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Abstract
Compressed Path Databases (CPDs) are a lead-
ing technique for optimal pathfinding in graphs
with static edge costs. In this work we investigate
CPDs as admissible heuristic functions and we ap-
ply them in two distinct settings: problems where
the graph is subject to dynamically changing costs,
and anytime settings where deliberation time is lim-
ited. Conventional heuristics derive cost-to-go es-
timates by reasoning about a tentative and usually
infeasible path, from the current node to the target.
CPD-based heuristics derive cost-to-go estimates
by computing a concrete and usually feasible path.
We exploit such paths to bound the optimal solu-
tion, not just from below but also from above. We
demonstrate the benefit of this approach in a range
of experiments on standard gridmaps and in com-
parison to Landmarks, a popular alternative also de-
veloped for searching in explicit state-spaces.

1 Introduction
There has been massive progress in quickly computing short-
est paths for graphs with static edge-costs. Modern algo-
rithms such as Contraction Hierarchies [Geisberger et al.,
2008], Hub Labels [Abraham et al., 2012] and Compressed
Path Databases [Botea, 2011; Botea and Harabor, 2013] use a
combination of auxiliary data structures and fast query solv-
ing to improve the performance of reference algorithms such
as Dijkstra search by several orders of magnitude. When edge
costs are dynamic however fast path planning algorithms no
longer guarantee optimality, and may fail altogether, due to
invalid auxiliary data. When this happens the auxiliary data
must be repaired or recomputed entirely from scratch. Prob-
lems with dynamic edge-costs are therefore more challenging
than the static-cost case, and they appear in a number of im-
portant settings; e.g.:

• Routing in road networks, where travel times are ad-
justed due to congestion, construction and road clo-
sures [Delling and Wagner, 2007];

• Personalised routing, where edges have agent-dependent
costs [Delling et al., 2011; Dibbelt et al., 2014; Funke
and Storandt, 2015].

• Computer video games, where player interaction creates
changes to the environment [Kring et al., 2010].

In this work we consider how to solve dynamic-cost
path planning problems using Compressed Path Databases
(CPDs): a preprocessing-intensive technique that finds static
shortest paths without any state-space search. In dynamic-
cost settings CPD auxiliary data is invalidated and computed
paths are no longer optimal. However, CPDs can still be used
as heuristic functions to drive A* search and here they have
several unique advantages. For example, each time a node
is expanded we always have available a concrete and usu-
ally feasible plan to reach the target (i.e. the CPD path).
Moreover, the static and dynamic costs of each CPD path pro-
vide strong upper and lower bounds that help A* to find the
true optimal path sooner. Finally, when the upper and lower
bounds coincide, A* can be immediately terminated, often
well before it is necessary to expand the target.

We explore two possible applications of CPD heuristics.
The first is optimal grid search, where we report convincing
gains of up to several factors vs Landmarks [Goldberg and
Harrelson, 2005], a popular but conventional preprocessing-
based heuristic. We also consider CPD heuristics in Anytime
A* and Anytime Weighted A* [Hansen and Zhou, 2007], a
popular algorithm for settings where deliberation time is lim-
ited. Here we demonstrate even larger benefits.

2 Problem Setting
We study path planning problems in weighted graphs with dy-
namically changing edge costs. For input we require a graph
G = (N,E) with nodes N and edges E ⊆ N ×N . Associ-
ated with the graph is a non-negative function w : N ×N →
R+, where w(m,n) is the weight of edge (m,n) ∈ E.

