer diagnosis and prognosis. The first
step in cell morphology analysis is the segmentation of in-
dividual cell nuclei, which is typically performed manually
in current clinical practice. However, manual examination of
histopathology images is labor-intensive and time-consuming
due to the large image sizes and complex cellular structures.
Therefore, investigating computerized methods is necessary
to reduce the workload for pathologists, and make the analy-
sis efficient [Veta et al., 2014].

There are still some major challenges in nuclei segmenta-
tion tasks, as illustrated in Figure 1. First, there is a high
level of heterogeneity in appearance between different types
of organs or cells. Consequently, methods designed based
on prior knowledge about geometric features cannot be ap-
plied directly to different images. Second, other structures
such as cytoplasm and stroma can have similar features to
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Figure 1: Example histopathology images for nuclei segmentation
from different organs: breast (a) and corresponding annotation (b);
bladder (c) and corresponding annotation (d); green boxes: cyto-
plasm which are similar to nuclei; red boxes: touching nuclei.

the nuclei, making it hard to differentiate cell nuclei from
the background. Third, nuclei are often clustered with many
overlapping instances [Chen et al., 2017]. In order to find
the exact location and boundary for every single nucleus, fur-
ther processing is often required to separate the clustered or
overlapping nuclei.

Convolutional neural networks (CNN) are powerful for
tackling image recognition tasks [He et al., 2016; Peng et
al., 2017] by learning the features automatically. Currently,
most CNN related works for nuclei segmentation are based
on the semantic segmentation model to separate foreground
and background, and involve post-processing for refinement.
Recently, instance segmentation models have been proposed
for predicting the mask and region of interest (ROI) [He et
al., 2017; Liu et al., 2018b]. When utilizing them on nuclei
segmentation tasks, each ROI represents a single nucleus.

With semantic segmentation models [Peng et al., 2017;
Ronneberger et al., 2015], all pixels are categorized into dif-
ferent classes, which are employed for studying the uncount-
able “stuff” of the image. By contrast, instance segmentation
is able to assign unique labels to each object that belongs to
the same class, and is therefore employed to study the count-
able “things”. The study of both stuff and things is necessary
for image recognition because the former obtains the features
of the background while the latter is able to learn the features
of different objects in the foreground. In order to reconcile
the foreground and background learning, panoptic segmenta-
tion [Kirillov et al., 2018] has been proposed to incorporate
semantic segmentation with instance segmentation, with sep-
arate training of the instance and semantic branches.

Different from existing methods, in our model, we propose
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an end-to-end panoptic segmentation framework incorporat-
ing an auxiliary semantic segmentation branch with an in-
stance branch which contains a dual-modal mask generator
and feature fusion mechanism. First, we consider that se-
mantic segmentation methods are only able to process global
features, which limits their capacity to separate the individ-
ual nuclei. On the other hand, instance segmentation mod-
els focus more on the local ROI-level information and lack a
global interpretation of the image. To address these limita-
tions and also utilize the advantages of both the semantic and
instance models, we propose to design a dual-branch panop-
tic segmentation model by integrating the semantic segmenta-
tion branch with the instance segmentation branch. The dual-
branch model is trained end-to-end and is able to process the
global and local features from the image at the same time.
Furthermore, we introduce a new semantic feature map from
the instance branch to further encourage the instance branch
to encode the global features along with local ones during
training. In order to prevent information loss when predict-
ing the mask on each ROI, a dual-modal mask generator is
designed with a fully connected (FC) mode and a spatial up-
scaling mode. Our main contributions can be summarized as
follows:

• A novel dual-branch panoptic model is proposed with an
instance segmentation branch and an auxiliary semantic
segmentation branch. The semantic branch is specially
designed for enlarging the receptive field of the input
object and is jointly trained with the instance branch, in
an end-to-end fashion.

• A feature fusion mechanism in the instance branch is
designed to integrate global with local features.

• A dual-modal mask generator is designed for higher
mask segmentation accuracy by minimizing the infor-
mation loss.

