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Abstract
We unify search-based and compilation-based ap-
proaches to multi-agent path finding (MAPF)
through satisfiability modulo theories (SMT). The
task in MAPF is to navigate agents in an undirected
graph to given goal vertices so that they do not col-
lide. We rephrase Conflict-Based Search (CBS),
one of the state-of-the-art algorithms for optimal
MAPF solving, in the terms of SMT. This idea
combines SAT-based solving known from MDD-
SAT, a SAT-based optimal MAPF solver, at the
low-level with conflict elimination of CBS at the
high-level. Where the standard CBS branches the
search after a conflict, we refine the propositional
model with a disjunctive constraint. Our novel al-
gorithm called SMT-CBS hence does not branch at
the high-level but incrementally extends the propo-
sitional model. We experimentally compare SMT-
CBS with CBS, ICBS, and MDD-SAT.

1 Introduction and Background
Multi-agent path finding in graphs (MAPF) [Standley, 2010;
Yu and LaValle, 2016] represents an important problem in ar-
tificial intelligence with specific applications in planning and
robotics. We assume multiple distinguishable agents placed
in vertices of an undirected graph such that at most one agent
is placed in each vertex. Agents can be moved between ver-
tices across edges. MAPF usually assumes that agents are
moved to unoccupied neighbors. The task in MAPF is to
reach a given goal configuration of agents from a given start-
ing configuration using valid movements.

We address optimal solving of MAPF with respect to com-
mon cumulative objective functions that are minimized -
sum-of-costs [Sharon et al., 2013; Miltzow et al., 2016] and
makespan [Yu and LaValle, 2016]. The sum-of-costs corre-
sponds to the total cost of all movements (including wait ac-
tions) until the goal configuration in reached - traversal of an
edge and wait actions have unit cost. The makespan calcu-
lates the total number of time-steps until the goal is reached.

Many practical problems from robotics can be interpreted
as MAPF. Examples include discrete multi-robot navigation
and coordination, item rearrangement in automated ware-
houses [Basile et al., 2012], ship collision avoidance [Kim

et al., 2014], or formation maintenance and maneuvering of
aerial vehicles [Zhou and Schwager, 2015].

This paper contributes by the design and experimental
analysis of a novel optimal MAPF algorithm that unifies two
major approaches to solving MAPF optimally: a search-
based approach represented by conflict-based search (CBS)
[Sharon et al., 2015] and a compilation-based approach
represented by reducing MAPF to propositional satisfiabil-
ity (SAT) [Biere et al., 2009] in the MDD-SAT algorithm
[Surynek et al., 2016]. Our novel algorithm called SMT-CBS
rephrases ideas of CBS in the terms of satisfiability modulo
theories (SMT) [Bofill et al., 2012] at the high-level. While
at the low-level we use the SAT encoding from MDD-SAT.

Unlike the original CBS that resolves conflicts between
agents by branching the search, SMT-CBS refines the propo-
sitional model with a disjunctive constraint to resolve the con-
flict. SMT-CBS hence does not branch at the high-level but
instead incrementally extends the propositional model that
is consulted with the external SAT solver similarly as it has
been done in MDD-SAT. In contrast to MDD-SAT where the
propositional model is fully constructed in a single-shot, the
propositional model is being built lazily in SMT-CBS as new
conflicts appear.

The hypothesis behind the design of SMT-CBS is that in
many cases we do not need to add all constraints to form
the complete propositional model while still be able to ob-
tain a conflict-free solution. Intuitively we expect that such
cases where the incomplete propositional model will suffice
are represented by sparsely occupied instances with large en-
vironments. The expected benefit in contrast to MDD-SAT is
that incomplete model can be constructed and solved faster.
On the other hand we expect that the superior performance
of MDD-SAT in environments densely populated with agents
will be preserved as SMT-CBS will quickly converge the
model towards the complete one.

We first introduce MAPF formally. Then CBS and MDD-
SAT are recalled. On top of this, the combination of CBS and
MDD-SAT is developed - the SMT-CBS algorithm. Finally
an experimental evaluation of SMT-CBS against CBS , ICBS,
and MDD-SAT on various benchmarks is presented.

