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Abstract
Many practical problems are too difficult to solve
optimally, motivating the need to found suboptimal
solutions, particularly those with bounds on the fi-
nal solution quality. Algorithms like Weighted A*,
A*-epsilon, Optimistic Search, EES, and DPS have
been developed to find suboptimal solutions with
solution quality that is within a constant bound of
the optimal solution. However, with the exception
of weighted A*, all of these algorithms require per-
forming node re-expansions during search. This
paper explores the properties of priority functions
that can find bounded suboptimal solution without
requiring node re-expansions. After general bounds
are developed, two new convex priority functions
are developed that can outperform weighted A*.

1 Introduction
If the cost of finding the optimal solution is too expensive, an
alternate is to relax the solution quality in order to reduce the
time required to find a solution. Such techniques are widely
used in applications that are sensitive to response time such as
embedded systems [Benton et al., 2007] or video games [Bu-
litko et al., 2011]. Research has focused on bounded subop-
timal search (BSS), which guarantees that the solution found
has cost no greater than w×C∗, where w is the bound on the
solution quality and C∗ is the optimal solution cost.

BSS algorithms have been relatively well-studied in the
literature. A classic example is weighted A* (WA*) [Pohl,
1970], which weights the heuristic in order to focus on states
that have lower heuristic values. WA* uses a single priority
function f(n) = g(n) +w ·h(n), where w is the suboptimal-
ity bound. Later versions of the algorithm [Pohl, 1973] used
a dynamic weight to try to improve performance.

In BSS there are two tasks that any algorithm must bal-
ance, (1) finding a solution and (2) proving that the solution
is within the suboptimality bound. A* does both of these with
a simple priority function, but more advanced algorithms split
these two tasks and work on them somewhat independently.

Algorithms in this category include A*ε [Pearl and Kim,
1982], Optimistic Search [Thayer and Ruml, 2008], EES
[Thayer and Ruml, 2011], and DPS [Gilon et al., 2016].
These algorithms can outperform WA* in some domains,

Algorithm 1 Generic Best-First Search
1: procedure BEST-FIRST SEARCH(start, goal)
2: Push(start, Open)
3: while Open not empty do
4: Remove best state s from Open
5: if s == goal then return success
6: end if
7: Move s to Closed
8: for each successor si of s do
9: if si on Open then

10: Update cost of si on Open if shorter
11: else if si not on Closed then
12: Add si to Open
13: end if
14: end for
15: end while
16: return failure
17: end procedure

however they have several shortcomings compared to WA*:
(1) they sometimes need to re-sort the states on their priority
queues, which can be an expensive operation; (2) they cannot
avoid reopening states, even if the heuristic is consistent; and
(3) they are far more difficult to implement than WA*, as they
use more complicated data structures and may require other
estimates or heuristics to be used in practice.

Looking at these drawbacks, this paper describes condi-
tions for the priority function for A* (or more generally best-
first search) that allow the algorithm to (1) maintain a single
priority queue, avoiding the need for re-sorting during search
and (2) avoid necessarily re-opening states when a shorter
path is found to a state on the closed list. From these con-
ditions new priority functions are derived which have these
properties that can also outperform WA*.

2 Background
Suboptimal search algorithms fall in two broad categories,
generic best-first search, whose pseudo code is Algorithm 1,
and focal search. Best-first-search algorithms maintain a sin-
gle priority queue and select the best state from that queue
to expand at each time step. Focal list algorithm run an A*
search, which is used to verify the optimality bound of the so-
lution found, in parallel with a greedy search, which attempts
to find the solution quickly. One exception to this is DPS
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Figure 1: Isolines for states with the same priority in (a) A* and (b)
Weighted A* with w = 3.

[Gilon et al., 2016], which maintains a single priority queue,
but must frequently re-sort the queue.

In generic best-first search, what makes an algorithm
unique is the definition of best. A priority function is typi-
cally used to define the best state to expand over all states. A*
uses a priority function of f(n) = g(n) + h(n) while WA*
uses f(n) = g(n)+w ·h(n). This paper analyzes the class of
priority functions in the form of f(n) = Φ(h(n), g(n)) that
can avoid re-expansions during search.