• Our method was proven to be effective with significant
improvements over the other state-of-the-art methods
on three public datasets: TCGA-kumar [Kumar et al.,
2017], TNBC [Naylor et al., 2018], and MICCAI 2017
Digital Pathology Challenge dataset [Vu et al., 2018].

2 Related Work
2.1 Nuclei Segmentation
Studies into nuclei segmentation in histological images have
been ongoing for many years. With progress in pattern
recognition techniques, methods based on machine learning
have shown encouraging results. These methods typically
start with handcrafted feature extraction, such as textural fea-
tures [Zhang et al., 2014], Laplacian and Gaussian features
[Kong et al., 2013], and geometric features about contours
[Wienert et al., 2012]. Then, classification (e.g., Bayesian)
or clustering (e.g., K-means) techniques are employed for
nuclei segmentation and detection tasks [Naik et al., 2008;
Chankong et al., 2014].

With the advance of CNN, nuclei segmentation has been
modeled as a pixel- or patch-level classification problem.
In [Raza et al., 2019], a multi-resolution CNN is proposed

Figure 2: Overview of our proposed framework. Refer to Section
3.3 for the detailed loss definitions.

to process the nuclei with different receptive fields. Beyond
the standard CNN model, improvements have been made to
incorporate the contour information into the CNN architec-
ture to facilitate segmentation between individual nuclei. For
example, in [Kumar et al., 2017], nuclei boundaries are con-
sidered as the third class for the CNN segmentation model.
[Oda et al., 2018] proposed a boundary enhanced module and
loss function based on the traditional U-Net [Ronneberger et
al., 2015], and it facilitates the model’s learning of more de-
tails about the nuclei that are hard to segment. Furthermore,
Cell R-CNN [Zhang et al., 2018a] achieves competitive per-
formance simply by incorporating a semantic segmentation
model with an instance model. In addition, regression-based
models have also been proposed such as one uses the distance
map as the ground truth labels [Naylor et al., 2018], and an-
other which applies general adversarial architecture [Zhang
et al., 2018b], which achieved competitive performance on
nuclei segmentation tasks as well.

2.2 CNN Based Image Segmentation
In the field of semantic segmentation, skip connections be-
tween encoders and decoders are effective and prevalent
[Ronneberger et al., 2015; Zhang et al., 2018c; Wang et al.,
2019]. In [Zhang et al., 2018c] and [Liu et al., 2018a], dense
connections between the decoders in different resolutions are
proposed to eliminate the information loss. In addition to
semantic segmentation architectures, instance segmentation
models such as [He et al., 2017] and [Liu et al., 2018b] are
able to generate the masks of the image with a detection based
architecture [Ren et al., 2015]. Beyond semantic and instance
segmentation, panoptic segmentation has been proposed to
fuse the feature from things and stuff [Kirillov et al., 2018].
In [Zhang et al., 2018a] and [de Geus et al., 2018], both the
instance and semantic segmentation branches are trained to-
gether by sharing the same set of parameters in the backbone
module. Then, the losses of the two branches are summed
together for back propagation to optimize the parameters of
the whole framework. In [Xiong et al., 2019], a novel panop-
tic segmentation head is proposed to fuse the feature about
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Figure 3: Illustration of the instance branch. C1 and C3 represent convolutional layers with a kernel size of 1 and 3, respectively. For C3,
both the stride and padding size are 1. UP/2x and UP/4x represent a nearest unsampling layer with a scale factor of 2 and 4, respectively. We
omit the ReLU layer after each convolutional block for brevity.

things and stuff, from instance and semantic branch, respec-
tively. More recently, Panoptic Feature Pyramid Network was
proposed in [Kirillov et al., 2019] to generate a semantic out-
put in the instance segmentation branch. The model achieves
new state-of-the-art performance in several image segmenta-
tion tasks with higher memory efficiency.