1.1 MAPF Formally
Multi-agent path finding (MAPF) [Silver, 2005; Ryan, 2008]
consists of an undirected graph G = (V,E) and a set of
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Figure 1: A MAPF instance with three agents a1, a2, and a3.

agents A = {a1, a2, ..., ak} such that |A| < |V |. At most
one agent resides in each vertex. The configuration of agents
is denoted α : A → V . Starting configuration of agents α0

and goal configuration α+ are specified too.
At each time step, an agent can either move to an adjacent

vertex or wait in its current vertex. The task is to find a se-
quence of move/wait actions for each agent ai that moves the
agent from α0(ai) to α+(ai) such that agents do not collide,
i.e., do not occupy the same vertex at the same time. Typi-
cally, an agent can move into adjacent unoccupied vertex pro-
vided no other agent enters the same target vertex. However
different rules for movements are used in variants of MAPF.
An example of MAPF instance is shown in Figure 1.

We develop all new concepts in this paper for the move-to-
unoccupied variant formalized in the following definition.
Definition 1 (move-to-unoccupied MAPF). Configuration
α′ is a valid successor of α if and only if the following condi-
tions hold:

(i) α(a) = α′(a) or {α(a), α′(a)} ∈ E for all a ∈ A
(agents wait or move along edges);

(ii) for all a ∈ A it holds that if α(a) 6= α′(a) then
α′(a) 6= α(a′) for all a′ ∈ A (target vertex is empty);

(iii) and for all a, a′ ∈ A it holds that if a 6= a′ then
α′(a) 6= α′(a′) (no two agents enter the same target).

Solving MAPF is to find a sequence of configurations
[α0, α1, ..., αµ] such that αi+1 results using valid movements
from αi for i = 1, 2, ..., µ−1, and αµ = α+. A feasible solu-
tion of a solvable MAPF instance can be found in polynomial
time [Wilson, 1974; Kornhauser et al., 1984]; precisely the
worst case time complexity of most practical algorithms for
finding feasible solutions isO(|V |3) [Luna and Bekris, 2011;
de Wilde et al., 2014].

1.2 Cumulative Objectives in MAPF
We are often interested in optimal solutions. In case of the
makespan [Surynek, 2017] we just need to minimize µ in the
aforementioned solution sequence. For introducing the sum-
of-costs objective [Dresner and Stone, 2008; Standley, 2010;
Sharon et al., 2013] we need more notation as follows:
Definition 2 Sum-of-costs objective is the summation, over
all k agents, of the number of time steps required to reach the
goal vertex. Denoted ξ, where ξ =

∑k
i=1 ξ(path(ai)) and

ξ(path(ai)) is an individual path cost of agent ai connecting
α0(ai) and α+(ai) calculated as the number of edge traver-
sals and wait actions disregarding any final wait actions. 1

1The notation path(ai) refers to path in the form of a sequence
of vertices and edges connecting α0(ai) and α+(ai) while ξ assigns
the cost to a given path.

We note that finding a solution that is optimal (minimal)
with respect to either the makespan or the sum-of-costs objec-
tive is NP-hard [Ratner and Warmuth, 1986; Surynek, 2010].

2 Unifying Search and Compilation
A necessary step before introducing the unification between
the search-based and the compilation-based approach is to
briefly discuss both approaches themselves.

2.1 Conflict-based Search
CBS is a representative of search-based approach. CBS
uses the idea of resolving conflicts lazily; that is, a solution
of MAPF instance is not searched against the complete set of
movement constraints that forbids collisions between agents
but with respect to initially empty set of collision forbidding
constraints that gradually grows as new conflicts appear. The
advantage of CBS is that it can find a valid solution before all
constraints are added.

The high-level of CBS searches a constraint tree (CT) us-
ing a priority queue in breadth first manner. CT is a binary
tree where each node N contains a set of collision avoidance
constraints N.constraints - a set of triples (ai, v, t) forbid-
ding occurrence of agent ai in vertex v at time step t, a solu-
tion N.paths - a set of k paths for individual agents, and the
total cost N.ξ of the current solution.

The low-level process in CBS associated with node N
searches paths for individual agents with respect to set of con-
straintsN.constraints . For a given agent ai, this is a standard
single source shortest path search from α0(ai) to α+(ai) that
avoids a set of vertices {v ∈ V |(ai, v, t) ∈ N.constraints}
whenever working at time step t. For details see [Sharon et
al., 2015].

