Resolution-invariant Person Re-Identification

Shunan Mao1, Shiliang Zhang1 and Ming Yang2
1Peking University
2Horizon Robotics, Inc
{snmao, slzhang.jdl}@pku.edu.cn, ming.yang@horizon-robotics.com

Abstract
Exploiting resolution invariant representation is critical for person Re-Identification (ReID) in real applications, where the resolutions of captured person images may vary dramatically. This paper learns person representations robust to resolution variance through jointly training a Foreground-Focus Super-Resolution (FFSR) module and a Resolution-Invariant Feature Extractor (RIFE) by end-to-end CNN learning. FFSR upscales the person foreground using a fully convolutional auto-encoder with skip connections learned with a foreground focus training loss. RIFE adopts two feature extraction streams weights by a dual-attention block to learn features for low and high resolution images, respectively. These two complementary modules are jointly trained, leading to a strong resolution invariant representation. We evaluate our methods on five datasets containing person images at a large range of resolutions, where our methods show substantial superiority to existing solutions. For instance, we achieve Rank-1 accuracy of 36.4% and 73.3% on CAVIAR and MLR-CUHK03, outperforming the state-of-the art by 2.9% and 2.6%, respectively.

1 Introduction
Person Re-identification (ReID) aims to find a probe person from a large-scale person image gallery collected by a camera network. [Li et al., 2019] Person ReID is challenging since it is confronted by many appearance variations due to camera viewpoint, person pose, illumination, background, etc. Thanks to the introduction of many benchmark datasets like VIPeR [Gray and Tao, 2008], CUHK03 [Li et al., 2014], Market1501 [Zheng et al., 2015] and MSMT17 [Wei et al., 2018], most of these challenges are covered in these datasets, leading to a significant progress in person ReID performance.

Among the above challenges, varying resolutions of person images are probably the most common one, due to the distance to a camera, or camera focus and resolution. Matching persons at different resolutions requires the ReID algorithms to attend to distinct visual cues. For example, Fig. 1 illustrates two instances of three persons sampled from CAVIAR [Cheng et al., 2011]. With high resolution image samples, those three persons can be distinguished by their hair styles or strips on the pants. As these details are not available in low resolution images, a ReID method needs to resort to silhouettes or global textures for a reliable matching. Moreover, the high and low resolution samples of the same person may even present a larger discrepancy than to those samples from different persons at a similar resolution. Therefore, dedicated treatments are desired for ReID methods to cope with large resolution variations of person images.

Matching persons at dramatically different resolutions has not been extensively studied, partly because of the limitation of current ReID benchmark datasets. Most widely used benchmark datasets usually consist of person images with limited resolution variations. CAVIAR [Cheng et al., 2011] is particularly collected to consider two levels of resolutions. MLR-VIPeR and MLR-CUHK03 [Jiao et al., 2018] are adapted from VIPeR [Gray and Tao, 2008] and CUHK03 [Li et al., 2014] by including three levels of resolutions, respectively. These datasets have inspired many works on low-resolution person ReID [Li et al., 2015; Jing et al., 2015; Wang et al., 2016; Jiao et al., 2018; Wang et al., 2018], yet not many efforts on how to handle person images with a large range of resolution variance.

Traditional methods [Li et al., 2015; Jing et al., 2015; Wang et al., 2016] address person ReID with varying person resolutions mainly by learning a shared feature space between low and high resolutions. Recent approaches focus on deep learning based Super-Resolution (SR) [Jiao et al., 2018; Wang et al., 2018]. Although SR methods can recover some visual details, they do not differentiate person foregrounds and backgrounds and are not optimized for person ReID, i.e., their goal is to minimize the pixel-level L2 loss, rather than
the person ReID errors. In practice, SR methods are not capable to fully recover the missing details in low resolution images. We argue that the person feature extractor shall be explicitly designed and optimized to combat against challenging resolution variance in real-world scenarios.