3 Methods
The overall architecture of our work is illustrated in Figure 2.
During training, both the semantic and instance branches are
trained together with the same ResNet101 backbone module.
During inference, only the instance branch is used to predict
the class scores, bounding box coordinates, and masks. In
this section, we present the designs of our network model.

3.1 Instance Branch
Figure 3 is a detailed illustration of our proposed instance
branch for nuclei segmentation. In general, this branch is in-
spired by the structure of Mask R-CNN [He et al., 2017], but
with major differences in our design of feature fusion and the
mask generator. Specifically, after the ResNet101 backbone,
a Feature Pyramid Network (FPN) is applied to generate fea-
ture maps in five stages (P2, P3, P4, P5, P6). Next, with
the multiple feature maps P2 to P6, the Region Proposal Net-
work (RPN) and ROI Align modules are applied to obtain the
ROIs for cell nuclei. Then, each ROI passes through a box
branch for class score and bounding box coordinate predic-
tion and our dual-modal mask generator for generating the
nucleus masks. In addition, the feature map at the highest
spatial resolution of FPN (P2) passes through an upsampling
layer with a spatial factor of 4 and a convolutional layer with
a channel number of 2. Then, this feature map with the same
size as the semantic segmentation ground truth is fused with
the nuclei masks according to their locations with feature fu-
sion mechanism. The motivation is that in instance segmen-
tation models, only local features such as intracellular detail
and location for each single nucleus can be processed, which

Figure 4: Illustration of the proposed mask generator. Conv1,
Conv2, Conv3, Conv4, and Conv5 represent five different convolu-
tional layers, and Conv × 3 means three consecutive convolutional
layers. FC is a fully connected layer, Reshape1 contains reshaping
and channel duplication, and Reshape2 is a pixel shuffle. The final
fusion is a pixel-wise summation. We omit the ReLU layer after
each convolutional block for brevity.

eliminates the global information processing. In this way, the
global information is fused with the local information to en-
able more accurate localization of the cell nuclei.

Mask Generator
Figure 4 illustrates our proposed mask generator, which con-
tains two parts. In the original Mask R-CNN, only four con-
secutive convolutional layers and a deconvolutional layer are
employed to segment the mask. However, the size of the input
ROI of the mask generator is 14× 14, which is small, and di-
rectly applying a deconvolutional layer to such a small region
is prone to cause information loss. On the other hand, an FC
layer is able to learn the global information for the entire ROI,
which is helpful to separate different instances with the same
category label. Therefore, we incorporate the ideas of [Liu et
al., 2018b] and [Wang et al., 2018], and design a mask gener-
ator which fuses the feature maps of dual modalities from the
FC branch and spatial upscaling branch as illustrated in Fig-
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Stage Hyperparamaters Output size
Input 256× 14× 14
Conv × 3 k = (3, 3), s = 1, p = 1 256× 14× 14
Conv1 k = (3, 3), s = 1, p = 1 256× 14× 14
Conv2 k = (3, 3), s = 1, p = 1 128× 14× 14
FC 1× 1× 784
Reshape1 2× 28× 28
Conv3 k = (3, 3), s = 1, p = 1 256× 14× 14
Conv4 k = (3, 3), s = 1, p = 1 1024× 14× 14
Reshape2 256× 28× 28
Conv5 k = (1, 1), s = 1, p = 0 2× 28× 28
Output 2× 28× 28

Table 1: The parameters for each block in our proposed mask gen-
erator. k, s, and p denote the kernel size, stride, and padding of the
convolution operation, respectively.

ure 4 . The details of the parameters of each block are shown
in Table 1.