CBS stores nodes of CT into priority queue OPEN sorted
according to the ascending costs of solutions. At each step
CBS takes node N with the lowest cost from OPEN and
checks if N.paths represent paths that are valid with respect
to MAPF movements rules - that is, N.paths are checked for
collisions. If there is no collision, the algorithms returns valid
MAPF solution N.paths . Otherwise the search branches by
creating a new pair of nodes in CT - successors of N . As-
sume that a collision occurred between agents ai and aj in
vertex v at time step t. This collision can be avoided if ei-
ther agent ai or agent aj does not reside in v at timestep
t. These two options correspond to new successor nodes
of N - N1 and N2 that inherit the set of conflicts from N
as follows: N1.conflicts = N.conflicts ∪ {(ai, v, t)} and
N2.conflicts = N.conflicts ∪ {(aj , v, t)}. N1.paths and
N1.paths inherit paths from N.paths except those for agents
ai and aj respectively. Paths for ai and aj are recalculated
with respect to extended sets of conflicts N1.conflicts and
N2.conflicts respectively and new costs for both agents N1.ξ
and N2.ξ are determined. After this, N1 and N2 are inserted
into the priority queue OPEN.

The pseudo-code of CBS is listed as Algorithm 1. One of
crucial steps occurs at line 16 where a new path for colliding
agents ai and aj is constructed with respect to the extended
set of conflicts. N.paths(a) refers to path of agent a.

The CBS algorithm ensures finding sum-of-costs optimal
solution (see detailed proofs in [Sharon et al., 2015]).
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Algorithm 1: CBS algorithm for MAPF solving
1 CBS (G = (V,E), A, α0, α+)
2 R.constraints ← ∅
3 R.paths ← {shortest path from α0(ai) to

α+(ai)|i = 1, 2, ..., k}
4 R.ξ ←

∑k
i=1 ξ(N.paths(ai))

5 insert R into OPEN
6 while OPEN 6= ∅ do
7 N ← min(OPEN)
8 remove-Min(OPEN)
9 collisions ← validate(N.paths)

10 if collisions = ∅ then
11 return N.paths

12 let (ai, aj , v, t) ∈ collisions
13 for each a ∈ {ai, aj} do
14 N ′.constraints ← N.constraints ∪ {(a, v, t)}
15 N ′.paths ← N.paths
16 update(a, N ′.paths , N ′.constraints)
17 N ′.ξ ←

∑k
i=1 ξ(N

′.paths(ai))
18 insert N ′ into OPEN

Implications for SMT-CBS
A deterministic implementation of the non-deterministic se-
lection of collision at line 12 has a great impact on the per-
formance. A considerable research effort has been devoted
to select collisions with respect to their importance, to this
end cardinal and semi-cardinal collisions have been defined
[Boyarski et al., 2015; Felner et al., 2018].

There are two important observations about the CBS al-
gorithm that we further hypothetise to be important in SMT-
CBS. Assume fixed time-step t:

Observation 1 All potential conflicts considering all agents
a1, a2, ..., ak, and all vertices v1, v2, ..., vn that can appear
within CBS together form an at-most-one occupation con-
straint: |{ai | αt(ai) = vj , i = 1, 2, ...k}| ≤ 1 for each
j = 1, 2, ..., n.

In other words, the above at-most-one constraint, let us de-
note it as OCC≤1, says there is at most one agent per vertex.

Observation 2 It may happen that a set of paths found by
CBS at node N such that N.contraints ⊂ OCC≤1 is consis-
tent with respect to OCC≤1.

The observation formalizes what we generally hope for
when using CBS. It can discover a solution before all poten-
tial constraints are added which leads to faster solving.