This paper proposes to jointly optimize person image resolution and feature extraction for person ReID. Specifically, we propose a deep network consisting of two modules. The Foreground-Focus Super-Resolution (FFSR) module upscales the resolution of an input image using a fully convolutional auto-encoder with skip connections. Different from general SR modules, FFSR is jointly trained with the person ReID loss and a foreground focus loss, which recovers the details on the person body and suppresses the cluttered backgrounds. The subsequent Resolution-Invariant Feature Extractor (RIFE) extracts person representations for person ReID. RIFE consists of several feature learning blocks, each of which adopts two CNN branches to learn features from low and high-resolution images, respectively. This design learns more dedicated feature extractors for low-resolution inputs. In other words, RIFE explicitly differentiates high and low resolution inputs during feature learning to ensure its robustness to resolution variance. Features from those two branches are fused with the weights predicted by a Dual-Stream Block (DSB) as the resolution invariant feature.

By jointly training FFSR and RIFE, our approach achieves consistent improvements on the three multi-resolution ReID datasets, i.e., CAVIAR [Cheng et al., 2011], MLR-ViPeR, and MLR-CUHK03 [Jiao et al., 2018]. Besides those three datasets, we also construct two large datasets with large variations of person resolutions, i.e., VR-Market1501 and VR-MSMVT17 by modifying Market1501 [Zheng et al., 2015] and MSMVT17 [Wei et al., 2018], respectively. On these two datasets, our method also achieves promising performance. To our best knowledge, this is an original work that jointly considers foreground focus super resolution and multiple CNN branches for resolution invariant representations in person ReID. Extensive ablation studies as well as comparisons on five datasets have shown the competitive performance of the proposed approach.

2 Related Work

This section briefly reviews low-resolution person ReID and image super-resolution, which are closely related to our work.

Low-Resolution Person Re-ID. Some works use metric learning methods to address low-resolution person ReID mainly by learning a shared feature space between low and high resolutions. For example, JUDEA [Li et al., 2015] optimizes the distance between images of different resolutions by requiring features on the same person to be close to each other. SLD2L [Jing et al., 2015] uses the Semi-Coupled Low-Rank dictionary learning to build the mapping between features from low and high-resolution images. SDF [Wang et al., 2016] learns a discriminating surface to separate feasible and infeasible functions in the scale distance function space. [Chen et al., 2019] uses adversarial loss and reconstruction loss to decrease distance between deep features from different resolution. Other works use deep learning based Super-Resolution (SR). CSR-GAN [Wang et al., 2018b] focuses on the super resolution part, and uses a deep Cascaded SR-GAN as well as several handcraft restrictions to enhance the image resolution. SING [Jiao et al., 2018] adds a Super Resolution network before the feature extraction and trains two networks jointly.

Super-Resolution benefits from the advance of deep models. SRCNN [Dong et al., 2014] first introduces a Fully Convolutional Network for image Super-Resolution. Many works [Kim et al., 2016; Tai et al., 2017] have been proposed by designing deeper, wider, and denser network architectures. SRGAN [Ledig et al., 2017] designs additional loss functions to recover more semantic cues. Those works are general SR models and do not concern with image contents. SFTGAN [Wang et al., 2018a] uses image segmentation to help the texture super resolution. [Yu et al., 2018] use an encoder-decoder structure to leverage attributes and use GAN [Goodfellow et al., 2014] and STN [Jaderberg et al., 2015] to make the generated faces appear realistic.

Different from SING and CSR-GAN, our FFSR focuses on person foreground and RIFE learns different feature extractors for high and low-resolution images. This further enhances the robustness to resolution variance.

3 Problem Formulation

In surveillance videos, a person image can be regarded as a sample of one person captured by a camera, where the resolution is decided by shooting parameters like sensor resolution, shooting distance, camera focus, imaging processor, etc. i.e.,

\[
I^r_i = \text{camera-sample}(P, \theta),
\]

where \(I^r_i \) is a person image with resolution \(r \) and image index \(i \). \(P_i \) denotes the person ID label of \(I^r_i \), \(\theta \) denotes the shooting parameters.

It is hard to precisely define the resolution \(r \), because the parameters \(\theta \) could be complicated. For simplicity, for \(I^r_i \) in a dataset \(D \), we use a scalar \(r \in [0, 1] \), computed with \(\text{width}(I^r_i)/\text{width}_{\max} \) as its resolution, where \(\text{width}_{\max} \) is the maximum width of images on \(D \). For example with \(\text{width}_{\max} = 96 \), resizing an original \(128 \times 48 \) sized image to \(64 \times 24 \) degrades its resolution from 0.5 to 0.25. To simplify the definition of resolution, we note that enlarging an image with interpolation does not enhance its resolution.