Each instance of the path planning problem is defined by a
start node s and a target node t. Our task is to find a path inG
from s to t where a path P is defined as a sequence of edges
P = [(s = n1, n2), (n2, n3), . . . , (nk−1, nk = t)]. The cost
of the path P given w, denoted c(P,w), is exactly:

c(P,w) =
k−1∑
i=1

w(ni, ni+1)

We say that P is optimal if c(P,w) ≤ c(P ′, w) among all
paths P ′ from s to t. We use [] to denote the empty sequence
and ++ to denote sequence concatenation.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1199



Context. In this work we focus on the path planning prob-
lem. That means we assume the start and target locations
are fixed for the duration of each path planning episode (i.e.
while solving a single instance) and we assume that any two
subsequent path planning episodes are unrelated. We refer
to the period of time, from the beginning of the first path
planning episode to the end of the last episode, as the on-
line phase. Consistent with typical road routing and computer
game settings, we also assume that the graph is known a priori
and that that it can be preprocessed during an offline phase.
That means any offline investments in time, such as might be
required to construct auxiliary data, do not need to be amor-
tised online (i.e., the two phases are entirely divorced). From
time to time during the online phase we allow edge costs to
change as a result of some unknown exogenous event. We
refer to such changes as perturbations and we assume they
occur only between distinct path planning episodes.1 The
cost increases are always positive with respect to the origi-
nal edge value, as observed at the time the graph is loaded.
A related but different problem to ours, also involving dy-
namically changing edge costs, appears in the context of in-
cremental search. Here planning, execution and sensing are
interleaved and the map can change while an agent executes
a path. Such settings are beyond our scope and we refer the
interested reader to [Koenig et al., 2004] for an overview.

3 Related Work
Perhaps most similar to our work is ALT [Goldberg and
Harrelson, 2005], a popular search technique that uses pre-
computed landmark heuristics to guide search in static and
dynamic-cost graphs. ALT stores a precomputed set of dis-
tance labels: for every node in the graph to and from a se-
lected set of landmark nodes. These distances are exploited
to derive admissible lower-bounds on the true distance be-
tween any pair of graph nodes. For example, let L be the set
of landmark nodes and a and b any pair of nodes in the graph.
Then, h(a, b) = argmax{ |d(a, l)− d(b, l)| } s.t. l ∈ L.

Several variations of this idea appear in the literature with
a summary and unifying treatment given in [Sturtevant et al.,
2009]. One attractive property of landmarks is that the esti-
mates are robust [Delling and Wagner, 2007] and remain ad-
missible as long as edge-costs never drop below their initial
(i.e. unperturbed) values. More landmarks produce more ac-
curate estimates but since each landmark requires 2×|N | dis-
tance labels the memory overhead grows quickly prohibitive.
A related issue is the growing online cost to evaluate many
landmarks and to find their maximum. For these reasons the
number of landmarks is usually limited to a small set.

A variety of other methods exists in the literature, origi-
nally developed for static routing in road networks, but which
can be adapted to the dynamic case. Contraction Hierarchies
(CH) [Geisberger et al., 2008] is a fast, optimal and broadly
representative example; another is Dynamic Highway Node
Routing [Schultes and Sanders, 2007]. In the event of edge-
cost changes CH auxiliary data can be repaired [Geisberger et
al., 2012] but the cost of this operation can dominate running
time, unless updates are small or infrequent.

1Equivalently, we consider only periodic (cf. real-time) updates.

W W W W,E E E E

W W W W,E E E E

W W E E

W W W s E E E

W,SW W,SW SW S SE E,SE E,SE

Figure 1: We show all optimal first move(s): from the indicated
(yellow) source node s, to all other nodes.

Another way to improve on reference algorithms in dy-
namic road networks is to compute a metric independent
auxiliary data structure and then customise this data with a
user-specified metric function. Two examples of this idea are
CCH [Dibbelt et al., 2014] and CRP [Delling et al., 2011].
The main drawback is the customisation overhead. Even
a highly engineered implementation running on 12 parallel
cores [Delling et al., 2017] requires ≈ 1 second per customi-
sation plus the cost of computing a shortest distance and ex-
tracting a corresponding shortest path; i.e. depending on the
problem, and the frequency of customisation calls, it could
well be faster to simply run the reference algorithm. Two re-
cent and related methods, PCH and PRP [Funke and Storandt,
2015], can significantly improve customisation performance
but they require that metrics be available in advance.

