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Abstract
While computing resources have continued to
grow, methods for building and using large heuris-
tics have not seen significant advances in re-
cent years. We have observed that direction-
optimizing breadth-first search, developed for and
used broadly in the Graph 500 competition, can
also be applied for building heuristics. But, the al-
gorithm cannot run efficiently using external mem-
ory – when the heuristics being built are larger than
RAM. This paper shows how to modify direction-
optimizing breadth-first search to build external-
memory heuristics. We show that the new approach
is not effective in state spaces with low asymp-
totic branching factors, but in other domains we
are able to achieve up to a 3x reducing in runtime
when building an external-memory heuristic. The
approach is then used to build a 2.6TiB Rubik’s
Cube heuristic with 5.8 trillion entries, the largest
pattern database heuristic ever built.

1 Introduction
Breadth-first search is a simple and commonly-used algo-
rithm in many fields of Computer Science. Within Artificial
Intelligence, breadth-first searches (BFS) have been used for
verifying the properties of state spaces [Korf and Shultze,
2005; Korf and Felner, 2007] and, more commonly, for build-
ing heuristics [Culberson and Schaeffer, 1998]. For many do-
mains, a breadth-first search in an abstract state space can
be used as a heuristic in the full state space. Because large
heuristics generally have better performance [Korf et al.,
2001], one line of research has been on building larger heuris-
tics [Felner et al., 2007; Sturtevant and Rutherford, 2013;
Döbbelin et al., 2013], such as pattern databases (PDBs)
[Culberson and Schaeffer, 1998; Holte et al., 2004]. Re-
searchers have adapted specific BFS variants for use with ex-
ternal memory [Korf, 2008; Zhou and Hansen, 2011; Sturte-
vant and Rutherford, 2013] or domains with non-unit edge
costs [Hatem et al., 2011].

Outside of Artificial Intelligence, breadth-first searches are
also commonly used, for example in the Graph500 compe-
tition. Direction optimizing BFS (DOBFS) [Beamer et al.,
2012] is a popular idea used in this area [Ueno et al., 2016;

Buluç et al., 2017]. A typical BFS tests states with known
depth to see if their depth can be propagated to neighboring
states with unknown depth. DOBFS reverses this process by
testing states with unknown depth and computing their depth
if they have a neighbor (or predecessor in the case of a di-
rected graph) with known depth.

This paper extends DOBFS by developing a novel external-
memory variant that uses external memory resources (e.g.
hard disks) to extend the size of problems that can be solved
when using a single computer. When a problem being solved
is larger than fits into memory, alternate methods, such as de-
layed duplicate detection [Korf, 2004], must be used to ar-
range the computation so it can be performed efficiently – a
straightforward BFS is no longer possible because detecting
duplicates requires random access to disk, which is too slow.

We analyze the design choices available for external
memory algorithms and then develop direction-optimizing
external-memory breadth-first search (DEBFS). The key
challenge for DEBFS is how to randomly access the prede-
cessors of a state when states are found on disk instead of in
RAM. Our approach uses a changed list to load predecessors
from the last iteration into RAM for efficient processing.

We then experiment with DEBFS in several different do-
mains. Our results indicate that DEBFS is most effective in
state spaces that grow and shrink quickly, and we are able to
achieve up to a 3x speedup on the domains tested. This gain is
significant because all states are still visited by the BFS, just
more efficiently. We additionally show that in domains with
high locality it may be possible to achieve further speedups.
Finally, we use this technique to build the 2.6 TiB 6-edge 4-
corner Rubik’s Cube heuristic, which is, to our knowledge,
the largest heuristic built.

2 Background and Related Work
Pattern Databases (PDBs) are a common form of heuristic
that are built by abstracting the full state space of a prob-
lem and computing exact distances between states in the ab-
stract state space. Distances in the PDB are typically com-
puted using a BFS. The core operation in a BFS is to expand
a state and to mark the depth of the successors of the state.
When a PDB heuristic is typically built using a BFS, there
are two common assumptions. The first is that the full PDB
fits into memory. The second is that states in the PDB are
stored implicitly. That is, instead of using a general hash table
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Figure 1: Approaches to writing values in external memory search.

to map abstract states to their depth, a perfect hash function,
also called a ranking function [Myrvold and Ruskey, 2001], is
used to uniquely and compactly map states into memory. This
means that only the depth of a state needs to be stored, not
the explicit representation of a state. If the depths are stored
in an array, and the array is smaller than RAM, there are no
significant complications to a simple BFS. However, if the ar-
ray is larger than RAM, then the random access required to
write the depth of the successors of a given state will break
standard caching and virtual memory assumptions, causing
the approach to fail. A BFS must be re-structured in order to
efficiently load from and write data to disk during search.