2.2 Compilation to Propositional Satisfiability
The major alternative to CBS is represented by compilation
of MAPF to propositional satisfiability (SAT) [Surynek et al.,
2016; Surynek, 2017]. The idea follows SAT-based planning
[Kautz and Selman, 1999] where the existence of a plan for
a fixed number time steps is modeled as SAT. We similarly
construct propositional formulaF(ξ) such that it is satisfiable
if and only if a solution of a given MAPF of sum-of-costs ξ
exists. Moreover, the approach is constructive; that is, F(ξ)
exactly reflects the MAPF instance and if satisfiable, solution

Algorithm 2: Framework of SAT-based MAPF solver
1 MAPF-SAT (G = (V,E), A, α0, α+)
2 paths ← {shortest path from α0(ai) to

α+(ai)|i = 1, 2, ..., k}
3 ξ ←

∑k
i=1 ξ(N.paths(ai))

4 while TRUE do
5 F(ξ)← encode(ξ,G,A, α0, α+)
6 assignment ← consult-SAT-Solver(F(ξ))
7 if assignment 6= UNSAT then
8 paths ← extract-Solution(assignment)
9 return paths

10 ξ ← ξ + 1

of MAPF can be reconstructed from satisfying assignment of
the formula. We say F(ξ) to be a complete propositional
model of MAPF.

Definition 3 (complete propositional model). Proposi-
tional formula F(ξ) is a complete propositional model of
MAPF Σ if the following condition holds:

F(ξ) is satisfiable⇔ Σ has a solution of sum-of-costs ξ.

Being able to construct such formula F one can obtain
optimal MAPF solution by checking satisfiability of F(ξ0),
F(ξ0 + 1), F(ξ0 + 2),... until the first satisfiable F(ξ) is
met (ξ0 is the lower bound for the sum-of-costs calculated as
the sum of lengths of shortest paths). This is possible due to
monotonicity of MAPF solvability with respect to increasing
values of common cumulative objectives. The framework of
SAT-based solving is shown in pseudo-code in Algorithm 2.

The advantage of the SAT-based approach is that state-of-
the-art SAT solvers can be used for determining satisfiability
of F(ξ) [Audemard and Simon, 2009].

Details of MDD-SAT Encoding
Construction of F(ξ) as used in MDD-SAT relies on the time
expansion of underlying graph G. Having ξ, the basic variant
of time expansion determines the maximum number of time
steps µ (makespan) such that every possible solution of with
the sum-of-costs less than or equal to ξ fits in µ timesteps.

The time expansion makes copies of vertices V for each
timestep t = 0, 1, 2, ..., µ. That is, we have vertices vt for
each v ∈ V and time step t. Edges fromG are converted to di-
rected edges interconnecting timesteps in the time expansion.
Directed edges (ut, vt+1) are introduced for t = 1, 2, ..., µ−1
whenever there is {u, v} ∈ E. Wait actions are modeled by
introducing edges (ut, ut+1). A directed path in the time ex-
pansion corresponds to trajectory of an agent in time. Hence
the modeling task now consists in construction of a formula
in which satisfying assignments correspond to directed paths
from α0

0(ai) to αµ+(ai) in the time expansion.
Assume that we have time expansion TEG i = (Vi, Ei)

for agent ai. Propositional variable X tv(aj) is introduced for
every vertex vt in Vi. The semantics of X tv(ai) is that it is
TRUE if and only if agent ai resides in v at time step t. Simi-
larly we introduce Etu,v(ai) for every directed edge (ut, vt+1)

inEi. Analogously the meaning of Etu,v(ai) is: it is TRUE if
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and only if agent ai traverses edge {u, v} between time steps
t and t+ 1.

Finally constraints are added so that truth assignment are
restricted to those that correspond to valid solutions of a given
MAPF. Added constraints together ensure thatF(ξ) is a com-
plete propositional model for given MAPF.

We here illustrate the model by showing few representa-
tive constraints. We omit here constraints that concern objec-
tive function. For the detailed list of constraints we refer the
reader to [Surynek et al., 2016].

We already know that collisions among agents are elimi-
nated by the OCC≤1 constraint. OCC≤1 can be expressed
on top of X tv(ai) variables by the following constraint for ev-
ery v ∈ V and timestep t:∑

ai∈A | vt∈Vi

X tv(ai) ≤ 1 (1)

There are various ways how to translate the constraint us-
ing propositional clauses. One efficient way is to introduce
¬X tv(ai) ∨ ¬X tv(aj) for all possible pairs of ai and aj .