4 Compressed Path Databases
We now review some key aspects of CPDs. Our descriptions
are based on SRC [Strasser et al., 2015], a leading variant
in this algorithmic family. In simple words, a CPD is a data
structure that stores optimal moves: from any node s on a
graph towards any other node t. More formally, a “move”
from s towards t is the first edge of a path from s to t. An
optimal move is the first move of an optimal path.2

Building a CPD. It is an offline procedure that requires a
number of iterations, one for each node in the graph. Each
iteration is a complete Dijkstra search from a given source
node s. With only slight modification, the Dijkstra algorithm
produces a so-called first-move table T (s). In a first-move
table (see Figure 1 for an example) all graph nodes t are as-
signed a label that identifies which of the edges leaving s ap-
pear on a shortest path towards t. The first-move table is then
compressed, which concludes the iteration at hand. Being in-
dependent each Dijkstra search can be run in parallel, with a
speed-up linear in the number of available processors.

Compression. It reduces the size of a first-move table using
run-length encoding. For example, suppose the nodes in Fig-
ure 1 are ordered from left to right and from the top to the bot-
tom. A string of symbols such as W; W; W; (W, E) can then
be more compactly represented as 1W (i.e., a solid block of
Ws starting at position 1). Observe how we are free to choose
any symbol from a non-singleton list such as (W,E). Further-
more, obstacle nodes and the origin node s can be treated as

2We use the terms “move” and “edge” interchangeably.
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wildcards, i.e. compatible with any run [Salvetti et al., 2017].
The effectiveness of RLE compression depends strongly on
the the way nodes are ordered (i.e. we want to choose a good
ordering that produces few runs across all source nodes). The
problem is intractable in general but good heuristics exist. We
use the DFS ordering from [Strasser et al., 2015].

Path Extraction. It is an online procedure which depends
on CPDs to find optimal shortest paths. We denote as
CPD(s,t) a function which returns the first move from s on
an optimal shortest path to t. This function requires only a
simple binary search through the compressed string of sym-
bols for s. Once the first move is known we apply it directly
and call the function again, recursively and until the target is
reached.

5 Searching with CPD Heuristics
The principal idea we explore in this paper is the use of
CPD as a lower bound heuristic for path planning. Under
the perturbation scenario we consider, the cost of the short-
est path recorded in the CPD using original weights w is a
lower bound on the actual shortest path in the graph using new
weightsw′. Clearly sincew′(s, t) ≥ w(s, t) for all (s, t) ∈ E
we have that c(P,w′) ≥ c(P,w) for all paths P in G. Hence
the CPD defines an admissible heuristic for A* search.

Furthermore, since the path P recorded in the CPD can be
quickly recovered, we can calculate its cost c(P,w′) using
the new weights w′. This allows us to track an incumbent
solution which is the shortest such path we have found. Given
that we have an upper bound on the solution, and the f costs
of nodes represent a lower bound of the solution we can then
adjust the A* algorithm to return a bounded suboptimal path
whose cost is not more than ε times the shortest path, where
ε ≥ 1. This may allow us to explore much less of the graph
than if we demand to find an optimal path.

Algorithm 1 is a modification of A* as follows. For sim-
plicity, we store with each node n in the open list a (current)
shortest path p[n] from s to n; in practice this is stored by
back pointers. We keep track of a shortest incumbent path
I and its cost u (an upper bound on the cost of the shortest
possible path). The incumbent I is stored as a node m which
encodes the concatenation of the current path from s to m
with the CPD path from m to t.

When we select a node n from the open set (line 6), if it
is the target we have found an optimal path and we return it
(line 7). If ε times the f value is not less than u, then the
incumbent path I is no worse than factor ε from optimal, and
we return the incumbent (line 8) (function SP-CPD(I, t) re-
turns the path recorded by the CPD from I to t). Note that the
algorithm will always terminate early if it expands a node n,
where wCPD(n,t) indicates that h = h′. In this case, when
n was added to open it also became the incumbent I and set
u = f [n] = g[n] + h, and hence the test on line 8 succeeds.

Otherwise we investigate the neighbours m of n where the
path from s to m via n is shorter than any previously found
path. We call wCPD(m,t) which returns the cost h = c(P,w)
according tow of the path P recorded in the CPD fromm to t,
as well as the cost h′ = c(P,w′) according to w′. We update
the f cost ofm using the original cost h of this path (line 16).