External memory approaches to writing the successors of a
state to disk are shown in Figure 1. The primary array at the
top of each subfigure represents the array states in the PDB
which are on disk. The subset of marked states in this array
(green) represent states that are loaded in RAM. The blue cir-
cle represents the current state that is being expanded, and the
arrows represent the successors of that state and where they
belong on disk.

In structured duplicate detection [Zhou and Hansen, 2004],
the PDB array is dynamically loaded and unloaded from
memory in a way that ensures that all successors of state will
always be in memory when they are generated, so the depth
of the successors can be immediately written to disk. This
approach requires a state space with suitable structure, some-
thing not addressed in this paper.

In hash-based duplicate detection [Korf, 2004; 2008] a por-
tion of the PDB array on disk is loaded into RAM. Any suc-
cessors that cannot be written to the portion of the PDB in
RAM are temporarily written to files on disk. Later, when
the memory associated with a given file is in RAM, the file
is loaded and the successors are written to RAM. This ap-
proach uses additional disk storage to avoid expanding a state
more than once. The hash-based approach was used by Two-
Bit Breadth-First Search (TBBFS) [Korf, 2008]. TBBFS was
originally designed only to perform a BFS, not to store the
result of a BFS as a heuristic, but the general approach can
still be used for building heuristics.

Partitioning approaches [Zhou and Hansen, 2007; Sturte-
vant and Rutherford, 2013] discard successors that can-
not be written to memory immediately, re-expanding these
states later. This approach in implemented in WMBFS with
a change list, an implicit one-bit representation that marks

states generated at the current level of the search. That is, one
bit per state represents whether the state is generated at the
current depth. Although the change list requires less mem-
ory than a depth array, it still may not fit in RAM. So, the
change list is split into buckets and each bucket is handled
separately. When the change list of one bucket is loaded into
RAM, WMBFS scans all the states on disk at the current
depth being expanded. The successors that do not fall into
the change list of the current bucket are discarded. After all
the states at the current depth are expanded, the entire change
list is written back to disk. The full process is then repeated
for the change list of each bucket. This approach avoids the
additional disk used in the hash-based approach at the cost of
expanding states multiple times. Despite the computational
overhead, WMBFS was 3.5x faster than TBBFS when build-
ing the 12-edge Rubik’s Cube PDB heuristic [Sturtevant and
Rutherford, 2013].

3 External-Memory BFS
Let N(d) be the number of states in a BFS at depth d. In a
regular BFS, N(d) states are expanded in order to find the
N(d+1) states at depth d+1. In a state space with a branch-
ing factor of b, this requires b ·N(d) generations. However, if
N(d) � N(d + 1), then this process is very inefficient, be-
cause either the same states at depth d+1 are generated many
times, or states at depth d or d − 1 are generated instead. In
this case, it can be more efficient to expand the N(d+1) states
at depth d+ 1 to look for predecessors with known depth.

Consider, for instance, Table 4, which contains the distri-
bution of states in the Rubik’s Cube 6-edge 4-corner PDB.
At depth 14 there are only 49 million states, while at depth 13
there are 847 billion states. Thus, it is much cheaper to expand
the 49 million states that have unknown value and lookup the
depth of their predecessors than it would be to expand the 847
billion states with depth 13 and check their 15 trillion succes-
sors. This paper addresses how to efficiently look up the depth
for predecessors when they are stored in external memory.

In existing external-memory algorithms, the operation of
writing the depth of a new state to disk has one-way informa-
tion flow. Since all states being written share the same depth,
only the identity of the new state is needed. Other informa-
tion, such as the identity of the parent and the parent’s lo-
cation in memory, can be discarded. Thus, in both the hash-
based duplicate detection and change-list based approaches,
states are temporarily written to a data structure (either a file
on disk or a change list) that discards parent information. This
decoupling greatly simplifies the BFS algorithms.