The task of person ReID can be described as matching a query person against the collected person image dataset using a feature representation \(f \), with the goal of minimizing the distance between images of the same person, meanwhile maintaining larger distances between images of different persons. Considering the variance of image resolution, we denote the objective function \(O \) of person ReID as,

\[
\min_f O(r_1, r_2) = D_{\text{sim}}(r_1, r_2)/D_{\text{dif}}(r_1, r_2),
\]

\[
D_{\text{sim}}(r_1, r_2) = \frac{1}{P_i \neq P'_{i'}} \sum_{P_i \neq P'_{i'}} \| f_i^r - f_{i'}^{r'} \|_2,
\]

\[
D_{\text{dif}}(r_1, r_2) = \frac{1}{P_i \neq P'_{i'}} \sum_{P_i \neq P'_{i'}} \| f_i^r - f_{i'}^{r'} \|_2.
\]
where $\| \cdot \|_2^2$ computes the distance between feature vectors. $D_{\text{diff}}(\cdot)$ and $D_{\text{sim}}(\cdot)$ compute the distance between two images of the same person and different persons, respectively. We use superscripts r_1 and r_2 to denote resolutions of two images considered in distance computation.

Before proceeding to the formulation of our algorithm, we first illustrate the effects of resolution variance to person ReID performance on two large ReID datasets Market1501 [Zheng et al., 2015] and MSMT17 [Wei et al., 2018], respectively. We first train a ResNet50 baseline [He et al., 2016] as the feature extractor, then compute $\mathcal{O}(r_1, r_2)$ on two datasets with different combinations of r_1 and r_2. Fig. 2 (a) fixes $r_1 = r_2$ and increases their values from 0.125 to 1. We observe that, lower resolution leads to larger \mathcal{O}, resulting in a lower person ReID accuracy. Fig. 2 (b) fixes $r_2 = 1$ and increases r_1 from 0.125 to 1. It is clear that, larger variance of resolution corresponds to increased person ReID difficulty. We also observe that, the curves in Fig. 2 (b) are more abrupt than the ones in Fig. 2 (a), indicating that varied-resolution ReID could be more challenging than the low-resolution case.

Our solution is inspired by the above observations, i.e., to improve person ReID accuracy, two compared images should present at 1) high resolution and 2) similar resolution. The person image resolution should be enhanced to recover visual details. To facilitate feature extraction, the SR model is expected to focus on the person foreground and suppress the cluttered backgrounds. Meanwhile, the feature extractor should be able to alleviate the resolution variances. Those two intuitions correspond to two modules in our network, i.e., the Foreground Focus Super-Resolution (FFSR) and Resolution Invariant Feature Extractor (RIFE), respectively.

For an input person image I_i^r, FFSR first enhances its resolution to r', $r \leq r'$, then it is processed by RIIFE for resolution invariant feature extraction. The forward computation of our network can be denoted as,

$$I_i^{r'} = \mathcal{M}_{\text{FFSR}}(I_i^r), \quad f_i = \mathcal{M}_{\text{RIIFE}}(I_i^{r'}),$$

where f_i is the final feature, $\mathcal{M}_{\text{FFSR}}$ and $\mathcal{M}_{\text{RIIFE}}$ denote the two modules, respectively.

With a training set $\mathcal{T} = \{(I_i^r, I_i^h, P_i), i = 1, \ldots, N\}$, where I_i^h is the groundtruth high-resolution image and P_i is the person ID label, the network is optimized with two losses computed on two modules, i.e.,

$$\mathcal{L} = \sum_{i=1}^{N} \mathcal{L}_{\text{FFSR}}(I_i^r) + \alpha \mathcal{L}_{\text{RIIFE}}(I_i^{r'}),$$

where α balances the two losses. The following section introduces our network architecture and the implementations of those two loss functions.

4 Proposed Methods

Our network architecture is illustrated in Fig. 3. This section introduces the FFSR and RIIFE modules, respectively.

