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Abstract
AI agents support high stakes decision-making pro-
cesses from driving cars to prescribing drugs, mak-
ing it increasingly important for human users to
understand their behavior. Policy summarization
methods aim to convey strengths and weaknesses
of such agents by demonstrating their behavior in
a subset of informative states. Some policy sum-
marization methods extract a summary that opti-
mizes the ability to reconstruct the agent’s policy
under the assumption that users will deploy inverse
reinforcement learning. In this paper, we explore
the use of different models for extracting sum-
maries. We introduce an imitation learning-based
approach to policy summarization; we demonstrate
through computational simulations that a mismatch
between the model used to extract a summary and
the model used to reconstruct the policy results in
worse reconstruction quality; and we demonstrate
through a human-subject study that people use dif-
ferent models to reconstruct policies in different
contexts, and that matching the summary extraction
model to these can improve performance. Together,
our results suggest that it is important to carefully
consider user models in policy summarization.

1 Introduction
Autonomous and semi-autonomous agents are being devel-
oped and deployed to complete complex tasks such as driv-
ing cars or recommending clinical treatment. As these agents
take a growing role in our daily lives, it is becoming in-
creasingly important to provide ways for people to under-
stand and anticipate their behavior. Recent works in the
area of interpretability and explainable AI have thus devel-
oped methods for describing and explaining the decisions of
agents to human users. A rich body of research focuses on
explaining a specific decision made by an agent to a human
user. A recent complementary line of work focuses on sum-
marizing the global behavior of the agent by demonstrating
actions taken by the agent in different states [Amir et al.,
2018]. Such summaries have been shown to improve people’s
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ability to assess agents’ capabilities [Amir and Amir, 2018;
Huang et al., 2018], anticipate agents’ actions [Huang et al.,
2017] and facilitate trust [Huang et al., 2018].

The problem of policy summarization, or extracting sub-
sets of state-action pairs that globally characterize the agent’s
behavior, has been approached in two ways. The first ap-
proach applies heuristics related to the diversity or impor-
tance of states to determine what is shown in the sum-
mary [Amir and Amir, 2018; Huang et al., 2018]. The sec-
ond approach assumes a computational model of how hu-
mans will generalize from the summaries provided, and uses
that model to optimize the summary for reconstructing the
agent’s full policy [Huang et al., 2017]. Specifically, [Huang
et al., 2017] assumed that people would deploy inverse rein-
forcement learning (IRL) to infer the agent’s reward function
from the summary; their summaries were created to perform
well given this assumption of human computation. The cog-
nitive science literature provides evidence that people some-
times do build models of others’ behavior in this way [Baker
et al., 2009; Baker et al., 2011], making IRL a plausible
model. However, there also exists evidence that human plan-
ners sometimes rely on a model-free system that computes
actions based on previous experience in a situation [Daw et
al., 2005]. People may do something similar when inferring
the behavior of others, making imitation learning (IL) another
plausible model of human computation.

In this paper, we explore the effects of using different mod-
els for summary extraction on the ability to reconstruct a pol-
icy. We make the following contributions: (1) we develop an
IL-based summary extraction method; (2) Through compu-
tational simulations in a variety of domains, we demonstrate
that the model used during summarization needs to match the
model used to reconstruct the policy to produce high qual-
ity reconstructions; and (3) we demonstrate through human-
subject studies that people may deploy different models in
different contexts and that in some cases matching summary
extraction to reconstruction model results in improved policy
reconstruction. Taken together, these results suggest the im-
portance of carefully considering which computational mod-
els of users we employ during policy summarization.

2 Related Work
Summarizing Agent Policies. Policy summarization is the
problem of extracting a collection of state-action pairs that
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globally characterize an agent’s policy with the goal of help-
ing a user understand it [Amir et al., 2018]. One approach
relies on heuristics based on agent Q-values and state similar-
ity, to extract diverse, important states [Amir and Amir, 2018;
Huang et al., 2018]. A second approach formalizes the prob-
lem through machine teaching, where the goal is to extract
state-action pairs useful for recovering the agent’s reward
function with IRL [Huang et al., 2017]. Our work extends
the latter approach by additionally considering IL.

Cognitive Science of Inferring Agent Behavior. [Dragan
and Srinivasa, 2014] show that people can learn to anticipate
agent actions if they see enough examples, but some agent
behaviors can never be fully anticipated. Baker et al. [2009;
2011] suggest that people use “theory of mind” to infer oth-
ers’ beliefs and desires based on observations of their actions,
modeling people’s inference as Bayesian inverse planning.
[Daw et al., 2005] describes how human planning uses both
a model-based system that computes rewards and transitions,
and a model-free system that computes actions based on pre-
vious experience. While in their setting people learn by di-
rectly interacting with the world, a similar set of approaches
may also be used when inferring actions of others. Work on
agents modeling agents [Albrecht and Stone, 2018] describes
strategies including case-based reasoning, of which IL is an
example, and utility reconstruction, of which IRL is an ex-
ample. Finally, [Medin and Shaffer, 1978] discusses the ex-
emplar theory of classification in psychology that says that
humans categorize new objects based on similarity to objects
in their memory, motivating our choice of IL model.

