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Abstract

The spatial and temporal patterns inherent in facial
feature points are crucial for facial landmark track-
ing, but have not been thoroughly explored yet.
In this paper, we propose a novel deep adversarial
framework to explore the shape and temporal de-
pendencies from both appearance level and target
label level. The proposed deep adversarial frame-
work consists of a deep landmark tracker and a dis-
criminator. The deep landmark tracker is composed
of a stacked Hourglass network as well as a convo-
lutional neural network and a long short-term mem-
ory network, and thus implicitly capture spatial and
temporal patterns from facial appearance for facial
landmark tracking. The discriminator is adopted
to distinguish the tracked facial landmarks from
ground truth ones. It explicitly models shape and
temporal dependencies existing in ground truth fa-
cial landmarks through another convolutional neu-
ral network and another long short-term memory
network. The deep landmark tracker and the dis-
criminator compete with each other. Through ad-
versarial learning, the proposed deep adversarial
landmark tracking approach leverages inherent spa-
tial and temporal patterns to facilitate facial land-
mark tracking from both appearance level and tar-
get label level. Experimental results on two bench-
mark databases demonstrate the superiority of the
proposed approach to state-of-the-art work.

1 Introduction
Face alignment, which aims to locate facial landmarks from
facial images or videos, has attracted increasing attention and
achieved great progress in the past several decades. A com-
prehensive survey on facial landmark detection can be found
in Wu and Ji [2019] and Chrysos et al. [2018].

“In the wild” face alignment is very challenging due to
variations in imaging conditions and the diversity inherent in
facial appearances. Unlike facial landmark detection, which
detects facial feature points from static facial images, facial
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landmark tracking localizes facial feature points from dy-
namic facial videos. This task is more complex, since facial
videos record spatial changes of appearance as well as tem-
poral dependencies between facial images.

Current works on landmark tracking can be classified into
three categories: a landmark detection approach, an approach
modeling spatial and temporal patterns implicitly, and an ap-
proach modeling spatial and temporal patterns explicitly. The
first approach is tracking by detection, where facial landmark
detection is adopted on each frame. Methods in this cat-
egory, such as Face Alignment Network (FAN) [Bulat and
Tzimiropoulos, 2017], are sub-optimal as they ignore tem-
poral dependencies among consecutive frames. The second
approach implicitly captures spatial and temporal patterns
through time-series models, such as a convolutional neural
network (CNN) or a recurrent neural network (RNN). For
example, Peng et al. [2016] proposed Recurrent Encoder-
Decoder Network (REDnet), which encodes temporal infor-
mation and conducts coarse-to-fine face alignment by RNN
structures. Simonyan and Zisserman [2014] proposed Two-
Stream Convolutional Network (TSCN), in which one CNN
extracts spatial patterns from each frame, and a second CNN
captures the temporal patterns present in the multi-frame
dense optical flow. Liu et al. [2018] proposed Two-Stream
Transformer Network (TSTN), which predicts the landmark
coordinate residuals using two networks. A CNN structure
captures spatial information from cropped shape-index local
patches, and an encoder-decoder model integrates temporal
dependencies from adjacent frames. These works success-
fully leverage spatial and temporal patterns in facial appear-
ance, but fail to explore shape and dynamic patterns embed-
ded in ground truth facial feature points, which could be used
as further constraints to boost the performance of landmark
tracking.

The third approach captures spatial and temporal patterns
explicitly by adding manually designed constraints or using
probabilistic graphical models. Wu and Ji [2015] proposed a
Shape Augmented Regression (SAR) method by adding man-
ually designed global facial shape features into cascaded re-
gression. Tai et al. [2019] proposed a stabilization model
(STA) to constrain time delay and deformation smoothness
using two loss functions. Although the proposed constraints
can reflect specific forms of spatial or temporal dependen-
cies, they fail to consider all spatial and temporal dependen-
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Figure 1: Proposed framework

cies embedded in ground truth landmarks. Instead of exploit-
ing certain kinds of shape and temporal dependencies, some
probabilistic graphic model-based methods model joint la-
bel distribution from ground truth landmarks. For example,
Wu et al. [2013] proposed an Restricted Boltzmann Machine
(RBM) based facial shape model, which is robust to various
head poses. Cosar and Cetin [2011] proposed a Markov Ran-
dom Field (MRF) model, and Li et al. [2013] proposed a
Dynamic Bayesian Network (DBN) to capture the spatial and
temporal coherence among adjacent frames for facial feature
tracking. Probabilistic graphic model-based methods assume
an explicit form of joint distribution. These explicit forms of
joint label distribution may not be consistent with the ground
truth landmark distributions.

