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Abstract
We study the following fundamental graph prob-
lem that models the important task of deanonymiz-
ing social networks. We are given a graph repre-
senting an eponymous social network and another
graph, representing an anonymous social network,
which has been produced by the original one after
removing some of its nodes and adding some noise
on the links. Our objective is to correctly associate
as many nodes of the anonymous network as possi-
ble to their corresponding node in the eponymous
network. We present two algorithms that attack
the problem by exploiting only the structure of the
two graphs. The first one exploits bipartite match-
ing computations and is relatively fast. The sec-
ond one is a local search heuristic which can use
the outcome of our first algorithm as an initial so-
lution and further improve it. We have applied our
algorithms on inputs that have been produced by
well-known random models for the generation of
social networks as well as on inputs that use real
social networks. Our algorithms can tolerate noise
at the level of up to 10%. Interestingly, our results
provide further evidence to which graph generation
models are most suitable for modeling social net-
works and distinguish them from unrealistic ones.

1 Introduction
Privacy is undoubtedly an invaluable resource in today’s com-
munication networks, and much of the activities of leading
institutions on the Internet focus on protecting the privacy of
users. However, this may facilitate illegal activities which
have to be uncovered. In this paper, we study the problem
of deanonymizing an anonymous social network. Our aim
is to use only information about the network structure and
deanonymize it by trying to match its structure to that of a
broader social network with known node identities.

More concretely, we study the following problem. We are
given an eponymous social network G and another anony-
mous social network H . H is a noisy subgraph of G in the
following sense. All nodes of H also appear in G (but there
may be nodes in G which do not appear in H), but the infor-
mation about the identities of the nodes of H and their cor-

respondence to nodes of G is not available. The set of edges
of H is an “approximation” of the edge set of G; for every
pair of nodes that exists in both G and H , the probability that
their edge relationship is different in the two graphs is low
(but typically non-zero). Ideally, we would like to compute
the correspondence of the nodes of H to the nodes of G that
correctly recovers the identity of the nodes of H . We would
like to do so using structural information, i.e., using only the
graph representation of the two social networks.

We assume that no mechanism to verify the identity of a
node ofH is available. Still, we would like to compute a node
correspondence that is as close to the underlying true one as
possible. This quest makes sense only if H is a noisy esti-
mate of G (with low noise levels so that the two networks are
not very different). When designing deanonymization algo-
rithms, we will pessimistically assume that no specific noise
parameters are available and we would like to identify the
nodes ofH by trying to match the two graphs in the best way.
Informally, the intermediate problem we will solve in order to
come up with a good deanonymization is to compute a node
correspondence that recovers the maximum number of edge
relationships between node pairs.

In particular, we present two algorithms. Our first one is
inspired by an idea that originates from a paper by Babai
et al. [1980] on the graph isomorphism problem of random
graphs and exploits bipartite matchings. The second one ex-
ploits local search in order to find the seemingly best possible
match between the two graphs by continuously making local
improvements on the node correspondence. Formal analysis
is used to bound the running time of the second algorithm.
Experimental results show that by combining the two algo-
rithms, we can tolerate noise at the level of up to 10% and
deanonymize correctly large fractions of the network nodes.

1.1 Related Work
Deanonymization of social networks became popular ten
years ago with the work of Narayanan and Shmatikov [2009].
In their paper, they relate privacy to anonymity and show that
the usual practice of network operators to share sensitive in-
formation about users with advertisers, application develop-
ers, and data-mining researchers after anonymizing data (e.g.,
removing names) can severely violate privacy. Privacy vio-
lation has been the focus of several papers. Notable among
them is the paper by Backstrom et al. [2007], who assume that
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an adversary is able to modify the network before its release.
Such approaches use new “sybil” nodes and usually require
the in advance identification of a small number of seed nodes.

Our approach here is fundamentally different. We assume
the existence of a known eponymous social network and an
anonymous social network, where criminal or illegal activity
takes place. Information about the structure of both networks
is available, and the objective is to match the two structures
in the best possible way so that the node identities of as many
nodes in the anonymous network are revealed. No other in-
formation about the networks (such as node attributes, some
initial set of already identified nodes, etc.) is available. Ide-
ally, one would be interested in a graph isomorphism solution.
Graph isomorphism received much attention recently through
the celebrated result of Babai [2016], who improved on pre-
vious work from the ’80s [Babai et al., 1983]. In the decision
version of the graph isomorphism problem, we are given two
graphs, and we would like to decide whether they are iso-
morphic or not. In its search version, we would also like to
recover the node correspondence between the two graphs in
case they are isomorphic. The problem has been proved to be
challenging only in theory; in practice, it is well-known to be
efficiently solvable; e.g., see [McKay and Piperno, 2014].