Feature Fusion
As shown in Figure 3, after obtaining the mask predictions
M and bounding box predictions B, the feature map F0 from
FPN is fused together with them to derive a new semantic
segmentation feature map FN , where N is the total number
of mask and bounding box predictions, i ∈ 1, ..., N . For the
ith bounding box prediction, the coordinates of the bounding
box with the highest class score are selected, which is defined
as:

Bi = (xi, yi, wi, hi) (1)
where xi and yi are the coordinates of the top left point of
Bi in x and y axes, respectively, wi and hi are its width and
height, respectively. When fusing the ith mask Mi with Bi

on the feature map Fi−1, the output feature map Fi is formu-
lated as:

Fi = Greplace(Greshape(Mi, Bi), sub(Fi−1, Bi)) (2)

where Greshape reshapes the binary mask Mi to the same size
as Bi. Greplace enables the new mask Greshape(Mi, Bi) to
replace sub(Fi−1, Bi), which is the subset of Fi−1 according
to Bi and can be represented as:

sub(Fi−1, Bi) = Fi−1[xi : xi + wi, yi : yi + hi] (3)

Eventually, FN is the semantic feature map obtained from the
instance branch.

For each ROI, mask prediction represents the nuclei seg-
mentation result in the small region by utilizing the local in-
formation around each single object. In addition, the bound-
ing box prediction represents the real location of this nucleus
in the original image, which contains localization information
for the object in a global view. In order to retain more global
and local information in the semantic segmentation result, we
fuse the mask and bounding box predictions by passing each
mask prediction feature map to the large feature map from
FPN according to its corresponding box coordinates predic-
tion. Therefore, this second semantic segmentation feature
map (FN ) contains global and local features from the detec-
tion architecture of the instance branch.

3.2 Semantic Branch
Even though a semantic feature map FN is rendered from the
instance branch, the small kernel sizes of the convolutional
layers in FPN imply that FN would still have some informa-
tion loss at the global level. This is a common issue for CNN
models in that as the network grows deeper, the actual recep-
tive field of the feature maps gradually becomes smaller than
the theoretical size [Zhou et al., 2015]. By utilizing small
sizes convolutional layers [Saleh et al., 2018], it is difficult
for the feature maps at high resolution to maintain the whole
features from original images due to the limit of the receptive
field.

To tackle this issue, the decoder of Global Convolutional
Network (GCN) [Peng et al., 2017] is applied as an auxiliary
semantic branch shown in Figure 2. By simulating a 2D large
kernel convolutional layer with two 1D convolutional layers,
GCN is able to make the model capture a large and global re-
ceptive field with only a small portion of memory. Our model
follows the original GCN architecture except the size of the
large kernel blocks which, for memory efficiency, is fixed at
5. In addition, the semantic branch is trained jointly with the
instance branch, by sharing the same backbone, compared to
the traditional separate training strategy in [Saleh et al., 2018;
Kirillov et al., 2018]. When working on the semantic seg-
mentation task, the backbone is capable of generating the
features with global information about foreground and back-
ground, which are useful for bounding box detection and
mask generation in the instance branch.

3.3 Loss Function
All the losses in this work are shown in Figure 2. The total
loss is defined as:

Ltotal = L(rpn−obj) + L(rpn−reg) + L(det−cls)

+ L(det−reg) + L(det−mask)

+ Lsemseg1 + Lsemseg2

(4)

L(rpn−obj) and L(rpn−reg) are the losses for background
and foreground classification and the bounding boxes for the
anchors rendered by RPN, respectively, where L(rpn−obj) is
the cross entropy loss for classification and L(rpn−reg) is
the smoothed L1 loss for regression. In the instance branch,
L(det−cls) is the cross entropy loss for object category classi-
fication, L(det−reg) is the smoothed L1 loss for bounding box
coordinate regression, and L(det−mask) is the binary cross
entropy loss for instance mask segmentation. Lsemseg1 and
Lsemseg2 are the cross entropy losses for semantic segmenta-
tion of semantic and instance branch, respectively. Although
adding a weight for each loss in Ltotal would be a better
trade-off, we still chose to avoid this labor-intensive process,
in favor of the generalizability and reproducibility.