To address this, we propose an adversarial learning frame-
work to close the joint distribution inherent in predicted and
ground truth facial landmarks. This technique has two ad-
vantages. First, under such a framework, the spatial and tem-
poral dependencies embedded in ground truth landmarks are
extracted directly from the original labels, with a more diver-
sity than the manually designed constraints. Second, these
dependencies are modeled by a deep neural network, i.e., the
discriminator, which requires no assumptions of distribution
form.

The proposed deep adversarial framework consists of a
deep landmark tracker and a discriminator. The deep land-
mark tracker learns to predict landmark positions from facial
image sequences, and tries to fool the discriminator, while the
discriminator is adopted to distinguish the tracked facial land-
mark sequence from the ground truth one. The former im-
plicitly captures spatial and temporal patterns from facial ap-
pearance, and the latter explicitly models shape and temporal
dependencies existing in ground truth facial landmarks. Due
to the complementary capabilities of CNN and RNN in se-
quence modeling [Sainath et al., 2015; Gehring et al., 2017],
both the tracker and the discriminator consist of a combina-
tion of CNN and RNN. Through adversarial learning, the pro-
posed deep adversarial landmark tracking network can thor-

oughly explore facial shape and dynamic models from both
appearance and label levels. To the best of our knowledge, we
are the first to capture the shape and temporal dependencies
from both appearance level and target label level for facial
landmark tracking. Experimental results on two databases
show a performance boost in accuracy and stability over other
state-of-the-art methods, thus demonstrating the effectiveness
of our proposed method.

2 Problem Statement
Let I1:T = {I1, ..., It, ..., IT } be a facial video with T con-
tinuous frames, where It ∈ RH×W×3 denotes the RGB fa-
cial image of the t th frame with height H and width W .
Let gt = (xt∗1 , y

t∗
1 , x

t∗
2 , y

t∗
2 , ..., x

t∗
M , y

t∗
M ) ∈ R2M be the con-

catenation of ground truth coordinates for a total of M facial
landmarks in It. The ground truths for the whole sequence
are denoted by g1:T = {g1, ..., gt, ..., gT }.

The object of facial landmark tracking is to infer g1:T given
I1:T , i.e., to find a function G to map a facial image sequence
to a coordinate sequence, as shown in Eq. (1):

g1:T = G(I1:T ) (1)

3 Methodology
The framework of the proposed approach consists of two deep
neural networks, i.e., a tracker and a discriminator, as shown
in Fig. 1. The tracker is used to track landmarks from a facial
video. The discriminator is introduced to distinguish the pre-
dicted landmark positions from the ground truth ones. The
tracker tries to confuse the discriminator by predicting land-
mark positions with joint distributions that are close to the
ground truth ones. Through adversarial learning, the inherent
spatial and temporal dependencies of a facial sequence are
captured from both appearance level and target level for land-
mark tracking. To facilitate the processing of a long video, we
segment it into several short video slices and let the tracker
and the discriminator process them in a slice-by-slice way. In

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1011



order to capture long term dependencies in a video, we de-
sign a temporal delivery strategy from slice to slice for both
the tracker and discriminator. The proposed deep adversar-
ial landmark tracking network is learned by minimizing a
weighted combination of a supervised regression loss and an
adversarial loss.

3.1 Tracker
The deep landmark tracker learns to predict landmark posi-
tions from facial appearance. As depicted in the left part of
Fig. 1, the tracker takes a facial sequence with several ad-
jacent frames as the input, and yields a corresponding se-
quence of landmark coordinates. Specifically, each facial
frame is first processed separately by a stacked Hourglass
network with hierarchical parallel and multi-scale blocks, as
used in FAN [Bulat and Tzimiropoulos, 2017]. This produces
a high-dimensional feature tensor, denoted as Ft, as the rep-
resentation for the current facial frame. Instead of conduct-
ing Heatmap Regression on Ft as Bulat and Tzimiropoulos
[2017] did which generates rounding coordinates and may
cause quantization errors, we use a CNN to compress Ft into
a continuous coordinate vector and a feature vector, i.e, st and
ft, where st is the landmark coordinate detected on the current
frame and ft is a feature used for temporal integration.