Explaining Agent Decisions. More broadly, our work re-
lates to the area of explainable AI [Aha et al., 2017]. Many
approaches focus on explaining a specific decision [Khan
et al., 2009; Lomas et al., 2012; Dodson et al., 2011;
Broekens et al., 2010] or showing which features the agent at-
tends to [Greydanus et al., 2017]. [Miller, 2018] reviews find-
ings from the social sciences regarding useful explanations,
and defines an explanation as causal, providing an answer to
a why-question. In contrast to these approaches, we consider
a complimentary non-causal description of the agent’s global
behavior. Closer to our work, [van der Waa et al., 2018] ex-
plains policies in terms of differences in expected outcomes
from a user specified, contrast policy, and [Ramakrishnan et
al., 2018] formalizes the problem of detecting “blind spots”,
situations in which an agent acts incorrectly because it cannot
differentiate between important real world states. Our work
aims to more generally provide a summary that highlights the
agent’s strengths as well as weaknesses without requiring the
user to be able to specify a specific contrast.

3 Methods
Following [Huang et al., 2017], we formalize the problem of
extracting a summary of an agent’s behavior as an instance of
machine teaching, which aims to find a set of training exam-
ples that induces a known target model to learn a pre-specified
source model [Zhu, 2015]. In our setting, the agent’s policy
is the source model that we want to induce, and the target
models that we consider are hypotheses about how humans

generalize from examples of an agent’s behavior—IRL and
IL.

Formally, our problem is to find the set of examples T of
size k, where T = 〈〈s1, a1〉, ..., 〈sk, ak〉〉 is the set of state-
action pairs that maximizes the similarity ρ of the policy in-
duced by T under a specific target computational model M .
The objective can be written as:

max
T∈D

ρ(π̂(T,M), π∗)s.t.|T | = k (1)

where D is all state-action pairs demonstrating the agent’s
policy, π∗, π̂(T,M) is the approximate policy attained by ap-
plying computational model M to the summary T , and ρ is a
measure of similarity between the agent’s true policy π∗ and
the reconstructed policy π̂.

3.1 IRL-Based Summary Extraction
Given a collection of trajectories, IRL extracts a reward func-
tion such that the optimal policy with respect to those rewards
matches the demonstrated behavior [Ng et al., 2000]. This
captures the notion that people may first infer the agent’s re-
ward function, then use it to replicate the agent’s planning
process.

Model of Human Extrapolation: Maximum Entropy IRL.
Max-Ent [Ziebart et al., 2008] is a model-based approach to
IRL that formulates the problem of learning a policy from
observed trajectories as optimizing a linear function, mapping
the features of each state to a reward value. Its goal is to
match the feature expectations of the learned policy to those
of the observed trajectories. These expectations are defined
as

µ(s,a)
π = E[

∞∑
t=0

γtφ(st)|π, s0 = s, a0 = a] (2)

Where µ(s,a)
π are the feature expectations resulting from start-

ing at state s, taking action a and following the policy π there-
after. φ(st) is the feature vector of state st and γ is a dis-
count factor. There may be many reward functions resulting
in feature expectations that match the observed trajectories;
Max-Ent chooses one based on the maximum entropy princi-
ple. We note that Max-Ent results in the same computations
as the probabilistic reward-based model used for IRL-based
summary extraction in Huang et al. [2017], even though the
former assumes possible noise in expert demonstration and
the latter assumes noise in the reconstruction.

Summary Extraction Method: Machine Teaching. We
produce a summary of a policy by extracting trajectories that
maximize the quality of its reconstruction of the policy us-
ing Max-Ent. We do this using the SCOT machine teaching
algorithm [Brown and Niekum, 2018] that selects a minimal
set of demonstrations which allows the learner to obtain a re-
ward function behaviorally equivalent to the optimal policy
π∗. The behavioral equivalence class (BEC) of π∗ is defined
as the set of reward functions under which the policy is opti-
mal. The BEC of π∗ can be expressed by the intersection of
halfspaces given by the following constraints:

wT (µ
(s,a)
π∗ − µ(s,a′)

π∗ ) ≥ 0, ∀〈s, a〉 ∈ D, ∀a′ ∈ A (3)
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where A is the set of actions available to the agent, w ∈ Rk

are the reward weights, and µ(s,a)
π∗ are the expected feature

counts as described above. The BEC of a demonstration is
defined by the intersection of halfspaces for the demonstrated
states and actions. SCOT greedily finds the smallest set of tra-
jectories with halfspace constraints covering the constraints
defined by π∗. Here, ρ is infinite if the reconstructed reward
function belongs to the BEC of π∗ and 0 otherwise.