Unfortunately, the eponymous and the anonymous social
networks are never identical. Hence, an optimization version
of graph isomorphism has to be solved. Several objectives
have been considered in the related literature, such as max-
imizing the number of edge matches [Arvind et al., 2012]
or minimizing the Frobenius distance [Grohe et al., 2018].
Pedarsani and Grossglauser [2011] and Kazemi et al. [2015]
consider settings with additional available information, such
as seeds of identified nodes. These papers follow a theoretical
approach. Variations of these settings are considered by Qian
et al. [2017] and Jiang et al. [2017]. A survey on more practi-
cal aspects of “graph matching” from the pattern recognition
literature can be found in [Conte et al., 2004]. However, none
of these conceptually related papers considers the particular
setting and performance objective of the current paper.

2 Preliminaries
We begin with preliminary definitions. For a graph G, we de-
note by V (G) and E(G) the sets of nodes and edges, respec-
tively. Consider two graphs G and H with |V (G)| ≥ |V (H)|
and define a function F : V (G) → V (H) ∪ {0} which
associates each node of V (G) either to a distinct node of
V (H) or to the dummy node 0. For every node v of V (H),
there is exactly one node u of V (G) with F (u) = v; hence,
|V (G)| − |V (H)| nodes of V (G) are mapped to 0. We refer
to function F using the term pseudobijection.

We will formally define the deanonymization (or reidenti-
fication) problem in social networks. The input consists of
two graphs G and H . Graph G has n nodes which are identi-
fied as the positive integers in the set [n]. Graph H has been
obtained from G using three steps:

1. First, a permutation is applied to the nodes of G.
2. Second, some of the nodes of G are removed.
3. Third, some of the edges of G are replaced by new

edges.

Using the notation introduced in the previous paragraph, this
process essentially defines a pseudobijection F ∗ of the nodes
of G to the nodes of H and the dummy node 0. The objec-
tive of the reidentification problem is, given the two graphs
G and H , to recover the pseudobijection F ∗ as accurately as
possible. The performance of a deanonymization algorithm
that returns a pseudobijection F is measured as∑

u∈V (G)

II {F ∗(u) 6= 0 and F (u) = F ∗(u)},

where II {X} is equal to 1 if the condition X is true and is
equal to 0 otherwise.

We aim to design deanonymization algorithms of high per-
formance. We present two algorithms which are presented
in the next two sections. The first algorithm exploits and
extends an idea that originates from solutions for the graph
isomorphism problem in random graphs. In particular, let us
consider as input graph G a graph following the Gn,p model,
which produces graphs with n nodes in which each possible
edge between pairs of nodes exists with probability p (inde-
pendently from other edges). Further, assume that the graph
H is isomorphic to G, i.e., it has been obtained by just ap-
plying step 1 in the process described above. As Babai et al.
[1980] observed, the sorted sequence of degrees in the neigh-
borhood of a node of an Gn,1/2 Erdös-Renyi random graph
is unique with high probability. This property carries over
for different values of p; see the results by Bollobas [2001,
Theorem 3.17, page 74] and Czajka and Pandurangan [2008].
Hence, the neighbor degree sequence can be used as a node
identifier and the correct association of the nodes of graphsG
and H can be found efficiently, with high probability.

In our more general reidentification problem in which the
graph G is not necessarily an Erdös-Renyi graph and steps 2
and 3 will have typically be applied to graph G, neighbor de-
gree sequence is not a unique node identifier anymore. Still,
the main idea of our first algorithm is to compute a pseudobi-
jection between nodes of graphs G and H by computing the
best match of nodes between G and H based on the neighbor
degree sequence difference.