We choose LSTM to integrate temporal information. In the
tracker, the LSTM has two layers. The first layer takes the
sequence of feature vectors f1, ..., ft, ..., fT produced by the
CNN as input and generates a sequence of hidden states de-
noted as h1

1, ..., h
t
1, ..., h

T
1 , which are the input for the second

layer generating another sequence of hidden states denoted
as h1

2, ..., h
t
2, ..., h

T
2 . These output hidden states are regarded

as another sequence of landmark coordinates, which integrate
temporal information. And we scale up these hidden states by
multiplying them with the length of side of the facial image
to cover coordinates on the whole image. The final output of
the tracker at the t th frame, i.e., ct, is a weighted average of
st and ht2 as follows:

ct = (1− γ)st + γht2 (2)

where ct ∈ R2M , which is the concatenation of all M pre-
dicted landmark coordinates. γ is the weight coefficient of
ht2.

3.2 Discriminator
The output of the tracker is used as the input for the dis-
criminator, which distinguishes it from ground truth labels
as depicted in the right part of Fig. 1. In other words,
the discriminator tries to classify the ground truth positions
g1:T = {g1, ..., gt, ..., gT } as “real”, and the output of the
tracker c1:T = {c1, ..., ct, ..., cT } as “fake”.

We propose a novel structure combining CNN and LSTM
to embed and fuse spatial and temporal information in the
landmark sequence. For the CNN, g1:T or c1:T is stacked as a
matrix with the size of T×2M , then encoded and compressed
by several convolutional layers and flattened to a feature vec-
tor denoted as vc. For the LSTM, it takes g1, ..., gt, ..., gT
(or c1, ..., ct, ..., cT ) as the input and generates a sequence of
hidden states denoted as h1, ..., hT . We choose hT , i.e., the

hidden state of the last time step with a summary of the whole
sequence, as the output feature for the LSTM module. The
output vectors of CNN and LSTM, i.e., vc and hT , are then
converted to two vectors of the same size, i.e., uc and ul, by
a fully connected network. Based on uc and ul, the features
from CNN and LSTM are fused by a weighted average, for-
mulated as:

u = (1− λ)uc + λul (3)
where λ is a hyper-parameter. Another fully-connected net-
work converts the feature vector u to a scalar denoted as p,
which is the final output of the discriminator. p represents
the confidence that the input of the discriminator is a “real”
sample.

3.3 Temporal Delivery Strategy
For a long video, the tracker and the discriminator process
a slice of T consecutive frames at a time, then move to the
next slice, if the video does not end. When processing a
video slice, we want to not only integrate the temporal in-
formation in the current T frames, but also keep a memory
from all previous frames of the video to capture long term
dependencies. This can be achieved by delivering the tempo-
ral information saved in LSTM from the current T frames to
the next T frames of the video. Specifically, as the current
T frames are processed, the LSTM generates a sequence of
memory states and hidden states, denoted as m1, ...,mT and
h1, ..., hT respectively. We use the memory and hidden state
generated in the last time step, i.e., mT and hT , as the initial-
ization states for LSTM when processing the next T frames
of the video. We adopt this temporal delivery strategy for
the LSTMs in both the tracker and discriminator, so they can
capture long-term dependencies in a video.

3.4 Supervised Regression Loss
Face alignment can be performed using the supervised regres-
sion method, which trains the tracker G by minimizing the
error between the prediction of G and the ground truth, as
shown in Eq. (4):

min
θG

Lsup(I1:T ; θG) = ||c1:T − g1:T ||22

= ||G(I1:T ; θG)− g1:T ||22
(4)

where θG denotes the parameters in G.