In all experiments, we employed stochastic gradient de-
scent (SGD) as the optimizer with a momentum of 0.9 and a
weight decay of 0.0001 to train our model. The learning rate
varies in each experiment with the same linear warming up in
the first 500 iterations. Due to the small mini-batch size dur-
ing training, we had no batch normalization layers. All the
hyperparameters for testing were fine-tuned on the validation
set. We implemented our experiments using Pytorch [Paszke
et al., 2017].
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4 Experiments
4.1 Datasets and Evaluation Metrics
We used three public datasets in this study. The first dataset
is from The Cancer Genome Atlas (TCGA) at 40× magni-
fication [Kumar et al., 2017]. We refer to this dataset as
TCGA-kumar. There are 30 annotated 1000 × 1000 patches
from 30 whole slide images of different patients. These im-
ages show highly varying properties since they are from 18
different hospitals and 7 different organs (breast, liver, kid-
ney, prostate, bladder, colon, and stomach). In contrast to the
disease variability of TCGA-kumar, the second dataset from
[Naylor et al., 2018] focuses in particular on Triple Negative
Breast Cancer (TNBC). In this TNBC dataset, there are 50
annotated 512 × 512 patches at 40× magnification sampled
from 11 patients at the Curie Institute. The third dataset is
the MICCAI 2017 Digital Pathology Challenge dataset [Vu et
al., 2018], also referred to as Cell17. Cell17 contains 64 an-
notated images in total, and both the training and testing sets
contain 8 images from 4 different diseases: glioblastoma mul-
tiforme (GBM), lower grade glioma (LGG) tumors, head and
neck squamous cell carcinoma (HNSCC), and non small cell
lung cancer (NSCLC). The image sizes are either 500 × 500
or 600× 600 at 20× or 40× magnification.

In the experiments on TCGA-kumar and TNBC, we em-
ployed F1 score and Aggregated Jaccard Index (AJI) [Kumar
et al., 2017] for pixel-level and object-level evaluation, re-
spectively. AJI is an extension of the Jaccard Index that takes
false negative predictions into consideration. AJI can be de-
fined as:

AJI =

∑N
i=1 |Gi ∩ P i

M |∑N
i=1 |Gi ∪ P i

M |+
∑

F∈U |PF |
(5)

where Gi is the ith nucleus from the ground truth with N
nuclei. P i

M means the Mth connected component in predic-
tion which has the largest Jaccard Index with Gi, and each
index (M ) cannot be used more than once. Set U represents
the connected component in the prediction without the cor-
responding ground truth. In the experiments of Cell17, we
employed the same set of evaluation metrics as the experi-
ments of Cell R-CNN [Zhang et al., 2018a] for comparison:
F1 score, object-level Dice score, and object-level Hausdorff
distance.

4.2 Experimental Results and Discussion
TCGA-kumar
In this experiment, we first evaluated the performance of our
proposed model in comparison to the state-of-the-art works
from [Kumar et al., 2017; Naylor et al., 2018; He et al., 2017;
Ronneberger et al., 2015]. Then, an ablation study was em-
ployed to demonstrate the effectiveness of each module in the
overall architecture.

With the same split for the testing set as [Kumar et
al., 2017] and [Naylor et al., 2018] (details at https://
peterjacknaylor.github.io/), we compared our work directly
to the results reported in their published works. For
[He et al., 2017], we re-implemented it with officially
released code from https://github.com/facebookresearch/
maskrcnn-benchmark. Among the 16 training images from

four different organs, we randomly selected one image from
each organ for validation and used the remaining 12 im-
ages for training. The learning rate in this experiment was
0.0025 and it decreased to its 1/10 at the 8640th iteration
and 1/100 at the 12960th iteration with a total of 17280
training iterations. When training the model, we separated
each 1000× 1000 original image into four 512× 512 patches
with basic data augmentation including horizontal and ver-
tical flipping and rotations of 90◦, 180◦, and 270◦ to avoid
overfitting. In addition, we also employed advanced augmen-
tation including blurring, adding gaussian noise, embossing,
sharpening, and random channel shuffle due to the noise and
variability of color in the histopathology images. For a fair
comparison, we applied the same data augmentation settings
to all compared methods.