4.1 Foreground-Focus Super-Resolution

As the initial stage before feature extraction, FFSR model should be compact and efficient to compute. Additionally, FFSR is expected to work with varied resolutions, e.g., perform super-resolution to low resolution inputs, and preserve original details of high resolution inputs.

Instead of following existing SR models [Kim et al., 2016; Tai et al., 2017], we use a light-weight FFSR module illustrated in Fig. 3. FFSR is implemented based on the auto-encoder architecture. The first several convolutional layers down-sample the input with stride width 2. Then, small convolutional kernels with stride width 1 are applied for feature extraction. Following the RED-net [Mao et al., 2016] and U-net [Ronneberger et al., 2015], we add symmetric skip connections between low and high layers. Skip connections could preserve the visual cues in original images, hence help to enhance the quality of reconstructed images.

Pixel-wised distance Mean Square Error (MSE) is commonly applied for SR model training. Simply minimizing the MSE may not be optimal for person ReID task, because it does not differentiate person foregrounds and backgrounds. Person foregrounds generally provide more valuable cues for person ReID. To recover more visual cues on person foregrounds and depress cluttered backgrounds, we propose the foreground-focus SR loss $\mathcal{L}_{\text{FFSR}},$ i.e.,

$$\mathcal{L}_{\text{FFSR}}(I_i^r) = \| M \odot (I_i^{r'} - I_i^h) \|_2^2,$$

where \odot denotes element-wise multiply and M is a mask with the same size of $I_i^{r'}$.

Our method is compatible with different mask generation strategies. Image segmentation algorithms like [Insafutdinov et al., 2016] can be applied to generate binary foreground masks. With a well-trained person bounding box detector, person foregrounds are more likely to appear in the center of bounding boxes. For simplicity, Gaussian kernels can be applied as foreground masks, as illustrated in Fig. 3.

4.2 Resolution-Invariant Feature Extractor

Since super-resolution is an ill-posed problem, solely applying FFSR is not strong enough to achieve resolution invariance. We further design RIIFE to generate resolution invariant features. As illustrated in Fig. 1, high and low-resolution images convey substantially different amount of visual cues, they should be treated with different feature extractors. RIIFE explicitly differentiates high and low resolution images into two feature extraction streams. As shown in Fig. 3, RIIFE consists of several Dual-Stream Blocks (DSB), each introduces two feature extraction streams with an identical architecture but different training objectives. The following part first introduces the forward procedure of RIIFE, then discusses its training objectives.
In RIFE, each DSB applies two streams of convolutional layers to extract feature maps for high and low-resolution inputs, respectively. For the t-th DSB, we denote its two streams as DSB^L_t and DSB^H_t, and their generated feature maps as m^L_t and m^H_t, where superscripts L and H denote the low and high-resolution streams, respectively. m^L_t and m^H_t are adaptively fused as the output of the DSB to achieve better robustness to resolution variance. For example, m^L_t is fused with larger weights for low-resolution images, because DSB^L_t is more suited for feature extraction on low-resolution images. We denote the computation of output feature m_t of t-th DSB as,

$$m_t = w^L_t \times m^L_t + w^H_t \times m^H_t,$$

where w^L_t and w^H_t are related to the resolution of input image. For high-resolution images, w^L_t would be smaller than w^H_t, and vice versa. As shown in Fig. 3, those two weights are predicted with two FC layers based on m^L_t and m^H_t, respectively.

In order to learn w^L_t and w^H_t, we introduce the resolution weighting loss \mathcal{L}^R_t into each DSB. With a training image I^*_t, the \mathcal{L}^R_t for the t-th DSB is defined as,

$$\mathcal{L}^R_t(I^*_t) = \|w^L_t - (1 - r)\|_2^2 + \|w^H_t - r\|_2^2,$$

where r denotes the resolution of I^*_t.

The fused feature map m_t is propagated to the next DSB. Stacking multiple DSBs leads to a deep neural network with strong feature learning capability. The output of final DSB is processed with a Global Average Pooling (GAP) layer and a Fully Connected (FC) layer as the final feature f. A FC layer is trained on f to predict person ID labels. A cross entropy loss can be computed as the person ReID loss, i.e.,

$$\mathcal{L}^X(I^*_t) = \text{CrossEntropy}(\text{FC}(f_t), P_t),$$

where P_t denotes the person ID label of a training image I^*_t.