3.5 Adversarial Loss
An adversarial learning mechanism is used to capture spatial
and temporal patterns from the target label level. The dis-
criminator D tries to distinguish the outputs of the tracker G
from ground truth landmarks. The tracker G tries to confuse
the discriminator D by making its prediction closer to the
ground truth in joint distribution until they are indistinguish-
able. According to Arjovsky et al. [2017] and Goodfellow
et al. [2014], this min-max game can be optimized by the
following adversarial loss:

min
θG

max
θD

Ladv(I1:T ; θG, θD)

= D(g1:T ; θD)−D(c1:T ; θD)

= D(g1:T ; θD)−D(G(I1:T ; θG); θD)

(5)

where θD denotes the parameters in D.
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3.6 Overall Loss
Our learning framework is a combination of supervised re-
gression and adversarial learning. The overall loss function
Lo is a weighted aggregation of Lsup and Ladv , which is
shown as follows:

min
θG

max
θD

Lo(I1:T ; θG, θD)

= αLsup(I1:T ; θG) + βLadv(I1:T ; θG, θD)
(6)

where α and β are two hyper-parameters.

3.7 Training Algorithm
Eq. (6) is used to design the training algorithm, as shown
in Alg. 1. Both landmark annotated facial videos and static
facial images are used during training.

For training on videos, the first and second term of Eq.
(6), i.e., α ·Lsup and β ·Ladv , are optimized alternately with
corresponding procedures, as shown in lines 8-9, 11-12 and
14-15 of Alg. 1. Probability threshold r is used to alternately
optimize the tracker or the discriminator by the adversarial
loss, as shown in line 10 of Alg. 1. Following Arjovsky et
al. [2017], a weight clipping strategy is used to force conver-
gence when updating the discriminator, as shown in line 16
of Alg. 1. The temporal delivery strategy outlined in Section
3.3 captures long-term dependencies in a video, depicted in
line 21 of Alg. 1.

For training on images, since these images do not pro-
vide any temporal information, we only use them to train the
tracker according to the supervised regression loss discarding
the LSTM module by assigning γ = 0.0 in Eq. (2), as shown
in line 26 from Alg. 1.

4 Experiments
4.1 Experimental Conditions
We evaluate the proposed method on the 300 Videos in the
Wild (300VW) [Shen et al., 2015] dataset and the Talking
Face (TF) 1 dataset.

The 300VW dataset is the most popular in-the-wild video
dataset for facial landmark tracking. It contains 114 videos
with annotated 68 landmarks per image. Each video lasts
around one minute with 25-30 frames per second. The bench-
mark divides 50 videos for training and 64 videos for testing.
The testing set is further divided into three categories accord-
ing to difficulty: well-lit (Scenario 1), mild unconstrained
(Scenario 2) and challenging (Scenario 3).

The TF dataset is another video dataset which contains one
video from one talking subject. This video contains 5000
frames, and each frame is annotated with 68 landmarks. The
landmark definition of the TF is different from the 300VW
dataset, so we follow previous works [Liu et al., 2018;
Peng et al., 2016] and use seven landmarks common to both
datasets for testing.

Following Liu et al. [2018], for experiments on the 300VW
dataset, the training set consists of the official training set in
the 300VW and 300 faces in the Wild (300W) [Sagonas et

1[FGNET, 2014] FGNET. Talking face video. [On-
line]. Avilable: http://www-prima.inrialpes.fr/FGnet/data/01-
TalkingFace/talking face.html, 2014.

Algorithm 1 Training algorithm
Input: Landmark annotated facial videos and images
Hyper-Parameters: α, β, γ, λ, T , η, r, s
Output: θG, θD

1: repeat
2: /***below: training on videos***/
3: k← generate a random index from training video list
4: Vk ← the training video with index k
5: if Vk has not been explored before then
6: uk ← the first T frames of Vk
7: end if
8: gθG ← ∇θGα · Lsup(uk; θG)
9: θG ← θG − η ·Adam(θG, gθG)

10: if p ∼ uniform(0, 1.0) < r then
11: gθG ← ∇θGβ · Ladv(uk; θG, θD)
12: θG ← θG − η ·RMSProp(θG, gθG)
13: else
14: gθD ← −∇θDβ · Ladv(uk; θG, θD)
15: θD ← θD − η ·RMSProp(θD, gθD )
16: θD ← clip(θD,−s, s)
17: end if
18: if uk is the last T frames of Vk then
19: uk ← the first T frames of Vk
20: else
21: saving the generated memory and hidden states of

LSTMs as initialization for processing the next T
frames of Vk

22: uk ← the next T frames of Vk
23: end if
24: /***below: training on images***/
25: ib ← randomly select a batch of training images
26: gθG ← ∇θGα · Lsup(ib; θG)|γ=0.0

27: θG ← θG − η ·Adam(θG, gθG)
28: until convergence

al., 2016] dataset. The 300W dataset is an image dataset for
landmark detection containing 3,148 training images. For ex-
periments on the TF dataset, since the TF dataset only con-
sists of one video, we just train the proposed method on the
300VW dataset and test it on the TF dataset.