3 Deanonymization via a Matching
Computation

Our first algorithm, called Neighbor Degree Sequence Dif-
ference (NDSD for short), computes a pseudobijection from
V (G) to V (H) as follows. It first adds dummy isolated nodes
to graph H (these will be used for mapping nodes of V (G)
to 0). Then, it computes the quantity diff(u, v) denoting the
difference in the local structure between a node u in graph G
and either an original or a dummy node v in graph H . Now,
diff(u, v) is computed as follows. For a node u of G (re-
spectively, either an original or a dummy node v of H), let
degu (resp., degv) be the (|V (G)| − 1)-entry vector contain-
ing the degrees of the neighbors of node u in G (resp., of
node v in H) sorted in non-increasing order, with zeros in the
missing entries (if any). Then,

diff(u, v) =

|V (G)−1|∑
i=1

| degu(i)− degv(i)|. (1)
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Figure 1: An example with graphs G (left) and H (right).

We will refer to vector degu as the degree sequence of node
u. By definition, a dummy node has a degree sequence con-
sisting of zeros.

Then, our NDSD algorithm computes a minimum-weight
perfect matching in an edge-weighted complete bipartite
graph (here, we have used a standard implementation of the
Hungarian method which runs in O(n4) time) which has a
left node for each node u of graphG and a right node for each
original node ofH and for each dummy node that is added on
it. The weight of the edge corresponding to the pair (u, v) is
equal to diff(u, v). The perfect matching defines a pseu-
dobijection F : V (G) → V (H) ∪ {0} in the obvious way,
i.e., F (u) = 0 or F (u) = v if the perfect matching contains
an edge between node u and a dummy or non-dummy node
v, respectively. Essentially, the perfect matching returned by
the algorithm minimizes the quantity

∆(F ) =
∑

u∈V (G)

diff(u, F (u)).

Let us consider the two graphs of Figure 1 as an example.
As graph G has one more node than H , we add the dummy
node e to H before computing the degree sequences. The
degree sequences of all nodes are:

1 : 4 2 2 0 a : 3 2 0 0
2 : 4 3 0 0 b : 3 2 0 0
3 : 3 2 2 1 c : 2 2 1 0
4 : 4 3 0 0 d : 3 0 0 0
5 : 4 0 0 0 e : 0 0 0 0

Applying (1), we get the edge weights
a b c d e

1 3 3 3 5 8

2 2 2 4 4 7

3 3 3 3 5 8

4 2 2 4 4 7

5 3 3 5 1 4
The circles indicate a minimum-weight perfect matching.

The corresponding pseudobijection is then defined as F (1) =
a, F (2) = 0, F (3) = c, F (4) = b, and F (5) = d.

4 A Local Search Algorithm
In order to describe our local search algorithm, we will need
some additional notation. For two nodes u and v of G, we
define the binary quantity adjF (u, v) to be equal to 0 if some
(or both) of the nodes are mapped to 0 under F and as

adjF (u, v) = II {(u, v) ∈ E(G)⇔ (F (u), F (v)) ∈ E(H)} ,
otherwise. Intuitively, the binary quantity adjF (u, v) indi-
cates whether the pseudobijection F preserves the adjacency
information between nodes u and v in both G and H .

1 5 4

2 3

d c

a b

Figure 2: Another example with graphs G (left) and H .

For a pseudobijection F and a node u ∈ V (G), define the
quality of F for node u to be 0 if F (u) = 0 and as

qualF (u) =
∑

v∈V (G)\{u}

adjF (u, v)

otherwise. So, clearly, the quality of F for node u is non-
negative and at most n− 1.

Our local search algorithm (Algorithm 1) starts with a
pseudobijection F , which repeatedly tries to improve. In
each attempt for improvement (i.e., in each execution of the
for loop in lines 6–16), the algorithm examines every pair of
nodes u1 and u2 and considers swapping their images un-
der F ; this yields a neighboring pseudobijection F ′ of F .
If the total quality of nodes u1 and u2 strictly increases in
F ′ (compared to F , i.e., if qualF ′(u1) + qualF ′(u2) >
qualF (u1)+qualF (u2)), the algorithm keeps the new pseu-
dobijection. It terminates when, after examining all pairs of
nodes of V (G), no improved pseudobijection is found. On
termination, the updated pseudobijection is returned.