Table 2 shows the result for each image in the testing set
in comparison to 2 state-of-the-art nuclei segmentation meth-
ods: CNN3 in [Kumar et al., 2017] and DIST in [Naylor
et al., 2018]. Our proposed method outperforms the others
based on the average AJI and F1 score. In addition, one-tailed
paired t-test was employed for evaluation of statistically sig-
nificance. For object-level accuracy (AJI), the improvement
of our method is significant as all the p-values of the com-
parison methods are under 0.1. By learning the global and
local features from both the semantic and instance branches,
our model is the most competitive even without any pre- or
post-processing compared to CNN3 and DIST. In terms of F1
score, our improvement is significant compared to the others
except for DIST. However, DIST has a post-processing step
with two extra hyperparameters, in order to refine the distance
map from a deep regression model. If a less significant im-
provement is acceptable, we would prefer not to add any fur-
ther post-processing for the sake of memory efficiency and
convenience of implementation. For Mask R-CNN, we no-
tice that its AJI score is at the same level as CNN3, while the
F1 score is lower than all the compared semantic segmenta-
tion models. This is because Mask R-CNN processes ROI,
which represents each object for instance segmentation, mak-
ing it impossible to learn the relationship between the fore-
ground and background. By adding a new semantic branch,
an extra semantic loss, and a dual-modal mask generator, our
proposed model has a significant improvement in pixel-level
accuracy.

Baseline Ab1 Ab2 Proposed GT

Figure 5: Visual comparison of the ablation study on the TCGA-
kumar dataset. The first row and second row show results of images
from the breast and prostate, respectively. The red arrows indicate
the disagreement with the ground truth.
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Organ Image AJI F1 Score
CNN3 DIST Mask R-CNN U-Net Proposed CNN3 DIST Mask R-CNN U-Net Proposed

Breast 1 0.4974 0.5334 0.4960 0.3831 0.5490 0.6885 0.7761 0.7486 0.7492 0.7887
2 0.5796 0.5884 0.5577 0.5505 0.6362 0.7476 0.8380 0.8026 0.8144 0.8478

Kidney 1 0.4792 0.5648 0.5794 0.5386 0.6202 0.6606 0.7805 0.7742 0.8039 0.8097
2 0.6672 0.5420 0.5286 0.5020 0.5902 0.7837 0.7606 0.7285 0.7786 0.7724

Liver 1 0.5175 0.5466 0.5183 0.4773 0.5491 0.6726 0.7877 0.7816 0.7648 0.7907
2 0.5148 0.4432 0.4577 0.3794 0.5179 0.7036 0.6684 0.6881 0.6313 0.7323

Prostate 1 0.4914 0.6273 0.5934 0.1807 0.6305 0.8306 0.8030 0.8032 0.7889 0.8090
2 0.3761 0.6294 0.6282 0.3118 0.6423 0.7537 0.7903 0.7937 0.7919 0.7992

Bladder 1 0.5465 0.6475 0.6237 0.5115 0.6749 0.9312 0.8623 0.8385 0.8258 0.8666
2 0.4968 0.5467 0.4677 0.4621 0.4745 0.6304 0.7768 0.6944 0.7648 0.6963

Colon 1 0.4891 0.4240 0.3691 0.0786 0.4450 0.7679 0.7212 0.6251 0.7121 0.7036
2 0.5692 0.4484 0.4354 0.1305 0.4871 0.7118 0.7360 0.6907 0.7599 0.7474

Stomach 1 0.4538 0.6408 0.6352 0.4096 0.6909 0.8913 0.8547 0.8323 0.8647 0.8795
2 0.4378 0.6550 0.6449 0.4507 0.6871 0.8982 0.8520 0.8329 0.8629 0.8668

Average 0.5083 0.5598 0.5382 0.3833 0.5854 0.7623 0.7863 0.7596 0.7795 0.7936
Significance ?? ? ? ? ? ? ? ? ? ? ? 7 ? ? ? ?