2.1 Assumptions and Notation
A heuristic search problem is defined by a n-tuple
{G, start, goal, h,B}. The state space, G, is a finite directed
graph whose vertices are states and whose edges are pairs of
states. Each edge (u, v) ∈ G has a cost c(u, v) ≥ 0 and we
assume there is at most one edge between each pair of states.
A path in G is a finite sequence U = (U0, . . . , Un) of states
in G where (Ui, Ui+1) is an edge in G for 0 ≤ i < n. A path
U contains edge (u, v) iff for some i Ui = u and Ui+1 = v.

In BSS the currently explored path to a state does not nec-
essarily correspond to the shortest path. Thus, the g-cost of a
state is the cost of the current path from the start to that state.

Let d(u, v) be the shortest distance from state u to state v
in G, i.e., the cost of the cheapest path from u to v. If there
is no path from u to v then d(u, v) = ∞. We let g∗(u) =
d(start, u). We use end(U) to refer to the state at the end
of a path. Given two states start and goal in G, a solution
path is a path U with u0 = start and end(U) = goal. The
shortest path has solution cost C∗ = d(start, goal).

Provided with a problem is the heuristic function h(n),
which estimates the distance between n and the goal. This
paper assumes that the heuristic is both admissible (h(n) ≤
d(n, goal)) and consistent (h(n) ≤ c(n,m)+h(m)). A prob-
lem also includes a bounding functionB(x) [Valenzano et al.,
2013] which provides the bound on the solution quality for a
given problem. For a problem instance with solution cost C∗,
the algorithm must return a solution C ≤ B(C∗). For WA*,
B(n) = w · n. This paper only studies w-suboptimal bound-
ing functions, as other bounding functions introduce compli-
cations that are beyond the scope of this paper.

A node re-opening occurs when a shorter path is found to
a state on closed and the state is removed from closed and
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Figure 2: Different functions produce isolines with different proper-
ties.

Domain no reopen reopen
DAO grid maps 7,550 47,305
15-puzzle 40,544 39,753
Heavy 15-puzzle 118,848 173,729

Table 1: Average state expansions for WA*, with w=2 on different
domains

placed back on open. A re-expansion occurs when the state is
later removed and expanded from open a second time. WA*
does not need to re-open or re-expand states to maintain its
bound [Likhachev et al., 2004].

3 Motivation
Reopenings have a significant impact in BSS [Sepetnitsky et
al., 2016]. This is illustrated in Table 1 which shows the cost
of re-opening nodes with WA* in several domains. Recent
work has shown that WA* with re-expansions may perform
O(N2) expansions in a graph with N states [Chen et al.,
2019]. Performing or not performing re-openings also has
impact on solution quality [Valenzano et al., 2014].

The main contribution of this paper is to develop a set of
conditions on the priority function used by a best-first search
that ensures that the best-first search will find a bounded sub-
optimal solution without re-expanding states. This paper will
fully develop two specific priority functions from a larger
class that have this property. But, first, we will motivate why
alternate priority functions are potentially interesting.

First, consider the priority function used in A* or WA*.
This is a function R2 → R, so a priority function is described
by a two-dimensional surface over the x-y plane, where the
height of the surface is the priority of a state. Sets of points
along this surface which have the same priority fall on iso-
lines of the surface. Consider plotting every state on the open
list as a point according to its g-cost and h-cost. States on
the same isoline will have the same priority, and a best-first
search will expand the state with lowest priority first. This is
illustrated in Figure 1, where part (a) represents A* and part
(b) represents WA* with a weight of 3. A* expands states ac-
cording to g(n) + h(n), so in part (a) all states with the same
g(n) + h(n) are on the same line. Because it is on a lower
isoline, the state represented by the solid circle, with priority
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Figure 3: An example problem with a bounded-suboptimal solution
that WA* cannot find.

5, will be expanded before the hollow states, which have pri-
ority 7.5. With WA* the steeper slope of the isolines allows
suboptimal solutions.