With T DSBs in total, RIFE is trained with one cross entropy loss and T resolution weighting losses. The RIFE loss on training image I^*_t can be represented as

$$\mathcal{L}^{RIFE}(I^*_t) = \mathcal{L}^X(I^*_t) + \beta \sum_{t=1:T} \mathcal{L}^R_t(I^*_t),$$

where parameter β weights the two losses.

Fusing features with Eq. (6) enforces DSB^L_t and DSB^H_t to focus on low and high-resolution images during training. For low-resolution images, the back propagated person ReID loss makes more modifications to DSB^L_t than to DSB^H_t because of larger w^L_t. This mechanism finally learns different parameters for DSB^L_t and DSB^H_t, respectively and leads to a strong resolution invariant representation. Implementation details of RIFE will be presented in Sec. 5.2.

5 Experiment

5.1 Datasets

We evaluate our methods on five datasets, including three existing datasets and two datasets we constructed.

CAVIAR [Cheng et al., 2011] contains 1220 images of 72 identities. Images are captured by one High-Resolution (HR) camera and one Low-Resolution (LR) camera. Among 72 identities, 50 images from two cameras. Those 50 identities are divided into a LR query set and a HR gallery set.

MLR-ViPeR and MLR-CUHK03 are constructed on ViPeR [Gray and Tao, 2008] and CUHK03 [Li et al., 2014] datasets, where both were captured by two cameras. Following S-ING [Jiao et al., 2018], every image from one camera is down-sampled with a ratio evenly selected from $\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right\}$ as the query set. Original images from the other camera are used as the test set. MLR-ViPeR has 316 identities for training and testing. MLR-CUHK03 has 100 identities for testing and 1367 for training, respectively.

VR-Market1501 and VR-MSMT17 are constructed by us based on Market1501 [Zheng et al., 2015] and MSMT [Wei et al., 2018], respectively. VR-Market1501 contains 32,217 images of 1,501 people captured by 6 cameras. VR-MSMT17 consists of 126,441 images of 4,101 persons from 15 cameras. All images are down-sampled to make the width within the range of [8, 32] in VR-Market1501 and [32, 128] in VR-MSMT17. Hence these two datasets present 24 and 96 different resolutions separately. We keep original division of training and testing sets, i.e., 751 and 710 identities for
Table 1: ReID Performance of different SR methods on VR-MSMT17. FLOPs shows the SR complexity. JL denotes joint learning with ReID loss.

<table>
<thead>
<tr>
<th>SR model</th>
<th>Mask</th>
<th>JL</th>
<th>Rank-1</th>
<th>Rank-5</th>
<th>FLOPs(G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilinear</td>
<td>-</td>
<td>-</td>
<td>47.6</td>
<td>66.4</td>
<td>-</td>
</tr>
<tr>
<td>SRCNN</td>
<td>-</td>
<td>-</td>
<td>46.7</td>
<td>65.0</td>
<td>2.53</td>
</tr>
<tr>
<td>VDSR</td>
<td>-</td>
<td>-</td>
<td>48.5</td>
<td>67.7</td>
<td>32.79</td>
</tr>
<tr>
<td>AE</td>
<td>-</td>
<td>-</td>
<td>48.1</td>
<td>67.1</td>
<td>3.71</td>
</tr>
<tr>
<td>FFSR</td>
<td>Gaussian</td>
<td>-</td>
<td>49.4</td>
<td>67.8</td>
<td>3.71</td>
</tr>
<tr>
<td>FFSR</td>
<td>Gaussian</td>
<td>√</td>
<td>52.8</td>
<td>69.0</td>
<td>3.71</td>
</tr>
<tr>
<td>FFSR</td>
<td>Deepcut</td>
<td>√</td>
<td>52.9</td>
<td>69.2</td>
<td>3.71</td>
</tr>
</tbody>
</table>

Table 2: Performance of different feature extractors on VR-MSMT17.

