STCA: Spatio-Temporal Credit Assignment with Delayed Feedback in Deep Spiking Neural Networks

Pengjie Gu¹, Rong Xiao¹, Gang Pan² and Huajin Tang¹,²,*
¹ College of Computer Science, Sichuan University
² College of Computer Science and Technology, Zhejiang University
{gupj1202, xiaorong.scu}@gmail.com, gpan@zju.edu.cn

Abstract
The temporal credit assignment problem, which aims to discover the predictive features hidden in distracting background streams with delayed feedback, remains a core challenge in biological and machine learning. To address this issue, we propose a novel spatio-temporal credit assignment algorithm called STCA for training deep spiking neural networks (DSNNs). We present a new spatio-temporal error backpropagation policy by defining a temporal based loss function, which is able to credit the network losses to spatial and temporal domains simultaneously. Experimental results on MNIST dataset and a music dataset (MedleyDB) demonstrate that STCA can achieve comparable performance with other state-of-the-art algorithms with simpler architectures. Furthermore, STCA successfully discovers predictive sensory features and shows the highest performance in the unsegmented sensory event detection tasks.

1 Introduction
In dynamic environments, the useful sensory features are always embedded in distracting streams of unrelated sensory activity. Even worse, the feedback events that the features predict may happen after long and variable delays. To discover these features, a learning model needs to amplify the correlations between features and the delayed feedback. This temporal credit assignment (TCA) problem is challenging in both biological and machine learning.

One potential solution for this problem is utilizing SNNs to learn the temporal information of sensory streams. SNNs are proposed to capture the temporal dynamics of neural behaviors. They use discrete and binary spike trains in which the precise spike times are significantly informative [Gerstner et al., 2014] to convey information, so they are more biologically realistic than artificial neural networks (ANNs) and thus gain increasing interest in recent years.

Recently, several spiking models [Güttig, 2016; Yu et al., 2018] are proposed to solve this problem based on the intuition: a spiking neuron which is a neural detector of a sensory clue should fire spikes whenever the predictive features occur but remain silent otherwise [Güttig, 2016]. A spiking neuron was trained to match their spike activities with the clue’s number of occurrences. As a result, the neuron can identify an unknown feature without knowing the specific timing when the desired feature occurs. These approaches use a threshold-driven learning strategy to reduce the discrepancy between the output neuron’s actual threshold and the closest hypothetical threshold at which the neuron would fire a desired number of spikes. However, finding the hypothetical threshold is computationally complex and time-consuming. Furthermore, they are limited to train single-layer SNNs and thus cannot be applied to complex tasks.

While there exist many models of single-layer SNNs [Xu et al., 2018; Qi et al., 2018], the complex temporal dependencies of spiking neurons and non-differentiable property of binary spike function [Wu et al., 2018] both make training DSNNs difficult. For instance, the ANN-to-SNN approaches [Neil et al., 2016; Diehl et al., 2015] usually leverage conventional learning methods to train an ANN and convert it into an SNN. They rely on carefully designed techniques to overcome the loss of accuracy caused by conversion, such as using probabilistic weights [Esser et al., 2015], adding constraints on neuron firing rate [Diehl et al., 2015] and so on. Some works [Lee et al., 2016; Samadi et al., 2017] only propagate the error back to preceding layers without considering the temporal dependencies of spiking neurons. They require other mechanisms to keep the performances stable, such as lateral inhibition, error normalization, parameter regularization, etc. [Wu et al., 2018] propose a method to directly derive the spatio-temporal gradients for DSNNs. It captures the temporal effects of spikes by performing BPTT [Werbos, 1990] and utilizes surrogate derivatives to handle spiking discontinuities. [Jin et al., 2018] computes the gradients across both rate and temporal level by establishing the relationship between firing rate and synaptic potential. The loss functions of the above algorithms are all rate-based. While they can offer good performance, they lose the temporal information embedded in output spike trains, which is crucial for the TCA problem.

In this paper, we firstly propose a novel loss function based on the definition of “spike cluster” to assign the network loss to the voltage at a specific time point and then introduce an iterative policy to backpropagate the error signal to spatial
and time domains simultaneously. This algorithm shows excellent generalization performance on both classification and TCA problems. As demonstrated in experimental results, its performance on MNIST dataset outperforms most of the existing DSNNs. It also gets a comparable result with a specialized convolutional neural network (CNN) on a music dataset (MedleyDB) by using a much simpler architecture. In the unsegmented sensory event detection tasks, it successfully discovers the embedded events and outperforms the state-of-the-art method.