DOBFS requires four steps: (1) finding a state s with un-
known depth, (2) generating the predecessors of s, (3) looking
up the depth of the predecessors, and (4) writing the depth of
s if one of the predecessors of s has known depth. This is a
simple approach when everything fits into RAM. But, when
using external memory, things are more complex. This is be-
cause, unlike in other BFS approaches, the writing to disk in
step (4) is contingent on the parent of the states that are being
looked up in step (3). The search must be designed to effi-
ciently keep all of this information in RAM.

Consider two possible approaches to DOBFS with exter-
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nal memory. The first approach follows the structure of hash-
based duplicate detection and has the aim of minimizing com-
putation by only expanding each state once. This approach re-
quires the following steps: (1) Find each state s with unknown
depth. (2) Generate the predecessors of s. (3) If a predeces-
sor is in RAM with known depth, then write the depth of s
back to disk. (4) Otherwise, write the predecessors of s out to
temporary file(s) along with the identity of s. (5) When pro-
cessing the temporary files later in the search, if a predecessor
with known depth is found then s can be written back out to
disk. (6) Later, when s is in memory, the algorithm can write
the final depth of s. This process is inefficient because prede-
cessors of a state may not be readily available in RAM, and
then when they are in RAM, the original state may no longer
be in RAM. So, the efficiency depends crucially on whether
predecessors will be found in RAM in steps (3) and (5). Addi-
tionally, it requires writing information about the parent of a
state in step (4), which is inefficient on disk. If the state space
was guaranteed to have suitable structure, it would be possi-
ble to dynamically load all data into RAM when needed. But,
this isn’t possible in many state spaces.

The main issue in adapting DOBFS to use external mem-
ory is that the predecessors of a state will not be in memory
when needed. Thus, loading as many predecessors into mem-
ory as possible may avoid this bottleneck. Since the search
only needs to know if a predecessor is at the previous depth,
it is possible to use one bit per state to indicate whether a
state has this property. We call any data structure that does
this a changed list, as it marks states changed in the last itera-
tion. This approach follows the structure of the change list in
WMBFS and has the aim of minimizing writes to disk at the
cost of extra computation. Each state will be written to disk
at most once, but may be expanded multiple times.

Thus, we propose the following steps for external memory
DOBFS: (1) Break the state space up into buckets, where each
bucket fits as a changed list in RAM. (2) Load the next bucket
from disk and mark states at the previous depth in the changed
list in RAM. (3) Find all states with unknown value in the
PDB and check if any of their predecessors can be found in
the changed list. (4) If they are, write them back to disk at the
next depth. (5) If not, discard the state and continue.

This approach is I/O efficient because states are read from
disk linearly. The overall efficiency depends on how large the
full change list is compared to RAM and the distribution of
predecessors for each state. But, there is one advantage in the
backward phase of a DOBFS over the forward phase. When
doing a forward search, all successors must be generated to
ensure they are given the next possible depth. When gener-
ating predecessors, however, we can stop as soon as a sin-
gle predecessor has known depth, because that is sufficient to
prove the depth of the state. For instance, if each state has 100
predecessors that are uniformly distributed in the PDB, then
even if the changed list has to be broken up into 10 pieces,
there is still a high likelihood that one of these successors
can be found in the first changed list bucket that is processed,
meaning that the states doesn’t have to be re-expanded for the
other 9 buckets.

Note that invertible operators are required for checking
predecessors in step (3), but a perfect hash function is not

Algorithm 1 Direction-Optimizing External-Memory
BFS pseudo-code
DEBFS()
1: Initialize disk files and other data structures
2: while new states left on disk do
3: for all buckets do
4: Clear changed list, scan the disk files and mark open states

from the current bucket in changed list
5: for every group G in coarse open list (in RAM) do
6: if G has unseen states then
7: for each state si in group G do
8: if si is unseen (on disk) then
9: SendToWorkerQueue(si)

10: end if
11: end for
12: end if
13: end for
14: Wait for worker threads to finish
15: end for
16: end while

WORKERQUEUE()
1: while true do
2: s← GetWorkFromQueue()
3: for each predecessor pi of s do
4: if pi is marked in the changed list then
5: Write s with the next depth to local cache
6: break
7: end if
8: end for
9: if cache is full then

10: Write local cache to disk files and update next coarse list
11: end if
12: end while

required if illegal states can be identified from a state’s rank.