Algorithm 1: CPD-Search(w,w′, s, t, ε): Variant
of Weighted A* with a CPD heuristic. Parameters s
and t indicate the start and target, w′ encodes actual
edge-costs whilew encodes weights used by the CPD.
This algorithm guarantees solutions are ε-optimal.

1 closed← ∅; open← {s}
2 for n ∈ N do g[n]←∞;
3 g[s]← 0; f [s]← 0; p[s]← []
4 u←∞; I ← s
5 while open 6= ∅ do
6 n← argmin{f [n′] | n′ ∈ open}
7 if n = t then return p[n] ;
8 if εf [n] ≥ u then return p[I] ++SP-CPD(I, t) ;
9 open← open− {n}

10 closed← closed ∪ {n}
11 for (n,m) ∈ E,m 6∈ closed do
12 if g[n] + w′(n,m) < g[m] then
13 p[m]← p[n] ++ [(n,m)]
14 g[m]← g[n] + w′(n,m)
15 〈h, h′〉 ← wCPD(m, t)
16 f [m]← g[m] + h
17 if u > g[m] + h′ then
18 u← g[m] + h′; I ← m

19 open← open ∪ {m}

20 return ⊥ I No solution

Algorithm 2: wCPD(s,t): Retrieving the original
(using w) and new (using w′) cost of the shortest path
(according to w) for an (s, t) pair.

1 if s = t then return (0,0);
2 if co[s] <∞ then return 〈co[s], cn[s]〉;
3 (s,m)← CPD(s, t)
4 〈h, h′〉 ← wCPD(m, t)
5 co[s]← h+ w(s,m)
6 cn[s]← h′ + w′(s,m)
7 return 〈co[s], cn[s]〉

We also check if the cost to m followed by P , using the cur-
rent weights w′ is shorter than any previous path (line 17). If
so we update the upper bound u and the incumbent I .

Algorithm 2 simply returns the cost of the CPD path from s
to t both using the original weightsw and the new weightsw′.
The path can always be reconstructed using the CPD itself.
The pseudo-code use co[s] and cn[s] to cache the cost of the
shortest path from s to t using original weightsw, and the cost
of the same path, not necessarily shortest for these weights,
using weights w′. We assume the cache is initialised to∞ for
each new CPD-Search call.

Note that because of caching of calls to wCPD, the CPD is
only called for any node m for current target t at most once.
Hence the CPD heuristic is amortised O(1) cost to compute.

Proposition 1. Let P be the path returned by
CPD-Search(s, t, w, w′, ε) then c(P,w′) ≤ εc(S,w′)
for all paths S in G from s to t.
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Proof. Since the CPD heuristic is admissible, we know that
f [n] is no greater than the cost of the shortest path from s to
t via n. When the node n in open with minimum f [n] is such
that εf [n] ≥ u, where u is the cost of the incumbent, then we
have that no path from s to t via n can cost less than u.

6 Anytime Search
When deliberation time is limited, an optimal algorithm such
as A* may not find a path in time, even with the help of so-
phisticated heuristics. Bounded suboptimal or bounded cost
algorithms are better suited for such settings but still depend
on the user to fix an acceptable quality threshold a priori. On
the one hand, if the user bound is too loose the quality of the
first solution may not be very good. On the other hand, if the
user bound is too tight, the algorithm may not finish in time.

Anytime algorithms are a class of related methods which
seek to find a first solution quickly and then continue search-
ing, improving the incumbent until time runs out. Cur-
rent state-of-the-art methods of this type include Anytime
Weighted A* (AWA*) [Hansen and Zhou, 2007] and Any-
time Repairing A* [Likhachev et al., 2008]; both of them can
be seen as variants of bounded-suboptimal search: i.e. they
seek in the available time a suboptimal solution with the tight-
est possible suboptimality bound. A different and also state-
of-the-art method is Anytime Non-parametric A*, sometimes
called Anytime Potential Search [Stern et al., 2014]. This
method can be seen as a variant of bounded-cost search: i.e
it seeks in the available time a suboptimal solution with cost
less than the smallest possible cost limit C.