Next, there is a constraint stating that if agent ai appears in
vertex u at time step t then it has to leave through exactly one
edge (ut, vt+1):

X tu(ai)⇒
∨

(ut,vt+1)∈Ei

Etu,v(ai), (2)

∑
vt+1 | (ut,vt+1)∈Ei

Etu,v(ai) ≤ 1 (3)

Similarly, the target vertex of any movement except wait
action must be empty. This is ensured by the following con-
straint for every (ut, vt+1) ∈ Ei:

Etu,v(ai)⇒
∧

aj∈A | aj 6=ai∧vt∈Vj

¬X tv(aj) (4)

Other constraints ensure that truth assignments to variables
per individual agents form paths. That is if agent ai enters an
edge it must leave the edge at the next time step.

Etu,v(ai)⇒ X tv(ai) ∧ X t+1
v (ai) (5)

A common measure how to reduce the number of decision
variables derived from the time expansion is the use of multi-
value decision diagrams (MDDs) [Sharon et al., 2013]. The
basic observation that holds for MAPF is that an agent can
reach vertices in the distance d (distance of a vertex is mea-
sured as the length of the shortest path) from the current po-
sition of the agent no earlier than in the d-th time step. Anal-
ogous observation can be made with respect to the distance
from the goal position.

Above observations can be utilized when making the time
expansion ofG. For a given agent, we do not need to consider
all vertices at time step t but only those that are reachable in
t timesteps from the initial position and that ensure that the
goal can be reached in the remaining µ− t timesteps.

The combination of SAT-based approach and MDD time
expansion led to the MDD-SAT algorithm described in
[Surynek et al., 2016] that currently represents state-of-the-
art in SAT-based MAPF solving.

3 Combining SMT and CBS
A natural relaxation from the complete propositional model
is an incomplete propositional model where instead of the
equivalence between solving MAPF and the formula we re-
quire an implication only.

Definition 4 (incomplete propositional model). Proposi-
tional formula H(ξ) is an incomplete propositional model of
MAPF Σ if the following condition holds:

H(ξ) is satisfiable⇐ Σ has a solution of sum-of-costs ξ.

A close look at CBS reveals that it operates similarly
as problem solving in satisfiability modulo theories (SMT)
[Bofill et al., 2012]. SMT divides satisfiability problem in
some complex theory T into an abstract propositional part
that keeps the Boolean structure of the decision problem and
a simplified decision procedure DECIDET that decides frag-
ment of T restricted on conjunctive formulae. A general T -
formula Γ is transformed to a propositional skeleton by re-
placing atoms with propositional variables. The SAT solver
then decides what variables should be assigned TRUE in or-
der to satisfy the skeleton - these variables tells what atoms
hold in Γ. DECIDET then checks if the conjunction of atoms
assigned TRUE is valid with respect to axioms of T . If so
then satisfying assignment is returned. Otherwise a conflict
from DECIDET (often called a lemma) is reported back and
the skeleton is extended with a constraint forbidding the con-
flict. This is the basic SMT solving process; more advanced
schemes exist where the SAT solver and T are integrated
more tightly [Nieuwenhuis et al., 2006].

The above observation led us to the idea to rephrase CBS in
terms of SMT. The abstract propositional part working with
the skeleton will be taken from MDD-SAT provided that only
constraints ensuring that assignments form valid paths inter-
connecting starting positions with goals will be preserved.
Other constraints for collision avoidance will be omitted ini-
tially. This will result in an incomplete propositional model.

The paths validation procedure will act as DECIDET and
will report back the set of conflicts found in the current solu-
tion. Hence axioms of T will be represented by the movement
rules of MAPF. We call the resulting algorithm SMT-CBS and
it is shown in pseudo-code as Algorithm 3. The algorithm
simulates the aforementioned SMT solving scheme.

The algorithm is divided into two procedures: SMT-CBS
representing the main loop and SMT-CBS-Fixed solving the
input MAPF for fixed cost ξ. The major difference from
the standard CBS is that there is no branching at the high-
level. The high-level SMT-CBS roughly correspond to the
main loop of MDD-SAT. The set of conflicts is iteratively
collected during the entire execution of the algorithm. Proce-
dure encode from MDD-SAT is replaced with encode-Basic
that produces encoding that ignores specific movement rules
(collisions between agents) but in contrast to encode it en-
codes collected conflicts intoH(ξ).