We modified the algorithm to extract a fixed budget k/l of
trajectories, where k is the number of states in the summary
and l is the trajectory length. We do so by terminating after
the budget is reached, or by randomly adding additional tra-
jectories when the budget is larger than the number of trajec-
tories required to cover the set of non-redundant constraints.

3.2 IL-Based Summary Extraction
Given a set of states and actions, IL learns a function π̂ : s →
a mapping directly from states to actions. This captures the
notion that people may predict the agent’s action based on
actions in similar states, with no concept of reward or goal.

Model of Human Extrapolation: Gaussian Random Field.
The GRF model in [Zhu et al., 2003b] represents data
points—in our case, states—as vertices in a graph connected
by edges weighted by their similarity. It makes predictions by
propagating labels—in our case, actions—through the graph.
In the binary setting, the action probabilities can be written as
follows:

p(D) = 1

Zβ
exp(−β(1

2

∑
〈s,a〉∈D,
〈s′,a′〉∈D

v(φ(s), φ(s′))(a− a′)2))

(4)
where v is a kernel, β is a tunable inverse temperature param-
eter (we set β = 1) and Zβ is a normalizing constant. We
extend this to the multiclass setting with one-vs-rest classifi-
cation as suggested in [Zhu et al., 2003a].

Predictions are made as follows:

π̂U = −L−1UULUT π̂T (5)

where L = diag(
∑
〈s′,a′〉∈D v(φ(s), φ(s

′)))− V is the com-
binatorial Laplacian matrix where V represents the matrix of
v(φ(s), φ(s′)) for all pairs of states, u = D\T , and π̂T = π∗T .
Predictions are binarized by thresholding at 0.5.

Summary Extraction Method: Active Learning. As with
the IRL approach, given this model of human extrapolation,
we need to define a procedure for producing a policy sum-
mary by extracting trajectories that maximize the quality of
its reconstruction of the policy. We do this with the active
learning algorithm in [Zhu et al., 2003b] modified to ac-
count for the fact that we know ground truth values of a for
〈s, a〉 ∈ U . The algorithm implements the expected error re-
duction strategy, greedily choosing at each step to include the
state-action pair, 〈s, a〉∗, that minimizes the 0/1 loss on all
unseen states (which is ρ in this case):

〈s, a〉∗ = argmin
〈s,a〉∈U

∑
〈s′,a′〉∈U\{〈s,a〉}

1a′=π̂+(s′) (6)

where π̂+ is the model that has been retrained with 〈s, a〉
added into the training set. The GRF allows for efficient re-
training of π̂+.

4 Computational Experiments
We conducted computational experiments to address the
question of whether the model used to extract a summary
needs to match the hypothesized model used by humans to
reconstruct the policy in order to produce high-quality recon-
structions. We extract summaries using both the IL and IRL
models of human extrapolation described in Section 3 and
measure reconstruction quality for each summary with both
models.

4.1 Empirical Methodology
We used three diverse domains.

Domain: Random Gridworld. We use a 9x9 random grid
world similar to the one described in [Brown and Niekum,
2018] as an example of a static, navigational environment.
We use a 5-D one-hot feature vector and draw the rewards
for each indicator without replacement from [100, 10, 0, -10,
-100]. The policy is determined with value iteration using a
discount factor of 0.95.

Domain: PAC-MAN. We use a 6x7 PAC-MAN grid with
a single food pellet in the middle, a wall surrounding it on 3
sides and a single ghost that moves towards PAC-MAN de-
terministically as an example of a dynamic, navigational en-
vironment.1 The policy takes PAC-MAN to the nearest food
that does not result in a ghost collision.

Domain: HIV Simulator. We use the HIV simulator de-
scribed in [Adams et al., 2005] which includes 6 biomarker
features, and 4 actions corresponding to activating or not ac-
tivating 2 drugs. This domain serves as an example of a non-
navigational, signal-based environment. The policy is deter-
mined with fitted Q iteration as in [Ernst et al., 2006] with a
0.05 initial state perturbation.

We describe state representation design choices including
discretization of the the HIV domain and augmentation of the
feature set with neighboring states for IL for gridworld and
PAC-MAN in [Lage et al., 2019] Appendix A.