Table 2: Comparison with the state-of-the-art methods on TCGA-kumar dataset. For statistical significance evaluation, ? ? ? denotes p-value
under 0.01, ?? denotes p-value from 0.01 to 0.05, ? denotes p-value from 0.05 to 0.1, and 7 denotes p-value over 0.1

Name Baseline Ab1 Ab3 Ab2 Proposed
feature fusion? 7 3 7 3 3

semantic branch? 7 7 3 3 3
dual-modal mask generator? 7 7 7 7 3

AJI
avg 0.5382 0.5533 0.5500 0.5744 0.5854
std 0.0851 0.0770 0.0912 0.0782 0.0820

significance ?? ?? ? ? ? ??

F1
avg 0.7596 0.7730 0.7670 0.7881 0.7936
std 0.0655 0.0572 0.0717 0.0545 0.0591

significance ?? ? ? ? ? ?

Table 3: Ablation study on the TCGA-kumar dataset. ? ? ? is em-
ployed if the p-value is under 0.01, ?? for p-value from 0.01 to
0.05, ? for p-value from 0.05 to 0.1. The significance of Ab1, Ab3,
and Proposed are comparisons between Ab1 and Baseline, Ab3 and
Baseline, Proposed and Ab2, respectively. The significance of Ab2
are the comparisons between Ab2 and Ab1, Ab2 and Ab3, and both
p-values are under 0.01.

In order to evaluate the effectiveness of each proposed
module in our architecture, an ablation experiment was con-
ducted and the results are shown in Figure 5 and Table 3.
Figure 5 shows that the baseline Mask R-CNN tends to fail
in segmenting some touching or closely adjacent nuclei and
Ab1 (baseline + feature fusion) has difficulty in accurately
estimating the boundary information. Compared with Ab2
(baseline + feature fusion + semantic branch), our method
has a higher accuracy when generating the mask for single
nucleus in detail. In these experiments, we used the same set-
tings and data as the comparison experiment. In addition to
comparing the average and standard deviation, we also calcu-
lated the p-value between the architecture with and without
each module using one-tailed paired t-test. As shown in Ta-
ble 3, all the improvements after adding each module are sig-
nificant (p < 0.1). Compared with Ab3 (baseline + semantic
branch), Ab2 has a higher accuracy, which indicates the fea-
ture fusion module is more effective than semantic branch on
TCGA-kumar dataset.

TNBC
We were interested in whether our model with two branches
works better than the model with a single semantic or in-
stance branch. For this, we designed an experiment on the
TNBC dataset by comparing our proposed model with Mask
R-CNN [He et al., 2017] and GCN [Peng et al., 2017]. In ad-

Method GCN Pix2Pix MRCNN Proposed

AJI
avg 0.1907 0.4760 0.5297 0.5865
std 0.1208 0.0578 0.1513 0.1059

significance ? ? ? ? ? ? ? ? ?

F1
avg 0.3833 0.6910 0.7424 0.7792
std 0.2175 0.0724 0.0837 0.0520

significance ? ? ? ? ? ? ? ? ?

Table 4: The result on the TNBC testing set for different methods.
??? denotes p-value under 0.01, ?? if the p-value between 0.01 and
0.05, ? if p-value between 0.05 and 0.1.

dition, we also compared with pixel2pixel [Isola et al., 2017]
to prove the effectiveness of our model without any adversar-
ial based techniques. In this experiment, we either used the
code from official implementation or re-implemented them in
Pytorch. For each experiment, we used six cases with 30 im-
ages for training, two cases with seven images for validation,
and three cases with 13 images for testing. For data augmen-
tation, we employed horizontal and vertical flipping and rota-
tions of 90◦, 180◦, and 270◦. The total training epoch was 60
and the initial learning rate 0.00075 decreased to its 1/10 and
1/100 at the end of the 30th and 45th epoch, respectively.