The conflict resolution in the standard CBS implemented
as high-level branching is here represented by refinement of
H(ξ) with disjunction (line 20). The presented SMT-CBS
can eventually build the same formula as MDD-SAT but this
is done lazily in SMT-CBS.
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Algorithm 3: SMT-CBS algorithm for MAPF solving
1 SMT-CBS (Σ = (G = (V,E), A, α0, α+))
2 conflicts ← ∅
3 paths ← {path∗(ai) a shortest path from α0(ai) to

α+(ai)|i = 1, 2, ..., k}
4 ξ ←

∑k
i=1 ξ(paths(ai))

5 while TRUE do
6 (paths, conflicts)←

SMT-CBS-Fixed(conflicts, ξ,Σ)
7 if paths 6= UNSAT then
8 return paths

9 ξ ← ξ + 1

10 SMT-CBS-Fixed(conflicts, ξ,Σ)
11 H(ξ)← encode-Basic(conflicts , ξ,Σ)
12 while TRUE do
13 assignment ← consult-SAT-Solver(H(ξ))
14 if assignment 6= UNSAT then
15 paths ← extract-Solution(assignment)
16 collisions ← validate(paths)
17 if collisions = ∅ then
18 return (paths, conflicts)

19 for each (ai, aj , v, t) ∈ collisions do
20 H(ξ)← H(ξ) ∪ {¬X t

v(ai) ∨ ¬X t
v(aj)}

21 conflicts ←
conflicts ∪ {[(ai, v, t), (aj , v, t)]}

22 return (UNSAT,conflicts)

In the line with Observations 1 and 2 such approach may
save resources as a solution may be found or its existence can
be ruled out prior to adding all constraints.

4 Experiments
We performed experiments with the new SMT-CBS algo-
rithm on standard benchmarks [Boyarski et al., 2015; Sharon
et al., 2013]. Representative part of results is presented.

4.1 Benchmarks and Setup
We implemented SMT-CBS in C++ on top of the Glucose 4
SAT solver [Audemard and Simon, 2009] that ranks among
the best SAT solvers according to recent SAT solver competi-
tions [Balyo et al., 2017]. Whenever possible the SAT solver
is consulted in the incremental mode. The standard CBS has
been re-implemented in C++ from scratch since the original
implementation written in Java does support only grids but
not general graphs [Sharon et al., 2015] that we need in our
tests. We also compared SMT-CBS to one of the most recent
C++ versions of ICBS [Boyarski et al., 2015] that implements
rectangle reasoning [Li et al., 2019]. And finally we took ex-
isting implementation of MDD-SAT also written in C++.

In CBS we implemented preference of resolving cardinal
conflicts [Boyarski et al., 2015]. Without this heuristic, CBS
exhibited poor performance. In SMT-CBS we initially tried
to resolve against single cardinal conflict too but eventually it
turned out to be more efficient to resolve against all discov-
ered conflicts (the presented pseudo-code shows this variant).

 

Figure 2: Examples of grid, star, random graph, and clique.

All experiments were run on a Ryzen 7 CPU 3.0 Ghz under
Kubuntu linux 16 with 16 GB RAM.2.

We divided the experimental evaluation into two categories
of tests. The first part of experimental evaluation has been
done on diverse instances consisting of small graphs: 4-
connected open grid of size 8× 8, random graphs containing
20% of random edges, star graphs, and cliques (see Figure 2).
Cliques, random graphs, and stars consisted of 16 vertices.

The initial and goal configurations of agents have been
generated randomly in all tests.

The second part of experimental evaluation took place on
large 4-connected maps taken from Dragon Age [Sharon et
al., 2015; Sturtevant, 2012]. In contrast to small instances,
these were only sparsely populated with agents. Initial and
goal configuration were generated at random again.

We varied the number of agents in MAPF instances to ob-
tain instances of various difficulties. For each number of
agents we generated 10 random instances.

The timeout was set to 1000 seconds. Presented results
were obtained from instances finished under this timeout.

4.2 Comparison on Small Graphs
Tests on small graphs were focused on the runtime compar-
ison. Results are shown Figure 3 - sorted runtimes are pre-
sented, hence easy instances are to the left while hard in-
stances are to the right.