2 Neuron Model and Learning Algorithm

In this section, we first present a spiking neuron model and its iterative computation mechanism used in this work. Then, we propose a novel loss function which yields a more flexible temporal credit assignment. Finally, we present an iterative procedure to backpropagate the error signal to spatial and temporal domains simultaneously.

2.1 Spiking Neuron Model

Here, we adopt the current-based leaky integrate-and-fire (C-LIF) neuron model [Güttig, 2016] as the basic computational units in DSNNs. The C-LIF model is biologically realistic and mathematically tractable. Its voltage trace \(V(t) \) can be expressed as:

\[
V(t) = M(t) - S(t) - E(t)
\]

\[
M(t) = V_0 \sum_{j=1}^{N} w_{ij} \sum_{t_j < t} \exp \left(-\frac{(t - t_j^k)}{\tau_m} \right)
\]

\[
S(t) = V_0 \sum_{j=1}^{N} w_{ij} \sum_{t_j < t} \exp \left(-\frac{(t - t_j^k)}{\tau_s} \right)
\]

\[
E(t) = \vartheta \sum_{t_i < t} \exp \left(-\frac{(t - t_i)}{\tau_m} \right)
\]

where \((M(t) - S(t)) \) describes that the neuron integrates its synaptic current by receiving input spikes from \(N \) presynaptic neurons, and \(E(t) \) indicates that each output spike will refrain the voltage for a while. Here, \(t_j^k \) is the time of the \(k \)-th input spike from the \(j \)-th afferent neurons; \(t_i \) denotes the time of the \(i \)-th output spike; \(w_{ij} \) is the synaptic weight; \(\tau_m, \tau_s \) are the time constants; \(V_0 \) is a normalization factor; \(\vartheta \) denotes the threshold of the neuron.

Most works [Güttig, 2016; Yu et al., 2018] based on C-LIF model merely use Eq. (1) to derive their training algorithms. This makes them difficult to develop error backpropagation in DSNNs. Because Eq. (1) neither completely captures the temporal dependency in the spiking neuron nor reveals the explicit relationship between the input spike signals ejected from the preceding layer and the output spike train of the current neuron. To solve this problem and ensure computational tractability, we discretize the temporal system with a sampling time \(dt \) and thus replace \(t \) and \(V(t) \) with \(k \cdot dt \) and \(V[k] = V(k \cdot dt) \), where \(k \in \mathbb{Z} \). Then, an iterative mechanism is presented to capture the spatio-temporal dynamics of C-LIF neuron (Figure 1) according to its event-driven property [Yu et al., 2018; Wu et al., 2018]:

\[
O_k^{n}[k] = g(V_n^{n}[k])
\]

\[
I_k^{n}[k] = V_0 \sum_{j=1}^{L(n-1)} w_{ij} V_{j}^{n-1}[k]
\]

\[
V_k^{n}[k] = M_k^{n}[k] - S_k^{n}[k] - E_k^{n}[k]
\]

\[
M_k^{n}[k] = \beta_m M_k^{n}[k - 1] + I_k^{n}[k]
\]

\[
S_k^{n}[k] = \beta_s S_k^{n}[k - 1] + I_k^{n}[k]
\]

\[
E_k^{n}[k] = \beta_m E_k^{n}[k - 1] + \vartheta O_k^{n}[k - 1]
\]

These formulas are explained as follow:

- The upper index \(n \), subscript \(i \), and \(k \) indicate that the variable is a state of the \(i \)-th neuron at the \(n \)-th layer and the \(k \)-th time point. \(L(n) \) indicates the number of neurons in the \(n \)-th layer.

- \(O_k^{n}[k] \in \{0, 1\} \) is the output signal of the neuron. It is governed by the spike function \(g(.) \) (Eq. (8)). \(O_k^{n}[k] = 1 \) indicates a spike activity, \(O_k^{n}[k] = 0 \) denotes nothing occurs.

- \(I_k^{n}[k] \) is the input weighted summation of the spike signals \(O_j^{n-1}[k] \) which are generated from the previous layer.

- \(V_k^{n}[k] \) is the superposition of the input response \((M_k^{n}[k] - S_k^{n}[k]) \) and the output response \(-E_k^{n}[k]\). It represents the voltage of neuron.