Because the isolines are straight lines, WA* allows the
same suboptimality along each portion of the path being ex-
plored. But, there are other possibilities. In Figure 2(a), we
show three different isolines for different priority functions.
Each of these priority functions will return w-suboptimal so-
lutions, but they place different requirements on the path that
is found. Figure 2(b) shows part of the curve in more detail.
The straight black line in the middle is WA* with w = 2. Be-
cause the WA* isoline is straight, at any point in the search
WA* can expand a state that increases the g-cost by 2 and de-
creases the h-cost by 1 while maintaining the same priority.

The blue line isoline on the bottom, however, is curved.
The slope when g is close to 0 is almost −1. Thus, if the iso-
lines of the priority function follow this shape, then best-first
search with this priority function will allow very little sub-
optimality at the beginning of any path that is explored. As
the g-cost increases, however, larger amounts of suboptimal-
ity will be allowed. The red line on the top has the opposite
impact. Early in the search a larger suboptimality is allowed,
but the closer the search gets to the goal the less suboptimality
is allowed.

The practical use of such priority functions is illustrated in
Figure 3. Suppose that WA* is searching from s to g with
w = 2. We can reason from the h-cost of the start that the
top path from s to n to g is within the 2x path cost bound.
But, WA* requires that the portion of the path from n to g
be at most 2x suboptimal, so all nodes on the bottom path
from n to g will always have lower priority than the goal will
along the top path. However, the priority function with the
blue isoline in Figure 2 allows less suboptimality on the first
half of the path and more suboptimality on the second half,
so it would be able to find the solution length 340 in this ex-
ample. Whether this is useful in practice will depend on the
properties of a domain and a heuristic.

4 Conditions for Avoiding Re-expansions
This section develops the conditions on any function Φ(x, y)
that can be used as a priority function for best-first search and
does not require node re-expansions to find a bounded cost so-
lution. First, let Φ(x, y) be a function R2 → R. Given a state
u in open reached by a path U , f(u) = Φ(h(u), g(u)). Φ de-
scribes a surface, but we are interested in the sets of states on
that surface which have the same priority. Such states fall on
isolines of the surface. For WA* we use Φ(x, y) = x+ 1

w · y.
It is worth noting that in a finite state space, a best-first

search with any function Φ is complete even if it does not
re-open states.

Lemma 1. In a finite state space, a best-first search with any
priority function Φ is complete (finds a solution if one exists)
even if it does not re-open states.

Proof. Assume that the optimal path from start to goal is
p0, p1, p2, ...pn, where p0 = start, pn = goal. If goal is not
expanded, then prior to each expansion there always exist at
least one pi such that 0 ≤ i ≤ n and pi is on Open while
none of pi+1, ...pn is closed. This implies that the search al-
ways makes progress on exploring the optimal path (even if
the costs used to explore the path are not optimal), and thus
will eventually expand the goal and complete. We prove this
by induction.

Base case: At the very beginning, p0, which is start is on
open, meeting the requirement for this lemma.

Inductive step: Assume at some point there exists some pi
which meets this condition. If the next state that is chosen for
expansion is not from pi, pi+1, ...pn, then pi is still valid after
the next expansion. Otherwise, suppose we choose to expand
pk which is one of pi, pi+1, ...pn. Then pk+1 will be placed
on open and meet the condition.

4.1 Properties of Φ that Avoid Re-expansions
The following properties are the sufficient conditions for Φ
to avoid re-expansions. We provide a brief intuition of how
these properties related to search, and we will provide the
proofs for sufficiency in next subsection.

Property 1. ∂Φ
∂x > 0, ∂Φ

∂y > 0.

This property means we assume that for two states with
same h-cost, we will alway prefer the one with lower g-cost;
similarly, for two states with same g-cost, we will alway pre-
fer the one with lower h-cost.

Property 2. ∂Φ
∂y ≤

∂Φ
∂x

This property requires that Φ grows faster when the h-cost
is increased than when the g-cost is increased by the same
amount. Namely, there is more weight on the h-cost term
than the g-cost term. In terms of isolines, this property is
equivalent to saying that the slope of any iosoline at any point
is no greater than −1. A slope greater than −1 corresponds
to WA* with a weight less than one, which is never beneficial
with a consistent heuristic. Practically speaking it means that
the hollow diamond state in Figure 1(a) can be expanded no
later than the hollow circle, because the hollow diamond state
has lower h-cost.