3.1 Direction-Optimizing External-Memory BFS
We now provide a complete description of Direction-
Optimizing External-Memory BFS (DEBFS). Any external-
memory algorithm can be used for the layers until the point
where the direction of the BFS switches. Thus, we consider
DEBFS to just be the algorithm that runs in the reverse di-
rection. Because of its efficiency in Rubik’s Cube, we use
WMBFS for the forward search.

Building on WMBFS, DEBFS uses two or more bits to rep-
resent each state; the experiments in this paper use four bits
per state, so the following discussion makes that assumption.
The value of each state is equal to the depth of the state mod-
ulo 15 or the reserved value, 15, which indicates that the state
is unseen, meaning the depth has yet to be discovered. A state
is open if its value equals the current depth modulo 15. States
at the other depths are closed. Initially, all states are stored on
disk with the reserved value 15 except the start state. The start
state is initialized to depth 0, meaning it is open.

WMBFS breaks the state space into multiple buckets, with
a change list for each bucket. Additionally, it stores a coarse
open list. The coarse open list contains one bit for every group
of N states in the PDB. A bit is set in the coarse open list if
any of the N states it represents are currently open. In the
main loop of the search the coarse open list is used to quickly
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skip over portions of the PDB that do not contain open states.
In each iteration, states that are open are expanded. If any
of their successors fall into the change list of the current
bucket, the successors are written there; other successors are
discarded. After each pass, the change list is written to disk
and then the process is repeated for the change list of the next
bucket. When all buckets have been processed, the next depth
is processed in the same manner.

When it would be efficient to switch directions, DEBFS
converts the change list into a changed list for marking pre-
decessors with known depths. While states on disk use 4 bits
each, the changed list only requires one bit to indicate that
a state was changed in the last iteration. Thus, the relevant
states can be more efficiently loaded into memory. The pro-
cess of finding states at the next depth is divided into one iter-
ation per bucket. At the beginning of each iteration, a bucket
is initialized in RAM and DEBFS scans the disk files to find
and mark any states from the previous depth in the changed
list. When generating the predecessors of a state with un-
known depth, a two-level ranking function is applied to locate
states in the changed list. The first-level ranking maps states
to buckets and the second-level ranking maps to an offset in
the changed list for a given bucket. The first-level ranking can
be computed quickly; the second-level ranking is only com-
puted if the state falls into the current bucket in RAM.

Pseudo-code for a parallel version of DEBFS is shown in
the Algorithm 1. After loading the changed list, DEBFS scans
all the states stored on disk sequentially, expanding unseen
states (with value 15). The coarse open list marks whether
there are unseen states among each group of N states on disk,
one bit per group. These unseen states will be sent to a queue
to be expanded. WMBFS expands the known states at cur-
rent depth and generates the potential states at the next depth,
whereas DEBFS expands the unseen states to see if they are
a successor of a state with known depth. In DEBFS, if one
predecessor of a state is marked in the changed list, we then
know the depth of the unseen state, and that state can be writ-
ten back to disk with the next depth modulo 15. Otherwise,
the state will be discarded.

At each depth, both WMBFS and DEBFS need to make
one iteration through external storage for the change(d) list
of every bucket. With WMBFS, open states will be expanded
as many times as there are buckets. In addition, since states at
depth 1 and 16 have the same modulo 15 representation, states
at depth 1 will also be expanded at depth 16 and likewise for
similar depth pairs. (The coarse open list will prevent some
of these re-expansions, but not all of them.) DEBFS performs
differently depending on the nature of the unseen states. If a
state is unseen but is at the current depth, then the state will be
expanded one or more times. As soon as a single predecessor
is found in the changed list, the depth of the state will be
known and it will not be expanded again. States at later depths
will be expanded as many times as there are buckets. The
modulo representation does not impact DEBFS, because it
only expands unseen states.

WMBFS writes the change list to disk after each bucket
is completed, performing duplicate detection in the process.
DEBFS, however, writes states to disk as soon as they are dis-
covered, with no need for duplicate detection, since DEBFS

cannot reach the same state by two different paths as other
external-memory BFS algorithms do.