Table 4 lists the resulting AJI and F1 score on the testing
set. Our proposed model outperformed all the comparison
models in both average AJI and F1 score. In addition, one-
tailed paired t-test was also employed to analyze whether our
improvements were statistically significant compared to the
others. The p-values of all the comparison methods are noted
in Table 4. For both F1 and AJI score, all the improvements
of our method are significant (p < 0.1). For the semantic
segmentation model, only class labels were assigned to each
pixel and it was unable to separate different instance objects
within the same category. By generating ROIs for predicting
the location and mask for each single instance object with the
same class label, Mask R-CNN has a higher accuracy at both
the pixel and object level compared to the semantic segmenta-
tion models. However, due to the nature of the Mask R-CNN
architecture, only the object-level information is taken into
account, which makes it difficult for the model to process the
semantic information. By incorporating the semantic branch
with the instance branch, our model is capable of processing
the global information from the semantic branch.
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Method F1-score Dice Hausdorff
Pix2Pix 0.6208± 0.1126 0.6351± 0.0706 19.1441± 6.0933
FnsNet 0.7413± 0.0668 0.6165± 0.0839 25.9102± 9.5834
Mask R-CNN 0.8004± 0.0722 0.7070± 0.0598 12.6723± 3.4591
Cell R-CNN 0.8216± 0.0625 0.7088± 0.0564 11.3141± 2.6917
Proposed 0.8645 ± 0.0482 0.7506± 0.0491 9.5832± 3.6237

Table 5: The quantitative results for the Cell17 dataset.

Cell17

We designed Cell17 experiment to compare our proposed
model to Cell R-CNN from [Zhang et al., 2018a], which is
also a panoptic segmentation architecture for nuclei segmen-
tation and demonstrates the state-of-the-art performance in a
recent study. In addition, classic semantic and instance seg-
mentation models include Pix2Pix [Isola et al., 2017], Fn-
sNet [Johnson et al., 2016], and Mask R-CNN [He et al.,
2017] are compared as well. Among 32 training images from
four different organs, our validation set contained one image
randomly selected from each organ, while the remaining 28
images were used for training. In this experiment, we em-
ployed basic data augmentation including horizontal and ver-
tical flipping and rotations of 90◦, 180◦, and 270◦. The to-
tal training epoch was 100, and the initial learning rate was
0.001, decreasing to 1/10 and 1/100 of the initial learning
rate at the end of the 50th and 75th epochs, respectively. All
the comparison results are from [Zhang et al., 2018a].

As shown in Table 5, our proposed work outperforms all
the compared models in all the three metrics. We noticed that
the object-level Dice score of Cell R-CNN is at the same level
as Mask R-CNN. This is because only the instance branch
was used during inference, which makes the prediction tend
to rely on fewer global features from the foreground and
background. To address the problem, we added a new se-
mantic loss from the instance branch in this work so that the
instance branch is able to learn the relationship between the
things and stuff as well.

Discussion

For previous CNN based nuclei segmentation methods, the
semantic segmentation models were able to generate results
with high accuracy at the pixel level. However, the object
level accuracy was limited due to the inability to process lo-
cal information inside and around the nuclei. Recently, re-
gion based CNN such as Mask R-CNN have been prevalent
for instance segmentation by processing the ROIs which con-
tain the features for each object. Although the result of Mask
R-CNN has a high object level accuracy, failing to process
global information results in poor pixel level accuracy. In or-
der to address this problem, we incorporate both semantic and
instance segmentation branches.

In a larger perspective, the segmentation tasks for medical
image are not limited to nuclei segmentation for histopathol-
ogy images. With the significant improvement of pixel- and
object-level accuracy in the experiments of this work, we
hope that our proposed architecture will contribute to other
medical, or even ordinary imaging applications.

5 Conclusion
In this work, we propose a panoptic segmentation architec-
ture for nuclei segmentation in histopathology images. By
jointly training the semantic branch with large convolutional
kernels and instance segmentation branches with a feature fu-
sion mechanism, our model is able to incorporate the comple-
mentary information at both global and local levels. Results
of extensive nuclei segmentation experiments on three pub-
lic datasets indicate that our method is highly effective and
outperforms all the compared methods by a large margin.
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