- \(M_k^{n}[k], S_k^{n}[k], E_k^{n}[k] \) are all expressed by their states at the \((k - 1)\)-th time step. Further, \(M_k^{n}[k], S_k^{n}[k] \) are also governed by the input signal at the \(k \)-th time step, while \(E_k^{n}[k] \) is governed by the output signal at the \((k - 1)\)-th time step.

- \(\beta_m(s) = \exp (-\frac{dt}{\tau_m(s)}) < 1 \) are the decay factors. If no spike occurs, the input response and output response will decay to 0 by multiplying decay factors recursively.

2.2 Temporal-based Loss Function

To solve the TCA problem, we draw inspirations from the recent work [Güttig, 2016] and its intuition: when a neuron is trained to match its number of output spikes to the magnitude of the occurrence number of sensory events, it will identify the sensory clues whose occurrences predict the delayed feedback.

The original loss function in [Güttig, 2016] will train the neuron to fire a fixed number of spikes after detecting a desired event. Indeed, this objective seems inflexible and unreasonable. Because spiking neurons tend to fire a different number of spikes if they receive distinct input activities. However, there might exist distinct features among the activities from the same class. Under this case, forcing the neurons to issue a fixed number of spikes will lead to an unstable performance of the network. To address this problem, we introduce a novel definition as follow:
Figure 1: The temporal dynamics of the C-LIF neuron. (right) The relationships among the variables of the neuron. (left) The traces of these variables and their corresponding equations. The voltage V^n is the superposition of the input response ($M^n - S^n$) and the output response $-E^n$. With the voltage exceeding the threshold ϑ, the neuron will fire an output spike and refrain its voltage by the output response. I^n is the weighted summation of O^{n-1} and will induce the output response.

- **Spike cluster**: If the intervals between any adjacent spikes in a spike train C are less than a predefined constant T_{in}, and the intervals between spikes in C and other outside spikes are greater than T_{in}, we define C as a spike cluster.

Utilizing this definition, we can set a more flexible objective for the output spiking neuron: when the predictive features are recognized, the neuron should issue one spike cluster instead of a fixed number of spikes. Hence, the goal of our loss function is to make the actual number of spike clusters N_o even the number of desired features N_d.

However, directly defining $|N_d - N_o|$ as our loss function will evenly assign error to all states of the neuron over the entire time window. This is not conducive and convenient to find the predictive features which usually occur within short epochs. Therefore, we introduce a temporal based loss function to assign the error to the voltage of a specific time point which may well be related to the desired features. The specific time point can be found by two strategies as follow:

- When $N_o < N_d$, the neuron does not identify all desired features. In this case, the time point k^+ is most likely associated with the desired features which is not identified, as $V^N[k^+]$ is the highest maximum of subthreshold voltage and outside the occurrence epoch of any spike cluster (Figure 2). Hence, the objective is to potentiate $V^N[k^+]$ towards the threshold ϑ with the aim of firing more spike clusters.

- When $N_o > N_d$, it indicates that the neuron has identified the undesired features. In this case, the undesired features may well be associated with the spike cluster which has the fewest number of spikes. Thus, we credit the loss to $V^N[k^-]$ in order to depress $V^N[k^-]$ falling below ϑ with the purpose of removing the wrong spike cluster, as k^- is the last spike time of the spike cluster whose spike number is the fewest (Figure 2).

Both of the strategies are effective because they can find the time point k^* quickly by traversing the voltage trace once (k^* is the gereral term for the k^+ and k^-). The temporal based loss function can be written as follow:

$$L = \begin{cases} \vartheta - V^N[k^+], & N_o < N_d \\ V^N[k^-] - \vartheta, & N_o > N_d \\ 0, & \text{otherwise} \end{cases}$$

(9)

where N is the index of the output layer. It is also easy to generalize this function into classification tasks. Expecting that neuron will fire one or more spike cluster when the sample label $y_s = 1$ but keep silent otherwise, we can define L as follow:

$$L = \begin{cases} \vartheta - V^N[k^+], & N_o = 0 \text{ and } y_s = 1 \\ V^N[k^-] - \vartheta, & N_o > 0 \text{ and } y_s = 0 \\ 0, & \text{otherwise} \end{cases}$$

(10)

2.3 Spatio-Temporal Credit Assignment Policy

To backpropagate the error signal at $V^N[k^+]$ to preceding layers ($<= N$) and previous time points ($<= k^*$) accurately, we unfold the states of C-LIF neurons on both spatial and temporal domains as illustrated in Figure 3. By this way, we can explicitly observe how each variable contributes to other variables (indicated by arrows) along the spatial direction and temporal direction and can compute gradients iteratively by performing BPTT [Werbos, 1990].