3.2 Parallel DEBFS
External memory search algorithms are typically parallelized,
due to the scale of the computation being performed. The
changed list is built sequentially at the beginning of each iter-
ation. DEBFS then uses a main thread to read through states
on disk looking for unseen states to be expanded. Unseen
states are placed in a task queue for threads to handle. The
worker threads retrieve states from the task queue, expand
them, and then write them to local cache if they are succes-
sors of a state with known depth. When the cache is full these
states are flushed to disk. This approach works efficiently be-
cause states are read and processed from disk linearly, and
so they will also be written back to disk in an approximately
linear order.

3.3 Switching Direction
The primary question that remains is when to switch direc-
tions from the forward to backwards calculation. Switching
too early will be inefficient. Clearly if the search switched
immediately, then all of the states in the state space would be
expanded in the first iteration. Switching too late will reduce
the gain from the approach. Previous analysis has allowed for
switching back and forth between approaches [Beamer et al.,
2012], but due to the characteristics of PDBs, which typically
grow and then shrink a single time, we build a simpler policy
that will just switch to DEBFS when it looks advantageous.
This policy has two considerations; the search switches direc-
tion if either criteria hold.

Expanding fewer states. The simplest policy is to switch
to DEBFS if there are more states to be expanded at the cur-
rent depth than there are remaining states in the state space
with unknown depth.

Looking at fewer successors. At each iteration, a BFS
must expand open states, generate their successors, and write
any previously unseen successors to disk. Therefore, a BFS
needs to generate and check all successors. DEBFS expands
the unseen states, but it will stop generating predecessors
once it finds a predecessor with known depth in the changed
list. DEBFS generates all predecessors in the worst case
that the given unseen state is not a successor of any states
with known depth, or if the known state is the last prede-
cessor. So, we estimate the effective branching factor in the
search from the number of states at the previous two levels
(N(d)/N(d − 1)). The lower the effective branching factor,
the higher the chance that fewer successors will be analyzed
by DEBFS. When the effective branching factor is less than
one, we switch to DEBFS.

3.4 Locality Optimization
The locality of a state space is determined by how close the
successors of a state are to the parent in memory. In state
spaces with high locality the depths of different states may
not be randomly distributed across memory, and may instead
be clustered in different parts of the state space. If a state
space has this property, it is possible to take advantage of it
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in DEBFS. In particular, suppose that most of the new states
in the last iteration were written into bucket 3. Then, it would
be advantageous to process bucket 3 first, since states at the
next depth are more likely to have a predecessor in bucket 3.
In general we can process buckets in order of the number of
states written in the previous iteration. We will illustrate the
benefit of this approach in the experimental results. Although
the overall impact on the search is small, it is a simple opti-
mization that may be beneficial when used in other domains.

4 Experimental Results
To evaluate the effectiveness of DEBFS we experimented
with Rubik’s Cube, Chinese Checkers, Top Spin, and the
Pancake puzzle. We ran our experiments on a 16-processor
2.4GHz Intel Xeon E5 server with 128GB of RAM, two 8TB
disk drives configured as a RAID drive, and one 1.5 TB SSD.
We vary the memory and number of buckets used in each
experiment, to simulate performance on machines with less
RAM. The SSD was used for storage when possible, but the
largest PDB required using the RAID.

An overview of our experiments can be found in Table 1.
The first column is the domain studied. The second column is
the search configuration for that domain. The third column is
the number of buckets used in the search. The fourth column
is the number of states in the largest level divided by the num-
ber of states at the next depth. The fifth column is the RAM
used during the search. The sixth column is the disk storage
required for search. This is followed by the running time of
WMBFS and DEBFS in seconds and the overall speedup.

We will analyze the Rubik’s Cube and Chinese Checkers
results in detail, but we can make the following broad obser-
vations about the results. First, the larger the ratio between
the largest layer and the following layer, the larger the per-
formance increase from DEBFS. Although this is related to
the branching factor, state spaces like Chinese Checkers and
the pancake puzzle have large branching factors too; but with
large numbers of duplicate states, the effective branching fac-
tor is smaller. Second, the relative gain of DEBFS seems to
grow with more buckets. This is also observed in other ex-
periments not presented here. Because some states have their
depth resolved in earlier buckets, they do not need to be ex-
panded again when later buckets are processed as in WMBFS.