Property 3. Φ(0, w · t) = Φ(t, 0) = t

A state with h-cost of v and g-cost of 0 should have equiv-
alent priority to a state with g-cost of w · v, because both
of these can lead to a w-suboptimal path. The actual prior-
ity (value of Φ) at these points can be scaled by a constant,
but for simplicity we assume the priority (value of Φ of these
states is also t.

Property 4. ∂Φ
∂x + ∂Φ

∂y ≤ 2

This last property is related to the rate of change of the
isolines; this needs to be bounded (the value of 2 arises from
the constant t used in Property 3) in our construction.
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Figure 4: (a) An illustration of the Φ-inequality (b) Proof outline.

4.2 Proofs that Φ Avoid Re-expansions
The proof is done in a top-down manner. We begin by show-
ing a condition that is sufficient for a best-first search algo-
rithm to avoid re-expansions, and then work out the practical
properties required to meet this condition. We call the pri-
mary condition the Φ-inequality; it relies on property 3.
Definition 1. We define the Φ-inequality as Φ(h(p), g(p)) ≤
Φ(0, w(h(p) + g∗(p))) = Φ(h(p) + g∗(p), 0)

The Φ-inequality is illustrated in Figure 4(a). The black
dot is the point (h(p), g(p)) and the blue dot is the point
(h(p), g∗(p)). The blue dot represents where p would be
plotted if we found the optimal path to p instead of the cur-
rent path with cost g(p). The minimum path cost through
p to the goal is h(p) + g∗(p), and if the solution is w-
suboptimal, the longest w-optimal solution will have cost
w(h(p)+g∗(p)). The Φ-inequality says that (h(p), g(p)) will
not be above the isoline that passes through (h(p) + g∗(p), 0)
and (0, w(h(p) + g∗(p))).

For WA*, the Φ-inequality says that when p is expanded
the portion of the path found so far is at most w-suboptimal.
More generally, it is saying that the path so far is within the
local bound allowed by the priority function.
Theorem 2. Assume a best-first search is using a priority
function Φ with a suboptimality bound of w that meets prop-
erty 1. If, for every state p that is expanded the first time, the
Φ-inequality holds, then it is not necessary to re-open (and
thus re-expand) states during search to return aw-suboptimal
solution.
Proof. Lemma 1 shows that any best-first search algo-
rithm that does not perform re-openings is complete. Thus,
we know we will expand the goal state at some cost
g(goal). If for any p expanded it holds that Φ(h(p), g(p)) ≤
Φ(0, w(h(p) + g∗(p))), then it also holds for the path discov-
ered to the goal. In this case Φ(0, g(goal)) ≤ Φ(0, wC∗).
Because Φ is monotonically increasing with y due to Prop-
erty 1, this means that g(goal) ≤ wC∗ and the solution is
w-suboptimal.

Thus, it is sufficient to show that the Φ-inequality holds for
every state expanded with a given priority function. The high-
level approach to proving this is illustrated in Figure 4(b).
Suppose we plan to expand a state q where p is the last state
expanded on the optimal path to q. As before, the point in
blue below p represents the optimal path to p and the curved
line at (a) is the isoline for that point. We know by the Φ-
inequality that p is under the isoline that begins at point (a).

Thus, if the search moves optimally from p to q it should still
hold that q (and all states on the optimal path from p to q)
is under the h(q) + g∗(q) isoline at point (b) on the h-axis
because the optimal path does not accumulate any additional
suboptimality. If this holds, then there will always be at least
one path (the remaining portion of the optimal path) where
it is possible to reach the goal under the optimality bound
without re-expanding a previously expanded state. While the
search may expand a less optimal path in practice, the ex-
plored path will still be guaranteed to be within the bound
allowed by Φ.

To show this holds, we can compare the change in Φ from
p to q to the change in Φ between (a) and (b). As long as
the change in Φ between p and q is less than the change in Φ
between (a) and (b) then the Φ inequality will hold when q is
expanded. To do this, we want to measure the rate of change
of Φ in a direction (a, b).

Lemma 3. Suppose that state q is a descendant of state p.
The coordinates of p on h-g plane are (h(p), g(p)) and the
coordinates of q are (h(q), g(p) + d(p, q)). For any state p1

on the optimal path from p to q, p1 must be in the rectangle
formed with opposite corners on p and q. (Two lower edges
of this rectangle are shown in red in Figure 4(b).)