We first denote $\frac{\partial L}{\partial M^n[k]}$ and $\frac{\partial L}{\partial V^n[k]}$ as $\delta^n[k]$ and $\epsilon^n[k]$ respectively. $\delta^n[k]$ can be computed as follow:

$$\delta^n[k] = \frac{\partial L}{\partial M^n[k]} \frac{\partial M^n[k]}{\partial I^n[k]} + \frac{\partial L}{\partial S^n[k]} \frac{\partial S^n[k]}{\partial I^n[k]}$$

(11)

When $k < k^*$, $M^n[k]$ contributes to $M^n[k+1]$ and $V^n[k]$ directly, so we can get its derivative by:

$$\frac{\partial L}{\partial M^n[k]} = \frac{\partial L}{\partial M^n[k+1]} \frac{\partial M^n[k+1]}{\partial M^n[k]} + \frac{\partial L}{\partial V^n[k]} \frac{\partial V^n[k]}{\partial M^n[k]}$$

$$= \frac{\partial L}{\partial M^n[k+1]} \beta_m + \epsilon^n[k]$$

(12)
where \(h \) causes the gradient vanishing or exploding problem, we adopt the approximation of \(g \):

\[
\frac{\partial g}{\partial V} \approx h(V) = \frac{1}{\alpha} \text{sign}(|V - \vartheta|) < \frac{\alpha}{2}
\]

where \(\alpha \) is a constant to determine the width of \(h(.) \). The approximation of \(\epsilon^n[k] \) will be different in two cases:

- When \(n = N \), \(V^N[k] \) governs the output response \(E^N[k+1] \) by affecting the output activity \(O^N[k] \), so \(\epsilon^N[k] \) can be given by:

\[
\epsilon^N[k] = \frac{\partial L}{\partial E^N[k+1]} \frac{\partial E^N[k+1]}{\partial O^N[k]} \frac{\partial O^N[k]}{\partial V^N[k]} \frac{\partial L}{\partial V^N[k]}
\]

- When \(n < N \), the output signal \(O^n[k] \) governed by \(V^n[k] \) not only contributes to \(E^{n+1}[k+1] \) but also influences the input signal \(I^{n+1}[k] \) at the next layer, it yeilds:

\[
\epsilon^n[k] = \frac{\partial L}{\partial E^n[k+1]} \frac{\partial E^n[k+1]}{\partial O^n[k]} \frac{\partial O^n[k]}{\partial V^n[k]} \delta^{n+1}[k] + \frac{\partial L}{\partial E^n[k+1]} \theta + \vartheta^{n+1}[k] w^{n+1} \text{sign}(V^N[k])
\]

According to Eq. (11-17), the network loss \(L \) can be backpropagated from \(V^N[k^*] \) to \(\delta^n[k] \) recursively. Note that \(\delta^n[k] \) are the gradients of the input signals across all preceding layers \((n \in [2, N]) \) and previous time points \((k \in [1, k^*]) \). Further, the gradients of synaptic weights can be computed as:

\[
\nabla w^n = \sum_{k=1}^{k^*} \delta^n[k] \frac{\partial I^n[k]}{\partial w^n} = V_0 \sum_{k=1}^{k^*} \delta^n[k] O^{n-1}[k]
\]

The pseudo code is given in Algorithm 1 and our GPU accelerated software implementation is available online\(^1\).

3 Experimental Results

We demonstrate the advantages of our algorithm by three experiments. Detailed experimental settings (e.g. hyperparameters, error bars, and the convergence curve) are reported in the released online materials\(^1\).

3.1 MNIST Image Classification

To encode images in MNIST dataset [LeCun et al., 1998], we utilize the rate coding method [Grüning and Bohte, 2014] to convert each image into 784 spike trains whose spiking firing rates equal their corresponding pixel values.

Table 1 lists the state-of-the-art results of the fully-connected DSNNs with accuracy shown in a descending order. While MNIST is a toy benchmark dataset, and there is no TCA problem in it. Our model still goes beyond the performance of most models by a simpler structure and achieves a comparable result with the optimal model. Furthermore, there are several advantages of STCA over other methods. Firstly, STCA is capable of training DSNNs directly, while the ANN-to-SNN approaches require many converting techniques. Secondly, STCA considers the spatio-temporal effects of spikes during training, while the spiking-BP only

\(^1\)https://github.com/Squirtle-gpl/STCA-DSNN
Algorithm 1 The training procedure of STCA in one iteration

Input: The input spike signals O^t; the desired number of spike clusters N_d.