We can modify Algorithm 1 to be anytime by simply out-
putting a new incumbent when discovered (line 18). We can
similarly extend an anytime search such as AWA* by sim-
ply using the CPD heuristic and making use of any incum-
bents it finds, we call this Anytime Weighted CPD-Search.
The CPD heuristic offers considerable advantages for any-
time search. We discuss several of them that hold for both
bounded-cost and bounded-suboptimal settings.

Fast feasible plans. When available time is small, any so-
lution at all can be acceptable. In this case anytime search
can stop at the first expanded node where the CPD path is
feasible. Often this node is the start node.

Strong lower-bounds. Bounded search algorithms typi-
cally proceed in best-first fashion and are guided by spe-
cialised heuristics that need to accurately estimate the cost-
to-go. As a general rule, stronger lower-bounds lead to more
efficient search. Because CPD heuristics are derived from
concrete paths, the cost estimates account for topological fea-
tures of the map such as obstacles.

Strong upper-bounds. In bounded search each new incum-
bent solution improves the upper-bound u and provides an
opportunity to prune the search: any node n with f(n) ≥ u
need never be expanded or generated since it cannot possibly
yield a better path. CPD heuristics provide upper and lower
bounds at each node, which means we can update u sooner.

Early termination. Also valuable for anytime algorithms.
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Figure 2: Weight update function for an edge at x hops (i.e., dis-
tance, in edges) from the “problem” node n.

7 Experiments
We evaluate CPD-Search in two online settings: opti-
mal search and anytime search. In both experiments we
use grid benchmarks drawn from Sturtevant’s well known
repository at http://movingai.com. Each benchmark com-
prises a set of grid maps and each map is associated with a
set of instances (start-target pairs). They are as follows:

DAO: Drawn from the game DRAGON AGE: ORIGINS, this
benchmark is representative of uniform-cost game maps.

WC3: Drawn from the game WARCRAFT III, this is bench-
mark is representative of weighted-cost game maps. Each
map features several types of terrains to which we assign
costs as follows: Ground 1.0, Trees 1.5, Shallow water 2.0,
Water 2.5. When traversing from one tile to another we
weight the base move cost (1 or

√
2 respectively) by the av-

erage terrain cost of the origin and destination tile.

MAZES: This classic benchmark consists of automatically
generated labyrinths of size 512 × 512. Each map is
uniform cost and features corridors of fixed width k ∈
{1, 2, 4, 8, 16, 32}. Mazes are especially challenging for
search algorithms using distance-based heuristics.

ROOMS: This synthetic benchmark features uniform-cost
maps with square rooms of size k × k, k ∈ {8, 16, 32, 64}
and which are randomly connected by entrances of width 1.
Room maps are designed to force the expansion of seemingly
promising nodes that cannot appear on any optimal path.

In our online experiments we allow grid map traversal
costs to change between different instances. We model these
changes using one of two perturbation policies. They are:

AREA: This policy is meant to simulate a traffic problem,
where some node is the location of the “problem” and edges
around it are penalised with decreasing multiple less as their
hop distance grows from the “problem”. For each query of
a path from a node s to a target node t that we perform in
the experiment, a node n on the CPD path P from s to t is
randomly chosen. We increase the weight of all edges in the
graph within radius r of node n by an amount that decays
as the distance from n increases. We use a radius r = 15

and a weight multiplication of w′(e) = w(e)× (3e−
x2

45 + 1)
where x is the number of hops from node n to edge e. This
Gaussian-like distribution is illustrated in Figure 2.
RANDOM: This policy involves a randomly selected subset

of edges E′ ⊆ E s.t. |E′|/|E| = 0.1 whose weights we
multiply by a factor of 3.
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CPD Landmarks [12]
Benchmark # Maps Seconds MB Seconds MB
DAO 156 47.29 25.86 0.03 1.79
WC3 36 721.13 364.36 0.24 9.01
Mazes 60 555.98 28.58 0.38 9.98
Rooms 40 878.64 178.26 0.42 11.28

Table 1: Preprocessing cost. We measure average time and space
costs for CPD and Landmark [12] heuristics.