Assume that we run the local search algorithm with input
the graphs G and H of Figure 2 and let F be the initial pseu-
dobijection defined as F (1) = a, F (2) = c, F (3) = b,
F (4) = 0, F (5) = d. It can be easily seen that this is
a pseudobijection that could have been returned as the so-
lution of algorithm NDSD. Now, consider the pair of nodes
1 and 4 in graph G; their qualities under F are both 0. By
swapping the images of nodes 1 and 4 (let this be pseudo-
bijection F ′), we get qualities 0 (for 1) and 2 (for 4, since
adjF ′(4, 2) = adjF ′(4, 3) = 1). Hence, this neighbor-
ing pseudobijection becomes the current pseudobijection F .
Then, observe that the qualities of the nodes 1 and 5 are 0
and 1 (since adjF (5, 3) = 1), respectively. By swapping the
images of nodes 1 and 5 (let this be pseudobijection F ′ now),
we get improved qualities 3 (for 1) and 0 (for 5). After this
one, no other improvement is possible and the final pseudo-
bijection is F (1) = d, F (2) = c, F (3) = b, F (4) = a, and
F (5) = e.

The worst-case performance of our algorithm is given by
the next statement. We remark that the number of iterations
is essentially the number of executions of the while loop. The
actual running time is O(n5) as we have to take into account
the execution of the for loop and the recomputation of quali-
ties in line 8.
Theorem 1. On input two graphs G = (V (G), E(G)) and
H = (V (H), E(H)) with |V (H)| ≤ |V (G)| = n, the local
search algorithm terminates after O(n2) iterations.

Proof. We will show that the function

Φ(F ) =
∑

u∈V (G)

qualF (u)
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Algorithm 1 The local search algorithm

Input: graphs G and H with |V (G)| ≥ |V (H)| and initial
pseudobijection F : V (G)→ V (H) ∪ {0}

Output: updated pseudobijection F : V (G)→ V (H)∪{0}
1: compute quality qualF (u), ∀u ∈ G
2: change← 1
3: while change do
4: change← 0
5: F ′ ← F
6: for all u1, u2 ∈ G, with u1 6= u2 do
7: F ′(u1)← F (u2); F ′(u2)← F (u1)
8: compute qualities qualF ′(u1) and qualF ′(u2)
9: if qualF ′(u1) + qualF ′(u2) > qualF (u1) +

qualF (u2) then
10: change← 1
11: F (u1)← F ′(u1); F (u2)← F ′(u2)
12: update quality qualF (u), ∀u ∈ G
13: else
14: F ′(u1)← F (u1); F ′(u2)← F (u2)
15: end if
16: end for
17: end while
18: return F

defined over all possible pseudobijections of V (G) to V (H)
is a potential function for the local search algorithm. In par-
ticular, we will show that in every step in which the algorithm
performs an improvement step and decides to discard the cur-
rent pseudobijection F and replace it with a pseudobijection
F ′ in which F (u) and F (v) are swapped (i.e., F ′(u) = F (v)
and F ′(v) = F (u)) for some pair of nodes u, v ∈ V (G), the
difference Φ(F ′)−Φ(F ) has value at least 2. As Φ is always
non-negative and can never get a value higher than n(n− 1),
an upper bound of n(n−1)/2 on the number of iterations for
the local search algorithm will follow.

By the definition of Φ, we have

Φ(F ) =
∑

u∈V (G)

qualF (u) =
∑

u∈V (G)

∑
v∈V (G)\{u}

adjF (u, v)

=
∑

u∈V (G)\{u1,u2}

∑
v∈V (G)\{u,u1,u2}

adjF (u, v)

+ 2
∑

v∈V (G)\{u1}

adjF (u1, v)

+ 2
∑

v∈V (G)\{u2}

adjF (u2, v)− 2 adjF (u1, u2).

Using this equality, the definition of qualF , and observing
that F and F ′ differ only in the mapping of nodes u1 and u2,
we have that

Φ(F ′)− Φ(F )

= 2 qualF ′(u1) + 2 qualF ′(u2)− 2 adjF ′(u1, u2)

− 2 qualF (u1)− 2 qualF (u2) + 2 adjF (u1, u2)

= 2(qualF ′(u1) + qualF ′(u2)− qualF (u1)− qualF (u2))

The second equality follows since the mappings of u1 and
u2 are swapped in F and F ′ and, hence, adjF (u1, u2) =

adjF ′(u1, u2). By the definition of the algorithm, since it
considers the new pseudobijection F ′ instead of the current
one F , we have that the rightmost parenthesis has value at
least 1 and the potentials differ by at least 2, as desired.