Proof. This is a direct result of a consistent heuristic.
Given that the path from p to q stays inside a rectangle

around p and q, we need to know which point on the rectangle
has maximum priority.

Definition 2. We define r as the right most corner of the
rectangle described in Lemma 3. It can be computed that
xr = h(p) + d(p,q)+h(q)−h(p)

2 , yr = g(p) + d(p,q)+h(q)−h(p)
2 .

We now present a general condition that will allow us to
show that no state on the path between p and q has higher
priority than r.

Lemma 4. φ(x+at, y+bt) ≤ φ(x, y)+ct for any fixed point
(x, y) if φ is a function R2 → R satisfying a · ∂φ∂x +b · ∂φ∂y ≤ c.

Although we omit the proof of this property, note that this
is a general condition related to whether φ is Lipschitz.

Corollary 5. Φ(x− t, y + t) ≤ Φ(x, y).

Proof. −∂Φ
∂x + ∂Φ

∂y ≤ 0 by property 2. Thus, Φ satisfies the
requirement of Lemma 4 for a = −1, b = 1, c = 0 and so
Φ(x− t, y + t) ≤ Φ(x, y).

This tells us that in Figure 4(b), Φ(xr, yr) ≥
Φ(h(q), g(q)).

Lemma 6. For all states s on all optimal paths between p and
q, Φ(h(s), g(p) + d(p, s)) ≤ Φ(xr, yr) where r is defined in
Definition 2.

Proof. First of all, we know s must be in the rectangle de-
scribed in Lemma 3. Then, by Property 1, the maximum
value of Φ on this rectangle must be a point on the segment
qr. By Corollary 5, as we move from q to r, the Φ-value
is monotonically non-decreasing. Therefore, Φ(xr, yr) has
maximum value in the rectangle defined by p and q.

Corollary 7. Φ(x+ t, y + t) ≤ Φ(x, y) + 2t.
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Proof. ∂Φ
∂x + ∂Φ

∂y ≤ 2 by property 4. Thus, Φ satisfies the
requirement of Lemma 4 for a = 1, b = 1, c = 2 and so
Φ(x+ t, y + t) ≤ Φ(x, y) + 2t.

This bounds the change in Φ between p and r.
Given these results, we can now show that the Φ-inequality

holds as long as Φ meets properties 1 – 4.
Theorem 8. Assume a best-first search is using a prior-
ity function Φ which meets properties 1 – 4. Then, the
Φ-inequality holds for all expansions: Φ(h(n), g(n)) ≤
Φ(h(n) + g∗(n), 0)

Proof. Proof by induction.
Base case: Initially start is chosen for expansion, so

Φ(h(start), g(start)) = Φ(h(start), 0) = Φ(h(start) +
g∗(start), 0), and the claim holds.

Inductive step: Assume the inequality holds for all ex-
panded paths. And a state q is the next state from Open is
chosen for expansion. We need to prove that Φ(h(q), g(q)) ≤
Φ(h(q) + g∗(q), 0)).

Let the last node that is closed on optimal path from start
to q be p. The hypothesis guarantees that:

Φ(h(p), g(p)) ≤ Φ(h(p) + g∗(p), 0) = h(p) + g∗(p) (1)
Since p is closed, there must exist a direct successor of p,

px on open, which is on the optimal path from p to q. Ex-
amining the rectangle formed around p and q, the absolute
distance along each axis from p to the corner state r with
maximum priority is:

t =
d(p, q) + h(q)− h(p)

2
(2)

So, according to Lemma 6, we get:

Φ(h(px), g(px)) = Φ(h(px), g(p) + d(p, px))

≤ Φ(h(p) + t, g(p) + t) (3)

According to Corollary 7,
Φ(h(p) + t, g(p) + t)

≤ Φ(h(p), g(p)) + 2t

= Φ(h(p), g(p)) + d(p, q) + h(q)− h(p)

(4)

By combining inequalities (1), (3) and (4) we can get
Φ(h(px), g(px))

≤ h(p) + g∗(p) + d(p, q) + h(q)− h(p)

= h(q) + g∗(p) + d(p, q)

= h(q) + g∗(q)

= Φ(h(q) + g∗(q), 0)

(5)

In practice, we chose to expand q instead of px, so the pri-
ority of q will be no more than that of px. Thus:

Φ(h(q), g(q)) ≤ Φ(h(px), g(px))

≤ Φ(h(q) + g∗(q), 0)

This proves that the Φ-inequality holds for each expansion.