We undertake empirical comparisons between CPD-
Search and ALT [Goldberg and Harrelson, 2005], a
pathfinding algorithm that combines of A* search with the
preprocessing-based heuristic known as Landmarks. We im-
plement ALT with different numbers of landmark nodes, up
to diminishing returns: 6, 12 and 18. Our test machine is a i7-
8700 machine with 16GB memory. All codes are in C++ and
available from https://bitbucket.org/koldar/astar-early-stop/.

7.1 Experiment 1: (Offline) Preprocessing
In Table 1 we give the time and space overheads needed
to compute and store auxiliary data for CPD and Landmark
heuristics (the latter with 12 nodes; results for 6 and 18 nodes
are similar). Clearly CPD costs are substantially larger than
landmarks but certainly not prohibitive. We make two obser-
vations: (i) we can easily store CPDs in main memory which
is important for efficient online performance (we discuss per-
formance in the next sections); (ii) since we assume the map
is known a priori, the preprocessing overhead does not need
to be amortised online. We compute auxiliary data once and
we re-use it to speed up all subsequent queries.

7.2 Experiment 2: (Online) Optimal Grid Search
In this experiment we apply to each instance from every
benchmark the AREA perturbation policy. Once the graph is
perturbed, we solve the modified instance to optimality with
both CPD-Search and ALT. The graph is then reset.

We begin with Figure 3 which makes a detailed CPU-time
comparison on three selected maps from games and mazes.
Each curve is a cactus-plot that represents one algorithm with
times being independently sorted from smallest to largest;
i.e. we show the entire distribution of results and the x-
axis represents specific instance-quantiles. Notice from the
figure that when landmarks provide accurate distance esti-
mates, such as on the map hrt201n, the advantage of CPD-
Search is small. The Landmark heuristic is known to be
a one-dimensional estimator [Rayner et al., 2011]: i.e. each
landmark can be thought of as the origin of a one-dimensional
Euclidean space in which all other nodes are placed accord-
ing to their recorded distance from the origin. The maps
dustwallowkeys and maze512-1-4 are more compli-
cated environments where one-dimensional embeddings are
insufficient to provide accurate estimates between any pair of
states. In these cases we see a strong advantage for CPD-
Search. Table 2 gives a more comprehensive report with
summary statistics for CPU time and node expansions across
all benchmarks. We observe that CPD-Search strongly out-
performs ALT and often by several factors.

7.3 Experiment 3: (Online) Anytime Search
In time-constrained applications (e.g., computer video
games) even fast algorithms may still require too much time
to compute an optimal path. This motivates us to con-
sider CPD-Search as an anytime algorithm. We compare
its performance against Anytime Weighted A* with Land-
mark heuristics and we develop a related variant, Anytime
Weighted CPD-Search. Both weighted algorithms use the
suboptimality bound ε = 2, as in [Hansen and Zhou, 2007].
We test performance on the map hrt201n with RANDOM
perturbations. As we saw in the previous section, on this map
CPD heuristics have only a small benefit over Landmarks.
This concentrates the comparison on the anytime advantages
of CPD-Search, rather than on the advantages that come
from the CPD heuristic being more accurate.

In Figure 4 (left) we report normalised solution costs at
various time cutoffs. We observe strong improvements for
CPD-Search. For example, at 0.03ms AWA* with Land-
marks has almost no incumbent solutions while both CPD
methods have incumbents for at least 25% of instances. By
0.3ms AWA* with Landmarks has incumbents for <50% of
instances while CPD methods have incumbents for >75%.
More interesting is the comparison between anytime CPD-
Search and its use in AWA*. Clearly Anytime Weighted
CPD-Search is slightly better at generating good solutions
early. However by 1ms CPD-Search has a better median
value and is only slightly worse for max and mean. By 4ms
CPD-Search has proven optimality for all instances and is
finished. Neither AWA* variant reaches this point, even by
10ms. These results clearly shows that CPD-Search is a
competitive anytime algorithm, even without modification.