<table>
<thead>
<tr>
<th>structure</th>
<th>weight learning</th>
<th>Rank-1</th>
<th>Rank-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet50</td>
<td>-</td>
<td>47.6</td>
<td>66.4</td>
</tr>
<tr>
<td>two ResNet50</td>
<td>-</td>
<td>49.1</td>
<td>68.2</td>
</tr>
<tr>
<td>two ResNet50</td>
<td>√ (4)</td>
<td>50.4</td>
<td>67.4</td>
</tr>
<tr>
<td>RIFE</td>
<td>√</td>
<td>53.3</td>
<td>70.1</td>
</tr>
</tbody>
</table>

5.2 Implementation Details

Our FFSR module is a 12-layer fully convolutional network. Two convolutional layers with a stride of 2 and two transposed convolutional layers are applied to down-sample and up-sample the feature maps, respectively. We use ResNet50 [He et al., 2016] as the backbone of RIFE module. Each main block of ResNet50 is modified to be a DSB by duplicating its convolutional layers as DSB^L and DSB^H, respectively. Following ResNet50, our RIFE has 4 DSBs. Two FC layers with the output channels of 64 and 1 are used for w^L and w^H prediction.

Our network is trained on PyTorch by Stochastic Gradient Descent (SGD). Training is finished with three steps. 1) We initialize and pre-train the FFSR model on ImageNet [Russakovsky et al., 2015] with the MSE loss. Then it is fine-tuned on person ReID training datasets with L^{FFSR}. 2) We initialize and fine-tune the RIFE module on target dataset with L^{RIFE}. 3) FFSR and RIFE modules are jointly trained with the loss function in Eq. (4). We fix hyperparameters as $\alpha = 1, \beta = 0.1$ for all datasets. Each step has 60 epochs and the batch size is set as 32. The initial learning rate is set as 0.01 at the first two steps and 0.001 at the final step. The learning rate is reduced ten times after 30 epochs. Input images are resized to 256×128 in VR-Market1501 and 384×128 in other datasets. The final 256-D feature is used for ReID with Euclidean distance. All of our experiments are implemented with GTX 1080Ti GPU, Intel i7 CPU, and 128GB memory.

5.3 Ablation Study

Validity of FFSR: To show the validity of our FFSR model, we fix the feature extraction module as ResNet50 and test different super resolution methods including Bilinear interpolation, SRCNN [Dong et al., 2014], VDSR [Kim et al., 2016], as well as variants of our module, i.e., baseline Auto Encoder (AE), FFSR trained with the Gaussian mask and segmented mask by deepcut [Insafutdinov et al., 2016], as well as training with/without person ReID loss. The experiments are conducted on the large VR-MSMT17. We illustrate experimental results in Table 1 In Table 1, with the Gaussian mask our method outperforms the baseline AE, indicating the validity of emphasizing the person foreground in SR for person ReID. It is also clear that, jointly training with person ReID loss substantially boosts the ReID accuracy. Conveying more accurate foreground locations, segmented mask further outperforms the Gaussian mask. We also compare the computational complexity of FFSR with other super resolution methods. It can be observed that, FFSR introduces marginal computational overhead to the compact SRCNN [Dong et al., 2014], but shows substantially better performance, e.g., outperforms SRCNN by 6.2% in Rank-1 Accuracy. FFSR also substantially outperforms VDSR in the aspects of both accuracy and complexity.

Validity of RIFE: To show the validity RIFE module, we fix the super resolution module as the Bilinear interpolation and compare RIFE with three feature extractors, i.e., a) ResNet50 baseline, b) two ResNet50 with their features fused with equal weight, and c) two ResNet50 with their features fused with learned weights learned with Eq. (6). We summarize the experimental results in Table 2. Table 2 shows that increasing the amount of network parameters by fusing two ResNet50 only brings marginal improvements over the one branch ResNet50 baseline. Fusing two ResNet50 with learned weights brings 1.3% improvements to the Rank-1 Accuracy. Among compared methods, RIFE module achieves the best performance, substantially outperforming baseline by 5.7% in Rank-1 Accuracy.