CBS performs well in easy instances but its performance
degrades quickly. Both MDD-SAT and SMT-CBS are faster
for instances containing more agents. For hardest instances
solvable under the timeout (the hardest 8 × 8 instance con-
tains 20 agents) the performance of MDD-SAT and SMT-
CBS is roughly the same. The most interesting situation can
be observed in the middle with instances of medium diffi-
culty; here SMT-CBS dominates over MDD-SAT by factor
of 2 to 10.

These observations are in the line with our hypotheses.
When agents interacts too much, SMT-CBS produces the
same formula as MDD-SAT does, that is why we see sim-
ilar performance for hardest instances. With less interacting
agents SMT-CBS does not need to deal with all potential con-
flicts and is faster than MDD-SAT.

4.3 Evaluation on Large Maps
The second category of tests was focused on the performance
of CBS, MDD-SAT and SMT-CBS on large maps. In the
three structurally different maps up to 50 agents were placed
randomly. Again we had 10 random instances per each num-
ber of agents.

2To enable reproducibility of presented results we pro-
vide the complete source code and experimental data:
http://users.fit.cvut.cz/∼surynpav/research/ijcai2019
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Figure 3: Runtime comparison of CBS, MDD-SAT and SMT-CBS
on various small graphs.

 

 

0,01

0,1

1

10

100

1000

0 100 200 300

R
u

n
ti

m
e

 (
se

co
n

d
s)

 

Instance 

Brc202d| MAPF 

0 100 200 300 400
Instance 

Runtime Den520d 

0 100 200 300
Instance 

Runtime Ost003d 

CBS
MDD-SAT
SMT-CBS

Figure 4: Runtime comparison of CBS, MDD-SAT and SMT-CBS
on large maps.

Sorted runtimes are shown in Figure 4. There is no signif-
icant difference between CBS and SMT-CBS in easier cases
but MDD-SAT lags behind. The situation changes after going
into the medium difficulty region where runtimes of CBS go
quickly up while SMT-CBS maintains significant advantage
over MDD-SAT (factor 2 to 5). The performance of SMT-
CBS and MDD-SAT eventually meets in the hard region.

In addition to runtime comparison, we compared the num-
ber of clauses generated by MDD-SAT and SMT-CBS. This
comparison is focused on verifying if SMT-CBS terminates
prior to adding all possible constraints. Sorted numbers of
clauses are shown in Figure 5 from which we can clearly see
that SMT-CBS generates order of magnitudes fewer clauses
than MDD-SAT. This is directly reflected in smaller memory
consumption by SMT-CBS.
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Figure 5: Clauses generated by MDD-SAT and SMT-CBS.
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4.4 SMT-CBS and Recent Progress in ICBS

Comparing our implementaiton of SMT-CBS with the recent
version of ICBS featuring various heuristics such as rectan-
gular reasoning indicated that SMT-CBS has a significant ad-
vantage on small grids3 (sorted runtimes presented in Figure
6). As instances get harder, runtime of ICBS goes quickly
up reaching the timeout of 1000 seconds earlier than SMT-
CBS. In large maps, SMT-CBS and ICBS are closer to each
other however SMT-CBS was still faster for a larger set of
instances.

In this experiment we used a version of MAPF (denoted
MAPF*) where agents can enter vertices being simultane-
ously vacated by other agents. This induced necessity to in-
troduce edge conflicts in SMT-CBS.

The important observation is that SMT-CBS and ICBS dif-
fer on individual instances greatly. It often happens that an
instance easy for ICBS is hard for SMT-CBS and vice versa.

5 Conclusion
We suggested a new MAPF solving method called SMT-
CBS that combines advantages of MDD-SAT - fast solving in
highly constrained cases, and advantages of CBS - fast solv-
ing in large sparse environments.

The new algorithm outperforms CBS and ICBS and im-
proves the performance of MDD-SAT in terms of the size of
generated formulae as well as in runtime. Experiments con-
firmed our hypotheses that SMT-CBS is able to produce so-
lution well before all constraints are added to the encoding
which altogether leads to faster solving.

The performance gap between MDD-SAT and SMT-CBS
is not as big as the gap in the number of generated clauses.
The explanation of this is that SMT-CBS needs to call the
SAT solver more times than MDD-SAT does which repre-
sents an extra overhead.

For the future work we plan to further generalize SMT-
CBS approach; geometric agents in a continuous environment
represent one promising direction.
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