The training videos are taken from the 300VW training set.
When testing on the 300VW testing set, the training images
are taken from a mixture of all images in the 300W and all
frames in the 300VW training set. When testing on the TF
dataset, the training images are taken from the 300VW train-
ing set only. These images are mixed and shuffled thoroughly
before training. All faces are cropped from the detection
bounding boxes and resized to 256 × 256 pixels, then fed
into the network for training, as Tai et al. [2019] did.

We conduct 10-fold cross validation on the 300VW train-
ing set for parameter selection. All hyper-parameters are de-
termined, i.e., α = 0.95, β = 0.45, γ = 0.625, λ = 0.75,
T = 20, η = 0.0001, r = 0.2, s = 0.03. After cross vali-
dation, hyper-parameters are adopted to re-train the proposed
method on the whole training set.

The proposed method is evaluated on both accuracy and
stability. Accuracy measures how close the predicted land-
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Figure 2: (a) NRMSE with different γ on the 300VW and TF dataset. (b) NRMSE with different
λ on the 300VW and TF dataset. (c) NRMSE with different T on the 300VW and TF dataset.
(d) NRMSE in different facial areas with/without adversarial learning on the 300VW dataset

mark positions are to the ground truth ones. Normalized Root
Mean Squared Error (NRMSE) and detection rate are the ac-
curacy metrics utilized. Formulas to calculate these metrics
can be found in Shen et al. [2015] and Wu and Ji [2015],
respectively. Stability reflects the consistency between the
movements of predicted landmarks and ground truths. We
use the stability metric adopted by Tai et al. [2019]. A lower
NRMSE and a higher detection rate indicate better accuracy;
a lower value of the stability metric indicates better stabil-
ity. During experiments, all hyper-parameters are the default
optimal values found by cross validation except for the hyper-
parameters needing further study.

4.2 Experimental Results and Analyses
In this section, we first make empirical study on the proposed
method through different hyper-parameter settings. Due to
the limited space, we use NRMSE for illustrating the perfor-
mance. Then, we make comparison with related work, based
on NRMSE, detection rate and the stability metric.

Evaluation for the Output Structure of the Tracker
According to Eq. (2), the coordinate prediction of the tracker,
i.e., ct, is a weighted average of the landmark coordinate de-
tected on the current frame (st) and the coordinate generated
by the LSTM which integrates temporal information (ht2).
When γ is 0.0, ht2 is discarded and no temporal information is
utilized. As γ increases, the weight of ht2 increases and more
temporal information is utilized. NRMSE on the 300VW and
TF dataset with different γ are shown in Fig. 2a. When γ
is 0.625, which is the optimal value found by 10-fold cross
validation, NRMSE decreases by 6.67%, 3.93%, 12.27% and
5.14% on the Scenario 1, 2, 3 of the 300VW dataset and the
TF dataset respectively, compared to the setting when γ is
0.0 (ct = st). NRMSE decreases by 1.69%, 2.13%, 2.21%

and 2.40% on the three scenarios and the TF dataset respec-
tively, compared to the setting when γ is 1.0 ( ct = ht2). This
demonstrates that the output structure of the adopted tracker
is adept at balancing the information from the current frame
and the sequential dependencies, improving the performance
of landmark tracking.

Evaluation for the Complementary of CNN and LSTM in
the Discriminator
According to Eq. (3), the discriminator is a combination of
CNN and LSTM weighted by λ. NRMSE on the 300VW and
TF dataset with different λ are shown in Fig. 2b. When λ is
0.75, which is the optimal value found by validation, NRMSE
decreases by 3.85%, 3.42%, 4.32% and 1.93% on the 300VW
Scenario 1, 2, 3 and the TF dataset respectively against using
CNN only (λ = 0.0); NRMSE decreases by 2.23%, 3.17%,
3.28% and 1.46% on the three scenarios and the TF dataset
respectively against using LSTM only (λ = 1.0). These re-
sults demonstrate that CNN and LSTM can complement to
each other through a proper combination to compose a good
discriminator for adversarial sequential learning.