Parameter: The number of all layers N; The number of all time points K.

Output: Update the weights w

1: //Feedforward:
2: for $n = 2$ to N do
3: $M^n[0], S^n[0], E^n[0], O^n[0] = 0$ // Initialization
4: for $k = 1$ to K do
5: Compute $V^n[k], O^n[k]$ // Eq. (2 - 8)
6: end for
7: end for
8: //Loss:
9: Get the actual number of spike clusters N_o.
10: Find the time point k^* and compute L. // Eq. (9)
11: //Backpropagation:
12: for $n = N$ to 2 do
13: for $k = k^*$ to 1 do
14: \star Compute $e^n[k]$ // Eq. (16) or Eq. (17)
15: \star Compute $\frac{\partial L}{\partial M^n[k]}, \frac{\partial L}{\partial S^n[k]}, \frac{\partial L}{\partial E^n[k]}$ // Eq. (12-14)
16: Compute $\delta^n[k]$ // Eq. (11)
17: end for
18: Compute ∇w^n // Eq. (18)
19: end for
20: Update all weights based on their gradients.

: The equations to derive $e^n[k^], \frac{\partial L}{\partial M^n[k]}, \frac{\partial L}{\partial S^n[k]}, \frac{\partial L}{\partial E^n[k]}$ are slightly different from Eq. (16-17) and Eq. (12-14). They can be derived easily by removing the first terms of the original equations, since the variables at k^* are not required to receive the error signal from the next time.

3.2 Musical Instrument Recognition

In this experiment, we train a DSNN to identify different instruments in various music pieces which are diverse in melodies and styles. We use the MedleyDB dataset [Bittner et al., 2014] which contains 122 multi-tracks annotated with instrument activations. We extract the monophonic stems corresponding to 10 instruments (‘violin’, ‘guitar’, ‘flute’, ‘female’, ‘drum’, ‘cymbal’, ‘cello’, ‘double bass’, ‘erhu’) and slice them into 1.5s long pieces. For each instrument, we randomly collect 160 pieces as training samples and 80 pieces as test samples.

In Table 2, we use recall, precision, and F1 score to evaluate our model and other three models. Our model gets a comparable result with the specialized CNN whose convolutional kernels’ structures are carefully designed for learning timbre representations [Pons et al., 2017]. Additionally, the number of trainable parameters in our model is almost one third of the CNN parameters. Furthermore, our model also outperforms a 3-layer recurrent network. In this network, the first layer receives the spectrogram sequences, and the next two layers are an LSTM layer and a dense layer with softmax activation, respectively. For comparison, we construct this architecture (96-218-10) for this network to make its number of trainable parameters equal to ours. We also consider a DSNN model [Samadi et al., 2017] which doesn’t consider the temporal dependencies of spiking neurons during training to verify whether the ability of DSNN to learn temporal features can be improved by assigning network error along the temporal direction. Additionally, our model shares the same network structure (384-700-10) and encoding method with this model, and the encoding method called spikegram [Smith and Lewicki, 2005] which converts the input sound signal into a spike pattern capturing the time-frequency information of sound by the spatio-temporal distribution of spikes. As illustrated, the disappointing performance of this model reveals that error backpropagation on time domain notably promotes SNNs to learn dynamic features.

3.3 Unsegmented Sensory Event Detection

In dynamic environments, it’s easy to get a lot of unsegmented sensory streams containing various sensory events. However, the precise occurrence time of individual event is usually unavailable. The temporal alignment with these events requires heavy labor or complex algorithms. To demonstrate that our model can successfully detect the desired events from unsegmented streams, we construct several unsegmented sound event streams by splicing individual sound events extracted from the RWCP dataset [Nakamura et al., 2000]. The RWCP dataset gives a selection of isolated sound event samples in duration around 0.5-3s. Here, 10 classes of sound events are extracted (‘bank’, ‘bells5’, ‘bowl’, ‘cherry1’, ‘coin3’, ‘cup1’, ‘horn’, ‘phone4’, ‘ring’, ‘whistle1’), each class has 80 samples) and encoded into spikegrams [Smith and Lewicki, 2005]. To construct an unsegmented stream, we will randomly select 5 individual events and spliced together. We extract half of event samples to construct 3000 individual streams as the training set while the rest samples are assigned as the testing set. The occurrence number of the target event in this stream will be used as the desired number.