Theorem 9. If there is a path from start to goal, then a BFS
using any Φ that meets properties 1 – 4, is guaranteed to find
a solution within the given bound without re-opening states.
Proof. This is a direct result of Theorem 2 and 8.

Bound ΦXDP WA* ΦXUP

1.11 11,577 11,825 12,152
1.25 10,414 10,666 11,041
1.50 9,185 9,254 9,418
1.60 8,885 8,772 8,811
1.75 8,279 8,210 8,372
1.90 7,787 7,779 8,036
2.00 7,843 7,550 7,499
3.00 6,675 6,225 5,862

Table 2: Average state expansions for WA*, XDP and XUP on DAO

SC1 Random
Bound Total Expansions Total Expansions

ΦXDP WA* ΦXUP ΦXDP WA* ΦXUP
1.25 30,159 31,369 32,658 28,004 30,659 33,509
1.5 23,767 24,060 24,715 22,863 26,015 30,694
2.0 18,611 17,940 17,492 18,002 19,758 23,813
3.0 15,013 13,796 12,989 14,458 14,469 15,184

10.0 11,781 10,998 10,663 11,356 10,895 10,600

Table 3: Average state expansions for WA*, XDP and XUP on Grid
Maps

5 Function Selection
Given now that we understand the properties required for Φ
we can develop several different functions that meet these
properties.

5.1 Linear Function
The first function we develop is a linear function, which is
equivalent to WA*. In this case Φ(x, y) = 1

w · y + x. While
WA* typically puts a weight of w on the heuristic, it is equiv-
alent to put a weight of 1/w on the g-cost.

We can, for instance, verify that property 4 holds for w ≥
1:

∂Φ

∂x
+
∂Φ

∂y
=

1

w
+ 1 ≤ 2

In a similar manner, it can be shown that properties 1 – 3
also hold. Thus, as was known, WA* maintains a w-optimal
solution without re-expanding states.

5.2 Non-linear Priority Functions
We can now derive new priority functions that meet properties
Properties 1 – 4.

Convex Downward Parabola
Our first priority function that has isolines similar to the bot-
tom parabola shown in blue in Figure 2. A parabola is a func-
tion is of the form y = ax2 + bx + c, where a, b, c are to
be determined. Assume that parabola goes through the points
(0, wU) and (U, 0) and has slope −1 at (U, 0). The slope of
−1 at (U, 0) means that paths with low g-cost must be near-
optimal. This results in the following equation set:

c = wU

a · U2 + b · U + c = 0

2a · U + b = −1

(6)
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Bound 15 Puzzle Heavy 15-Puzzle Heavy Pancake
Total Expansions Time Total Expansions Time Total Expansions Time

XDP WA* XUP XDP WA* XUP XDP WA* XUP XDP WA* XUP XDP WA* XUP XDP WA* XUP
1.50 185,783 318,953 496,412 1.36 1.91 3.94 200,318 333,320 702,468 1.49 2.00 5.95 2,460,235 8,498,635 19,995,382 42.44 140.69 672.95
2.00 21,338 40,544 71,014 0.12 0.20 0.44 82,295 114,848 161,126 0.60 0.69 1.31 93,355 973,556 7,072,634 1.49 15.49 181.63
3.00 7,550 11,600 16,934 0.09 0.11 0.21 48,203 57,778 82,916 0.56 0.57 1.12 1,123 22,732 404,622 0.03 0.49 10.66
10.00 3,586 3,758 3,859 0.03 0.03 0.03 43,141 44,207 34,066 0.56 0.49 0.45 20 33 318 0.00 0.00 0.00

Table 4: Average performance for WA*, ΦXDP (XDP) and ΦXUP (XUP) on Exponential Domains

Solving for a, b and c, the equation of the parabola is

y =
w − 1

U
· x2 + (1− 2w) · x+ wU (7)

We can rewrite equation (7) as an equation of U :

wU2 + (x− 2wx− y)U + wx2 − x2 = 0 (8)

The Φ function we are looking for, is proportion to the
larger root of equation (8):

ΦXDP (x, y) =
1

2w
[y + (2w − 1)x+

√
(y − x)2 + 4wyx]

(9)
A check of properties 1 – 4 shows that they all hold for this

priority function. We call this priority function the convex
downward parabola (XDP) priority function .