4.1 Rubik’s Cube Experiments
Rubik’s Cube has a uniform branching factor of 18, and the
state space grows and shrinks quickly, suggesting that this is

an ideal domain for DEBFS. We built three PDBs for this
domain, the 2.6 TiB 6-edge 4-corner PDB, the 0.4 TiB 12-
edge PDB, and the 12 GiB 4-edge 4-corner PDB. The 6-edge
4-corner PDB encompasses half of the cubes, and is, to our
knowledge, the largest PDB ever built. Due to the size of the
PDB, we were unable to compare directly WMBFS, but an-
alyzing the ratios in Table 1 suggests a 3-4x speedup over
WMBFS. The distribution of states in this PDB is found in
Table 4.

Detail about the 12-edge PDB can be found in Table 2. We
report the number of expansions, successor checks, and time
(in seconds) spent by DEBFS and WMBFS at depths 11-13.
Both algorithms are running the same code from depths 0 to
10, so we omit these lines in the table.

There are 552,734,197,682 new states at depth 11, so
WMBFS expands each of these states twice, once for each
bucket. On the other hand, there are 305,116,412,392 re-
maining states at depth 11. DEBFS could potentially ex-
pand each of these twice, but in practice it only expands
346,712,437,361 states, 1.14 expansions per state. The per-
formance is better because the majority of these states have
their depth resolved once they are expanded the first time.
Similarly, WMBFS has to check all 18 successors of each
state, while DEBFS only has to check 7.26 predecessors of
each state, on average, before the depth is found. WMBFS
took 380,839s (4 days 10 hours) to build the PDB while
DEBFS took 157,376s (1 day 20 hours), 2.4 times faster.

4.2 Chinese Checker Experiments
Next, we look in more detail at results in Chinese Checkers.
Here, the goal is to find the shortest sequence to move a sin-
gle player’s pieces across the board. This can be used as an
evaluation function for the two-player version of the game
[Sturtevant, 2002; Roschke and Sturtevant, 2014; Schadd and
Winands, 2011]. The board has 81 locations and 10 pieces, re-
sulting in 1.8 trillion states. However, a symmetry reduction
reduces the size of the state space to 1 trillion states. Chinese
Checkers has several properties that are significantly different
with Rubik’s Cube. First, the successor generation is signifi-
cantly more expensive. Second, the number of successors is
significantly larger. While Rubik’s Cube has a fixed branch-
ing factor of 18, the branching factor in Chinese Checkers
can reach over 100. Finally, while there are relatively few du-
plicates in Rubik’s Cube for most of the search, in Chinese
Checkers there are far more duplicates at each level of the
search, so the effective branching factor is much smaller.

Domain Config. Buckets Ratio RAM Storage Time (s) Speed-upDEBFS WMBFS

Rubik’s Cube 6 edges 4 corners (PDB) 6 4.33 112.42 GiB 2.6 TiB 4,341,500 - -
4 edges 4 corners (PDB) 2 3.38 1.51 GiB 12.0 GiB 41,456 127,933 3.09
12 edges (PDB) 2 1.81 57.10 GiB 0.4 TiB 157,376 380,839 2.42

16 Top Spin 9 tiles (PDB) 6 1.93 0.08 GiB 1.93 GiB 8,248 17,820 2.16
4 1.93 0.12 GiB 1.93 GiB 6,313 13,456 2.13
2 1.93 0.24 GiB 1.93 GiB 4,326 9,038 2.11

15 Pancake 15 (full BFS) 2 1.45 76.12 GiB 0.6 TiB 515,622 871,463 1.69

Chinese Checkers 81 locations 10 pieces 2 1.08 62.44 GiB 0.5 TiB 1,730,669 1,717,056 0.99

Table 1: An overview of the experimental results

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1262



D Expansions Successor Checks Time(sec)
DEBFS WMBFS DEBFS WMBFS DEBFS WMBFS

11 346,712,437,361 1,105,468,395,364 2,518,799,329,265 19,898,431,116,552 38,575 178,419
12 331,065,363 609,572,153,252 1,949,741,604 10,972,298,758,536 15,130 99,930
13 249 660,671,036 1,402 11,892,078,648 1,813 5,311

Total 593,332,836,425 1,961,990,553,104 6,953,957,074,407 35,315,829,955,872 157,376 380,839