Effect to the Objective Function: We further show the effect of FFSR and RIFE to the person ReID objective function defined in Eq. (2). Referring to Fig. 2, we illustrate the effect
Table 3: Comparison with recent works on five datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>CAVIAR Rank-1</th>
<th>CAVIAR Rank-5</th>
<th>MLR-VIPeR Rank-1</th>
<th>MLR-VIPeR Rank-5</th>
<th>MLR-CUHK03 Rank-1</th>
<th>MLR-CUHK03 Rank-5</th>
<th>VR-Market1501 Rank-1</th>
<th>VR-Market1501 Rank-5</th>
<th>VR-MSMT17 Rank-1</th>
<th>VR-MSMT17 Rank-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet50</td>
<td>29.6</td>
<td>64.0</td>
<td>29.9</td>
<td>62.2</td>
<td>65.3</td>
<td>70.5</td>
<td>91.7</td>
<td>77.7</td>
<td>47.6</td>
<td>66.4</td>
</tr>
<tr>
<td>FFSR</td>
<td>31.1</td>
<td>68.7</td>
<td>40.3</td>
<td>62.2</td>
<td>65.3</td>
<td>70.5</td>
<td>92.3</td>
<td>59.2</td>
<td>80.1</td>
<td>69.0</td>
</tr>
<tr>
<td>RIFE</td>
<td>35.7</td>
<td>74.9</td>
<td>33.9</td>
<td>63.6</td>
<td>69.7</td>
<td>91.5</td>
<td>62.6</td>
<td>82.4</td>
<td>53.3</td>
<td>70.1</td>
</tr>
<tr>
<td>FFSR+RIFE</td>
<td>36.4</td>
<td>72.0</td>
<td>41.6</td>
<td>64.9</td>
<td>73.3</td>
<td>92.6</td>
<td>66.9</td>
<td>84.7</td>
<td>55.5</td>
<td>72.4</td>
</tr>
</tbody>
</table>

5.4 Comparison with Recent Works

We compare our method with five recent low-resolution ReID methods including three traditional methods, i.e., JUDEA [Li et al., 2015], SLD²L [Jing et al., 2015], SDF [Wang et al., 2016], and two deep learning based methods, i.e., SING [Jiao et al., 2018], CSR-GAN [Wang et al., 2018b]. Three deep neural networks including ResNet50, Densenet121 [Huang et al., 2017], and SE-resnet50 [Hu et al., 2018] are also implemented and compared. We summarize the experimental results on five datasets in Table 3, which show the performance of JUDEA, SING, SDF, SING, and CSR-GAN on CAVIAR, MLR-VIPeR, and MLR-CUHK03. Performance of compared methods on VR-Market1501 and VR-MSMT17 are implemented with the code provided by their authors.

From the comparison we observe that, deep learning based methods substantially outperform the traditional ones. Our method shows promising performance on the first three datasets. On CAVIAR, our RIFE module outperforms the recent CSR-GAN by 3.4% in Rank-1 Accuracy. Combining FFSR and RIFE further boosts the performance, and outperforms CSR-GAN by 4.1%. On MLR-VIPeR and MLR-CUHK03, our method outperforms CSR-GAN by 4.4% and 2.6% in Rank-1 Accuracy, respectively.

Our method also shows promising performance on VR-Market1501 and VR-MSMT17. Among existing methods that are compared, SING shows the best performance on VR-Market1501. FFSR+RIFE outperforms SING by 6.4%. FFSR and RIFE also achieves the best performance on VR-MSMT17, outperforming SE-resnet50 by 3.5%. It can be observed that, combining FFSR and RIFE commonly leads to the best performance on those five datasets. We show some results of image super resolution and person ReID in Fig. 5.

6 Conclusion

This paper proposes a deep neural network composed of FFSR and RIFE modules for resolution invariant person re-identification. FFSR upscales the person foreground using a fully convolutional auto-encoder with skip connections learned with a foreground focus loss. RIFE adopts two feature extraction streams weighted by a dual-attention block to learn features for low and high resolution images, respectively. These two complementary modules are jointly trained to optimize the person ReID objective, leading to a strong resolution invariant representation. Extensive experiments on five datasets have shown the validity of introduced components and the promising performance of our methods.

Acknowledgments

This work is supported in part by Beijing Natural Science Foundation under Grant No. JQ18012, in part by Natural Science Foundation of China under Grant No. 61620106009, 61572050, 91538111, in part by Peng Cheng Laboratory.
References