Observe that, when graphs G and H are isomorphic, there
is a pseudobijection F (the isomorphism) which is an optimal
solution to both algorithm NDSD and the local search algo-
rithm. This is due to the fact that F yields diff(u, F (u)) = 0
for each u ∈ V (G) and, consequently, the perfect matching
that connects every node u of G to node F (u) in H has zero
weight. Furthermore, assuming that |V (G)| = |V (H)| = n,
we have that qualF (u) = n − 1 (since adj(u, v) = 1 for
every v ∈ V (G) \ {u}) and, hence, the potential Φ(F ) has
the highest possible value of n(n− 1).

On the other hand, the objectives used by the algorithms
seem different, and it should be definitely expected that there
are instances with different input graphs in which any pseu-
dobijection (globally) optimizing the potential Φ has subopti-
mal ∆ and vice-versa. So, we obtain our best results by com-
bining the two algorithms. Algorithm NDSD runs first and
computes a pseudobijection that is used as the initial pseudo-
bijection of the local search algorithm. This, of course, means
that the potential of the pseudobijection obtained by the local
search algorithm is at least as large as the initial one but this
does not exclude the existence of a pseudobijection with a sig-
nificantly higher potential that is missed because local search
is trapped in a local maximum.

5 Experimental Results
We have implemented in C both the NDSD and the local
search algorithm and have used them in all our experiments.1
NDSD runs either on isolation on input instances or is used to
compute the initial solution, which is then further improved
by the local search algorithm. This combination has been se-
lected among other variations with inferior performance (e.g.,
random selection of the initial solution, simpler local search
heuristics, etc.).

As input to our algorithms, we have used graphs that repre-
sent snapshots of (parts of) real social networks as well as ran-
dom graphs produced by well-known models for graph gen-
eration. The real-world instances include the ego-facebook
graph from the SNAP collection of social networks [Leskovec
and Krevl, 2014] as well as sixteen facebook graphs from
the Network Repository [Rossi and Ahmed, 2015]. Among
the several datasets in SNAP, ego-facebook is the only undi-
rected graph of moderate size (4K nodes and 88K edges). The
instances from the Network Repository have between 1.4K
and 3.5K nodes and between 33K and 155K edges (see de-
tailed data in Table 1; data are from [Rossi and Ahmed, 2015]
and [Leskovec and Krevl, 2014]).

In our experiments we have used instances of random
graphs, generated with four different models (using their im-
plementation in NetworkX [Hagberg et al., 2008]), namely

1Our computational results (including what we report here as
well as additional ones that we omit due to lack of space) have been
obtained using a desktop PC with an Intel i7-4790/3.6GHz processor
with 8GB of RAM, running a Slackware64 operating system. The
total computation time of all experiments has exceeded 200 hours.
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network #nodes #edges maximum
name degree
Amherst41 2235 90954 467
Bowdoin47 2252 84387 670
Colgate88 3482 155043 773
Hamilton46 2314 96394 602
Haverford76 1446 59589 375
Middlebury45 3075 124610 473
Oberlin44 2920 89912 478
Pepperdine86 3445 152007 674
Simmons81 1518 32988 300
Smith60 2970 97133 349
Swarthmore42 1659 61050 577
Trinity100 2613 111996 404
USFCS72 2682 65252 405
Vassar85 3068 119161 482
Wellesley22 2970 94899 746
Williams40 2790 112986 610
Ego-facebook 4039 88234 1045

Table 1: The real-world networks used in our experiments.

the Erdös-Rényi Gn,p model [Gilbert, 1959], the Watts-
Strogatz for generating small-world graphs [Watts and Stro-
gatz, 1998], the Barabási-Albert preferential attachment
model [Barabási and Albert, 1999], and the algorithm by
Holme and Kim [2002]. The last two models are well-known
(in addition to the Gn,p and the Watts-Strogatz models) for
building graphs with power-law degree distribution. As such,
they are considered more realistic ones in modeling social
networks. All the above models have been used to produce
graphs with 1K nodes and approximately 35K edges. These
graphs are slightly smaller than but of comparable density to
the real-world instances we have used.

The above graphs (either the real-world ones or the ones
generated by the four generators) form the eponymous social
network. Following the terminology in Section 2, we refer
to them as graph G. Then, graph H is produced as follows.
First, some nodes are removed from G, and some edges are
replaced by random ones; this gives graph H which repre-
sents the anonymous social network. Essentially, graph H is
a noisy estimate of graphG, in which any identification of the
nodes has been removed. This is implemented by changing
the node IDs by taking a random permutation of them.