Table 2: 12-edge Rubik’s Cube Expansions, Successor Checks and Time

D Expansions Successor Checks Time(sec)
DEBFS WMBFS DEBFS WMBFS DEBFS WMBFS

23 487,943,905,521 289,955,666,742 38,075,925,088,399 29,749,623,224,756 280,405 212,061
24 277,307,550,980 232,109,207,884 20,128,933,569,335 23,451,165,025,904 163,176 164,592
25 134,942,864,251 157,564,242,350 9,056,782,282,996 15,639,372,812,432 82,937 109,572
26 54,382,693,574 88,711,821,592 3,359,629,878,085 8,627,867,950,716 36,696 62,265
27 17,368,565,426 40,263,267,444 984,437,612,223 3,825,672,820,280 14,215 30,315
28 4,126,353,828 14,158,512,558 214,160,087,149 1,309,716,025,460 4,902 13,165
29 660,404,627 3,631,945,654 31,376,587,707 325,687,774,036 993 5,547
30 60,007,484 616,512,420 2,613,870,399 53,296,727,624 193 2,619
31 2,186,308 58,408,878 87,605,969 4,830,254,976 72 1,953
32 12,537 2,177,430 457,186 170,201,420 44 823

Total 2,295,250,927,892 2,145,528,146,308 211,386,018,917,772 222,519,474,695,928 1,730,669 1,717,056

Table 3: Expansions, Successor Checks and Time on Chinese Checkers (81-10)

Depth Time States

0 0.00 1
1 5.49 15
2 19.74 198
3 184.76 2,626
4 1,493.01 34,442
5 7,405.69 447,447
6 24,855.64 5,778,256
7 90,904.57 73,958,273
8 169,070.89 933,669,413
9 74,627.41 11,462,981,889
10 136,356.31 130,448,801,079
11 347,475.94 1,135,763,335,981
12 1,804,614.22 3,667,543,789,100

13* 1,417,564.07 847,721,302,874
14* 259,227.43 49,252,006

Table 4: Distribution of states in the Rubik’s Cube 6-edge 4-corner
PDB. Depth 13 & 14 use the direction-optimizing search.

Table 3 shows the number of expansions, successor checks,
and time for each level in Chinese Checkers. For depths 25
and beyond, DEBFS is significantly faster than WMBFS, but
these levels do not take a significant fraction of the entire
search, so overall there is very little gain in Chinese Check-
ers. This is because the state space grows and shrinks very
slowly. (See Sturtevant and Rutherford [2013] for the distri-
bution of states.) However, Chinese Checkers has significant
locality, as only one piece moves at a time on the board. So,
we implemented bucket ordering according to the number of
states written at the previous depth.

Table 5 shows the improvement relative to node expansions
by this enhancement. Ordering the buckets provides up to a
2x reduction in node expansions over DEBFS without bucket
ordering. As there are only 2 buckets in the state space, this is
close to the maximum improvement possible. These gains do
not provide a significant overall benefit in Chinese Checkers,
but they illustrate the potential improvement in a domain that
grows and shrinks like Rubik’s Cube but has the locality of

Depth WMBFS DEBFS DEBFS (ordered)

24 232,109,207,884 277,307,550,980 242,784,997,068
25 157,564,242,350 134,942,864,251 110,002,246,903
26 88,711,821,592 54,382,693,574 40,788,584,104
27 40,263,267,444 17,368,565,426 11,878,938,590
28 14,158,512,558 4,126,353,828 2,562,338,457
29 3,631,945,654 660,404,627 373,851,598
30 616,512,420 60,007,484 31,516,993
31 58,408,878 2,186,308 1,101,609
32 2,177,430 12,537 6,269

Table 5: Expansions in Chinese Checkers with bucket ordering.

Chinese Checkers.

5 Summary and Future Work
This paper illustrates how the ideas of DOBFS can be ex-
tended to use external memory, resulting in a new algorithm,
DEBFS. DEBFS uses a changed list to efficiently lookup the
predecessors of a given state. Using this approach we were
able to build a 2.6 TiB PDB encompassing half of the cubes
in the Rubik’s Cube. Our analysis shows that the effective-
ness of DEBFS depends primarily on the ratio between the
number of states at the largest level and the number of states
at the level following that.

Now that we have built the largest PDB, our next challenge
is how to use it. With the recent progress in machine learning,
we plan to study how machine learning can be used to com-
press the data in this pattern database so that it can be used
for solving problems on machines with limited memory.
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David Patterson. Direction-optimizing breadth-first
search. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and
Analysis, SC ’12, pages 12:1–12:10, Los Alamitos, CA,
USA, 2012. IEEE Computer Society Press.
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