In Figure 4 (right) we report performance for optimal
CPD-Search and optimal A* with Landmarks [12]. No-
tice that median values are only 1ms and 1.5ms respectively;
i.e., the only anytime behaviour that is interesting is before
that. The plot also reinforces the benefit of CPD-Search
over Landmarks, this time with RANDOM cost perturbations.

8 Conclusions
Compressed Path Databases (CPDs) are a family of ultra-fast
pathfinding algorithms which eliminate the need for runtime
search in static-cost maps. In this work we propose CPDs
as heuristic functions for dynamic settings where costs can
only increase. We describe a new algorithm, CPD-Search,
which is the combination CPD heuristics with A*. In a first
experiment we use standard grid benchmarks to show that
CPD-Search strongly outperforms ALT [Goldberg and Har-
relson, 2005], a well known and state-of-the-art method. In a
second experiment we consider CPD-Search as an anytime
algorithm. Here we find that it generates good solutions ear-
lier and optimal solutions faster than even dedicated methods
such as Anytime Weighted A* [Hansen and Zhou, 2007].

Our results are based on SRC [Strasser et al., 2015], a
leading CPD solver from the 2014 Grid-based Path Planning
Competition. Since 2014 several works extend SRC by im-
proving its compression strength [Salvetti et al., 2017], its
running time [Salvetti et al., 2018] or both [Chiari et al.,
2019]. These techniques can be easily combined with CPD-
Search to further improve current results.
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Figure 3: CPU time performance (y-axis, in ms) for selected grid maps. Each curve sorts the set of instances (x-axis) monotonically. We
compare CPD-Search against A* with the Landmark heuristic (in square brackets is the number of landmarks).

Benchmark # Instances Algorithm Time (ms) Expanded Nodes
Q1 median Q3 mean Q1 median Q3 mean

DAO 154,340

A* Landmarks [6] 1.28 4.24 13.14 9.55 2687 9447 30419 22549
A* Landmarks [12] 1.26 4.47 15.12 10.84 2095 7958 28922 21177
A* Landmarks [18] 1.31 4.67 16.63 12.09 1848 7197 27704 20528
CPD-Search 0.68 1.54 3.71 3.23 515 1668 4759 4048

WC3 55,460

A* Landmarks [6] 2.84 9.03 25.38 17.32 5310 18751 54492 37109
A* Landmarks [12] 2.02 5.77 15.39 13.39 2904 9544 26791 23044
A* Landmarks [18] 1.69 4.43 10.32 9.99 1924 6031 15166 14705
CPD-Search 1.22 2.03 3.92 3.11 335 1246 3533 2603

Mazes 61,960

A* Landmarks [6] 3.10 6.97 13.80 9.92 7047 16819 33421 23669
A* Landmarks [12] 3.21 7.07 14.04 10.34 5775 13239 26449 19276
A* Landmarks [18] 3.45 7.44 14.91 11.00 5253 11811 23829 17540
CPD-Search 1.56 3.27 7.97 6.47 1560 5048 13085 9965

Rooms 41,060

A* Landmarks [6] 3.01 8.73 21.59 15.93 5760 18810 48275 34270
A* Landmarks [12] 2.42 6.16 13.65 10.78 3610 10779 25390 20139
A* Landmarks [18] 2.25 5.36 11.16 7.87 2799 7955 17622 12197
CPD-Search 1.30 2.14 4.12 3.62 553 1660 4379 3716

Table 2: Optimal Search with AREA perturbations. We compare CPD Search with A* Landmarks on 4 grid benchmarks. We report results
for (CPU) Time and Expanded Nodes. Q1 and Q3 indicate the 1st and 3rd quartiles of each distribution.
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Figure 4: Anytime and Optimal Search with RANDOM perturbations. (Left) We show the distribution of best solution costs (normalised by
optimal cost) at different time cutoffs. A cross on each box-plot indicates average (normalised) solution cost (where defined). When the max
is infinite a circle represents the largest non-infinity normalised solution cost. (Right) We report (CPU) time distributions for optimal search
on hrt201n.
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