Convex Upward Parabola
Our second function corresponds to the top parabola shown
in red in Figure 2. This parabola goes through points (0, wU)
and (U, 0), has slope −1 at point (0, wU). Because the slope
is −1 near (0, wU) it means that near the goal the path found
must be near-optimal.

c = wU

a · U2 + b · U + c = 0

b = −1

(10)

Following the same steps as before we get the priority func-
tion:

ΦXUP (x, y) =
1

2w
(y + x+

√
(y + x)2 + 4w(w − 1)x2)

(11)
This function is a convex upward parabola (XUP) and also

meets properties 1 – 4.

6 Experimental Results
This paper characterizes priority functions that return w-
suboptimal solutions without requiring node re-openings dur-
ing search. The experimental results compare priority func-
tions within this class to see if the new priority functions out-
perform WA*. Several standard domains are used for testing.

6.1 Experimental Settings
On grid maps we tested on 15,928 problem instances from
the Dragon Age: Origins (DAO) map set, 6,444 problem in-
stances from the StarCraft 1 (SC1) map set, and on 35,360
problem instances on maps with 40% random obstacles
[Sturtevant, 2012]. The instances for these maps contain 10

problems for each length; we randomly select 10% of each of
these problems for testing.

We also tested on the 15-puzzle with the unit edge cost
setting and the heavy tile setting, where the cost of moving
tile X is X . Manhattan Distance (MD) is used as heuristic
for regular tiles, and the modified MD [Thayer and Ruml,
2011] is used for heavy tiles. The instance are the standard
100 Korf instance [Korf, 1985].

Finally, we followed the heavy variant of pancake puzzle
created by Gilon et al. [2016], where the cost of flipping a
prefix (V [1] · · ·V [i + 1]) is the max(V [1];V [i + 1]). The
heuristic we used is their HGAP heuristic. The problem set is
50 randomly generated 12-pancake instances.

We experiment with the various weights for WA*, and
best-first search with the convex downward parabola (ΦXDP )
and the convex upward parabola (ΦXUP ). As a general trend,
the difference in performance on grid maps was noticeable
but not notable. The most interesting trend is the phase tran-
sition between ΦXUP , WA*, and ΦXDP in Table 2 as the
weights increase. This same trend is seen in all experimen-
tal results. There is less than 5% difference in path quality
between the different priority functions, with fewer node ex-
pansions leading to lower solution quality.

On the other exponential domains in Table 4 we can see a
significant improvement with the right priority function. With
low weights on the 15-puzzle, Heavy 15-puzzle and Heavy
Pancake Puzzle, ΦXDP significantly outperforms WA* both
in node expansions and time with the same weight. With a
weight of 10, ΦXUP has better performance in the Heavy 15-
puzzle. See Chen et al. [2019] for further experiments.

If we examine focal list algorithms, they run an A* search
near the start to prove that the solution is within the bound,
while greedily searching for the goal. ΦXDP able to accom-
plish both of these in a single search, balancing a tight bound
around the start with a looser bound around the goal.

7 Conclusions and Future Work
This work generalized WA* to a family of algorithms that
can find w-suboptimal solutions while avoiding node re-
expansions. We also provide two new priority functions,
ΦXDP and ΦXUP . ΦXDP only requires a minor change to a
best-first search implementation, but offers a significant im-
provement over WA* in the exponential domains we tested.

This work just handles curves for w-suboptimal paths,
however there are other classes of suboptimality which are
not addressed, such as additive bounds [Valenzano et al.,
2013]. We have also developed w-suboptimal piece-wise
continuous curves which are not presented here. Future re-
search will continue develop this broader classes of bounds.
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