<table>
<thead>
<tr>
<th>Method</th>
<th># units</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>STBP [Wu et al., 2018]</td>
<td>800</td>
<td>98.89</td>
</tr>
<tr>
<td>HM2-BP [Jin et al., 2018]</td>
<td>800</td>
<td>98.88</td>
</tr>
<tr>
<td>Spiking-BP [Lee et al., 2016]</td>
<td>800</td>
<td>98.71</td>
</tr>
<tr>
<td>STCA [Our model]</td>
<td>800</td>
<td>98.60</td>
</tr>
<tr>
<td>ANN-to-SNN [Diehl et al., 2015]</td>
<td>500-300</td>
<td>98.60</td>
</tr>
<tr>
<td>VPSNN [Zhang et al., 2018]</td>
<td>4500</td>
<td>98.52</td>
</tr>
<tr>
<td>ANN-to-SNN [Neil et al., 2016]</td>
<td>1200-1200</td>
<td>98.00</td>
</tr>
<tr>
<td>eRBP [Nefci et al., 2017]</td>
<td>200-200</td>
<td>97.98</td>
</tr>
<tr>
<td>BP-STDP [Tavanaei and Maida, 2019]</td>
<td>500-150</td>
<td>97.20</td>
</tr>
<tr>
<td>LIF-BA [Samadi et al., 2017]</td>
<td>630-370</td>
<td>97.05</td>
</tr>
<tr>
<td>STDP [Diehl and Cook, 2015]</td>
<td>5000</td>
<td>95.00</td>
</tr>
</tbody>
</table>

Table 1: Results of different DSNNs on MNIST dataset.
Table 2: The musical instrument recognition performance of different models on MedleyDB.

<table>
<thead>
<tr>
<th>Model</th>
<th>Encoding method</th>
<th>#params</th>
<th>Recall (%)</th>
<th>Precision (%)</th>
<th>F1 score (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialized CNN [Pons et al., 2017]</td>
<td>Spectrogram</td>
<td>76.9k</td>
<td>99.21</td>
<td>95.94</td>
<td>97.51</td>
</tr>
<tr>
<td>LSTM</td>
<td></td>
<td>27.6k</td>
<td>93.31</td>
<td>96.08</td>
<td>94.62</td>
</tr>
<tr>
<td>DSNN [Samadi et al., 2017]</td>
<td>Spikegram</td>
<td>27.6k</td>
<td>86.56</td>
<td>75.62</td>
<td>80.73</td>
</tr>
<tr>
<td>Our model</td>
<td></td>
<td>27.6k</td>
<td>97.29</td>
<td>97.23</td>
<td>97.25</td>
</tr>
</tbody>
</table>

Figure 4 demonstrates the learning effect of STCA. We also compare STCA with TDP1 [Yu et al., 2018] which is the state-of-the art model for solving the TCA problem by plotting their learning curves on the testing set (Figure 4(e)). Our model shows a higher performance than TDP1. The reason is that the objective of TDP1 is to fire a desired number of spikes, which is unreasonable to TCA problem by ignoring the differences between intra-class features and makes the model unstable and even induces a reduction on recognition accuracy. In contrast, the objective of STCA is to fire a desired number of “spike clusters”, which is a significant advantage as training on spike cluster is more flexible and less sensitive to input data than training on individual spikes. Thus, spike clusters in STCA improve the learning effects and networks stability of SNNs.

4 Conclusion

We present a new spatio-temporal gradient-based algorithm called STCA for training DSNNs. Compared with existing DSNNs, STCA possesses several advantages: 1) The presented temporal based loss function enables DSNNs to solve challenging TCA problems. 2) We construct a discrete temporal system to describe the dynamics of the DSNNs with C-LIF neurons, so the spatio-temporal gradients of DSNNs can be directly computed by performing BPTT. Besides, we utilize the mechanism of refractory period of C-LIF neuron to retain sparse spike representation by preventing neurons from firing too much spikes. 3) By defining “spike cluster”, STCA shows greater stability, higher accuracy and lower parameter sensitivity on the challenging TCA problem.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under grant 61673283, and the National Key R&D Program of China under Grant 2017YFB1300201.
References