In particular, we build H from G using two parameters,
δ and ε. The parameter δ indicates the fraction of nodes
that are removed from graph G together with their incident
edges. Next, we remove an ε fraction of the edges that sur-
vived and replace each of them by a random (new) edge in
the graph. In our experiments with real-world data from the
Network Repository, we have used different values between
0 and 20% for δ and between 0 and 10% for ε. In our ex-
periments with randomly generated social networks or with
ego-facebook, we have used a smaller range of values for δ,
between 0 and 10% (and, again, values between 0 and 10%
for ε).

Now, the particular way graph H is obtained by G implies
a hidden true pseudo-bijection, according to which each node

of H is mapped to a node of G. In our experiments, we
compare the pseudo-bijections computed by the algorithms
to this hidden true one and require from an optimal pseudo-
bijection to coincide with the latter. In all experiments, we
measure the correctly recovered identifications of the nodes
of graph H and express this quantity as a fraction. So, a
performance of 90% means that 90% of the nodes of H are
mapped to their correct node in graph G. As we will see, the
algorithms can achieve performance approaching 100% and
recover the pseudo-bijection exactly or almost exactly for rea-
sonable noise levels.

Our results from the execution of NDSD and the local
search algorithm are depicted in Figure 3. In the sixteen in-
stances from the Network Repository, NDSD recovers the op-
timal (or almost optimal) pseudo-bijection when there is no
noise in the edges and the noise level for nodes is at most
5%. Results are suboptimal for higher noise levels, but per-
formance drops gracefully (see Figures 3b and 3c). The local
search algorithm performs even better (see Figures 3e and 3f).
Recall that this algorithm uses the NDSD solution as an initial
point, which is then further improved. Our experiments indi-
cate that for noise levels of at most 10% for nodes and edges,
local search returns optimal solutions for most real networks,
except for Oberlin44, Pepperdine86, Smith60, and Welles-
ley22, which have suboptimal performance for edge and node
noise of 10%. Figure 3f is representative of the performance
of our local search algorithm on these networks while Fig-
ure 3e is representative of the remaining real social network
from the Network Repository. For node noise of 15% or 20%,
the performance of local search drops, but with a similar pat-
tern across all real networks from the Network Repository.
The results for ego-facebook are very similar; there seems to
be a small decrease in performance that was not observed in
the other real networks for small noise values (see Figures 3a
and 3d).

The performance of the algorithms on random graphs fol-
lows different patterns that depend on the generation model.
The Watt-Strogatz and Erdos-Renyi inputs seem to be on one
extreme. Besides the case of zero noise levels, the NDSD al-
gorithm has poor performance on Watts-Strogatz graphs. Not
surprisingly, the local search has poor performance too. The
behaviour of the algorithms on Erdos-Renyi graphs is more
interesting. NDSD still has poor performance in the presence
of noise. Somewhat surprisingly, the local search algorithm
is able to considerably improve the initial solution at least
for node noise up to 2% and edge noise of at most 4%. The
Barabasi-Albert and Holme-Kim inputs are on the other ex-
treme in the sense that the results are in sync with those in
the real networks, both for the NDSD and the local search
algorithm. These results are depicted in Figures 3g-3l.

To conclude, the message from our results is two-fold.
First, the combination of NDSD and the local search algo-
rithm yields very good reidentification in the presence of rea-
sonable levels of noise. Secondly, the random graph models
of Barabasi-Albert and Holme-Kim seem to be closer to all
real networks we considered, at least as far as the behaviour
of our algorithms is concerned. Our results for Watt-Strogatz
and Erdos-Renyi inputs support the firm belief that these
models are unsuitable for modeling real social networks.
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(a) egoFacebook - NDSD
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(b) Amherst41 - NDSD
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(c) Wellesley22 - NDSD
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(d) egoFacebook - Local search
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(e) Amherst41 - Local search
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(g) Erdos-Renyi - NDSD
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(h) Barabasi-Albert - NDSD
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(i) Holme-Kim - NDSD
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(j) Erdos-Renyi - Local search
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(k) Barabasi-Albert - Local search
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(l) Holme-Kim - Local search

Figure 3: Performance of the NDSD and the local search algorithm on real social networks and random graph models.
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