Evaluation for the Effect of Temporal Length
The proposed method processes T consecutive frames of a
video at a time, then move to the next T frames. We evalu-
ate the effect of T on landmark tracking performance in Fig.
2c. When T is 1, there is no sequence information utilized.
With the increasing of T , the input sequence is longer and
deliveries more temporal information. We find that when T
is 20, which is the optimal value found by cross validation,
NRMSE decreases by 7.41%, 6.14%, 13.13% and 5.58% on
the 300VW Scenario 1, 2, 3 and the TF dataset respectively,
compared to the setting when T is 1. However, when T is
too large, e.g., T = 60, performance is poorer. This could be
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Dataset SDM TSCN CFSS TCDCN FAN TSTN DSRN FHR FHR+STA Ours
300VW Scenario 1 7.41 12.54 7.68 7.66 5.58 5.36 5.33 4.82 4.21 3.50
300VW Scenario 2 6.18 7.25 6.42 6.77 4.87 4.51 4.92 4.23 4.02 3.67
300VW Scenario 3 13.04 13.13 13.67 14.98 7.75 12.84 8.85 7.09 5.64 4.43

Table 1: NRSME performance on the 300VW dataset

Dataset SDM CFAN CFSS IFA REDnet FAN TSTN FHR FHR+STA Ours
TF 4.01 3.52 2.36 3.45 3.32 2.31 2.13 2.07 2.10 2.03

Table 2: NRSME performance on the TF dataset

Dataset SAR Ours
300VW Scenario 1 75.30% 92.45%
300VW Scenario 2 83.47% 95.13%
300VW Scenario 3 52.78% 91.66%

TF - 99.12%

Table 3: Detection Rate performance on the 300VW and TF dataset

because the input becomes more complex as T increases, and
the network approaches the ceiling of modeling capability.

Ablation Study for Adversarial Learning
In this section, we conduct an ablation study for adversar-
ial learning. Two training settings are compared. In the first
setting, adversarial learning is discarded from the proposed
method by assigning β as 0.0 in Eq. (6). Thus, the tracker is
only trained by the supervised regression loss, and this setting
is denoted as SUP. For the second one, we keep the adversar-
ial term by setting β as the optimal value (0.45) selected by
cross validation. Under such a setting, the whole model, i.e.,
the tracker and the discriminator, is trained through a combi-
nation of the supervised regression loss and adversarial loss.
This setting is denoted as SUP+ADV. To further study the
effect of adversarial learning, we gather all testing samples
from the 300VW dataset and group their landmarks into five
facial areas, i.e., eyes, contour, nose , eyebrows and mouth.
We just make comparisons on the 300VW dataset, since only
seven landmarks are considered in the TF dataset, and the
number of landmarks in each area is too small. NRMSE in
five areas are shown in Fig. 2d. From Fig. 2d, we can find
that adversarial learning improves performance for all facial
areas. Contour and eyebrows are the most challenging ar-
eas with the highest NRMSE, which is consistent with the
observations from Xiao et al. [2015]. Adversarial learning
brings the highest NRMSE decrease in these challenging ar-
eas, i.e., 8.75% for contour and 6.91% for eyebrows, against
eyes (3.41%), nose (4.12%), and mouth (5.32%). These per-
formance improvements are owed to the inherent spatial and
temporal patterns captured by adversarial learning.

Comparison with Related Work
This section compares the proposed facial landmark track-
ing method with state-of-the-art methods, including SDM
[Xiong and De la Torre, 2013], TSCN [Simonyan and Zis-
serman, 2014], IFA [Asthana et al., 2014], CFSS [Zhu et al.,
2015], SAR [Wu and Ji, 2015], TCDCN [Zhang et al., 2016],

Dataset FHR FHR+STA Ours
300VW Scenario 1 2.67 1.58 0.89
300VW Scenario 2 1.77 1.09 0.84
300VW Scenario 3 4.43 2.62 1.82

TF 0.97 0.69 0.59

Table 4: Stability performance on the 300VW and TF dataset

REDnet [Peng et al., 2016], FAN [Bulat and Tzimiropoulos,
2017], TSTN [Liu et al., 2018], DSRN [Miao et al., 2018],
FHR and STA [Tai et al., 2019].

Table 1, 2, 3 and 4 list the experimental results on the
300VW dataset and the TF dataset measured by NRSME, de-
tection rate and the stability metric, respectively. All the ex-
perimental results of previous works are copied from Liu et
al. [2018], Wu and Ji [2015] and Miao et al. [2018] directly,
except for those of FAN, FHR, and FHR+STA. Since their
training conditions are different from ours, we re-implement
these methods and re-conduct experiments using our train-
ing set. Some open source codes2 are used to facilitate re-
implementation.

Compared to FAN, the proposed method decreases
NRMSE by 37.27%, 24.64%, 42.84% and 12.12% on the
300VW Scenario 1, 2, 3 and the TF dataset respectively. The
improvement may be caused by two factors. First, FAN de-
tects landmark positions on the current frame while ignor-
ing temporal information. Our method captures both spa-
tial and temporal dependencies for facial landmark tracking.
Second, FAN may be susceptible to rounding errors caused
by heatmap regression. Our method compresses the high-
dimensional output from the Hourglass into continuous co-
ordinates, avoiding this error.

Our method outperforms significantly REDnet, TSCN and
TSTN on accuracy. Compared with TSTN, which achieved
the best performance among these three methods, our method
has a NRMSE decrease of 34.70%, 18.63%, 65.50% and
4.69% on the 300VW Scenario 1, 2, 3 and the TF dataset,
respectively. REDnet, TSCN and TSTN capture spatial and
temporal dependencies implicitly from appearance features,
while our method uses adversarial learning to explore the spa-
tial and temporal patterns from the target label level as well.
Therefore, the proposed method achieves better performance.

2https://github.com/1adrianb/face-alignment,
https://github.com/tyshiwo/FHR alignment

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1015



Our method achieves better performance than SAR and
STA. With respect to accuracy, our method outperforms
the detection rate of SAR by 22.78%, 13.97%, 73.66%
on the three scenarios of the 300VW dataset. Compared
to FHR+STA, which is a face alignment method equipped
with STA, our method shows a decrease in NRMSE of
16.86%, 8.71%, 21.45% and 3.33% on the 300VW Scenario
1, 2, 3 and the TF dataset, respectively. Regarding stabil-
ity, our method outperforms FHR+STA with a decrease of
43.67%, 22.94%, 30.53% and 14.49% on the stability metric
for the respective testing datasets. These comparisons illus-
trate that our method achieves better performance on both ac-
curacy and stability. SAR and STA are methods that use man-
ually designed features or loss to explicitly encode the spatial
and temporal dependencies among landmarks. However, the
diverse spatial and temporal constraints in real-world faces
can hardly be exhausted manually. In contrast, our method
directly extracts all spatial and temporal patterns existing in
ground truth landmarks through adversarial learning. Thus,
our method can capture more diverse dependencies to further
improve landmark tracking.

Cosar and Cetin [2011], Wu et al. [2013] and Li et al.
[2013] proposed to use probabilistic graphical models to cap-
ture the spatial and temporal dependencies for facial land-
mark tracking. However, there are no published results of
these works on the 300VW dataset nor the TF dataset. Since
the experimental data they used are beyond our access, we are
unable to make a quantitative comparison to them.

5 Conclusion
We propose an adversarial learning framework to explore the
shape and temporal dependencies from both appearance level
and target label level for facial landmark tracking. We design
a tracker as well as a discriminator with advanced network
structures. The former learns to track facial landmarks by
capturing spatial and temporal patterns from facial videos,
and the latter distinguishes the landmark sequence tracked
by the former from the ground truth one. Through adver-
sarial learning, the joint distribution inherent in predicted and
ground truth facial landmarks are driven to close. Thus, the
proposed method models shape and dynamic patterns from
target label level. Experiments on the 300VW dataset and the
TF dataset demonstrate that the proposed method can fully
capture shape and temporal dependencies, and achieves bet-
ter performance than state-of-the-art work.
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