Reconstruction Quality Measures. We use two metrics
for reconstruction quality: the accuracy of predictions on
states not included in the summary, and the absolute dif-
ference between the value of the original policy and that of
the reconstructed policy. We include both measures because
the IL summarization method optimizes the first and the IRL
summary method indirectly optimizes for the second as its
similarity ρ. We computed the accuracy over all unique, un-
seen states in the random gridworld and PAC-MAN domains,
and over the unseen states from a batch of 5 episodes of 200
steps from the HIV simulator2. We computed the value for
the random gridworld and PAC-MAN domains using a single
simulation of length 10 (both domains are deterministic) from
each state with a uniform distribution over start states, and for

1http://ai.berkeley.edu/project overview.html
25 episodes were sufficient to capture variation.
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Figure 1: Accuracy (higher is better) and 0-1 scaled value differences (lower is better) averaged over 75 random restarts of every recon-
struction model (rows in heatmaps) used for summary extraction with summaries extracted with each model (columns in heatmaps). IRL
hyperparameter corresponds to trajectory length; IL hyperparameters indicate kernel, length scale, degree in that order. The comparatively
high accuracy and low value differences for the reconstructions where the summarization model matches the reconstruction model, indicate
that matching the summarization model to the reconstruction model is important for producing a high quality reconstruction.

the HIV simulator over 5 episodes of 200 steps starting from
the initial state.

Method Details. To determine the summary size k and the
hyperparameters in the extraction model for each domain,
we computed 75 random restarts of each hyperparameter set-
tings’ reconstruction quality from a summary extracted with
its matched model. We chose the smallest summary size such
that increasing it does not result in changes in the best per-
forming methods for either IL or IRL in the HIV simula-
tor and PAC-MAN domains. In the random gridworld do-
main, increasing the summary size always improved IL per-
formance, so we choose a summary size such that the best
performing IRL methods did not change (HIV: 24; Grid-
world: 24; PAC-MAN: 12). We report results only for the
best performing methods for IL and IRL at the chosen sum-
mary size. We searched over summary sizes [12, 24, 36, 48,
60]; IL hyperparameters: kernel [RBF, polynomial], length
scale [0.1, 1.] and degree [2, 3] (for polynomial kernel only);
and IRL hyperparameters: trajectory lengths [1, 2, 3, 4]. See
[Lage et al., 2019] Figure 3 for further details. Max-Ent
requires specifying additional hyperparameters that we held
fixed (see [Lage et al., 2019] Appendix B).

4.2 Results
Figure 1 shows the accuracies and the 0-1 scaled value differ-
ences between the original policy and the reconstructed pol-
icy (raw values are not easily interpretable) for the different
reconstruction models (rows) and different summary extrac-
tion models (columns).

Different reconstruction models result in higher absolute
quality reconstructions in different domains when sum-
maries are optimized for them. The first question we con-
sidered was whether one approach—IL or IRL—always pro-
duced better summaries. In the HIV simulator and PAC-

MAN domains, the IL reconstructions with IL summaries
have higher accuracy than the IRL reconstructions with IRL
summaries. In the HIV simulator domain, this is reflected
in the value difference results, while in the PAC-MAN do-
main, the methods perform similarly with respect to value
difference. In the random gridworld domain, the IRL recon-
struction with the corresponding IRL summary has a higher
accuracy and lower value difference than IL reconstructions
with the corresponding IL summaries. These results indicate
that different reconstruction models are more effective in dif-
ferent domains (given a summary optimized for that model).
This effect likely has to do with how well each computational
model can capture the policy. In the random gridworld, for
example, the IRL model can perfectly model the policy but
the IL model lacks important spatial information.

Matching the extraction model to the reconstruction
model is the most effective strategy for producing high-
quality reconstructions. Highest quality reconstructions
occur when the same model is used for summary extraction
and policy reconstruction. This is true even when a particu-
lar reconstruction model was generally more accurate. There
are two exceptions to this: the IRL reconstruction with IL
summary in PAC-MAN, that performs comparably in accu-
racy and value difference to the IRL reconstruction with IRL
summary, and the value difference for the IL reconstruction
with the IRL length 4 summary in HIV which is low even
though action prediction accuracy is low. In both these cases,
the reconstruction quality is no worse than with the summary
based on the matched reconstruction model, and in the other
cases it is much better. These results indicate that both the
IL and IRL summarization methods are effective when the
reconstruction model is known, and that using the correct re-
construction model during summarization can be very impor-
tant for policy reconstruction quality.
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Figure 2: The user study interface for an IRL summary in the HIV simulator domain. The left side shows the summary and the right side
shows the prediction states.

5 Human-Subject Study
We conducted a human-subject study to test if the findings
from our computational simulations generalize to humans,
and to examine which reconstruction models people will nat-
urally deploy.

5.1 Empirical Methodology
Task. Participants inspected a summary of an agent’s pol-
icy, based on which they were asked to predict the agent’s ac-
tions in a subset of states not included in the summary. This
parallels the accuracy measure of reconstruction quality used
in the computational experiments, and tests how well people
can generalize an agent’s behavior from a summary of its pol-
icy.

Domains. We used the HIV simulator and random grid-
world domains because we expected people to have fewer
priors about these than PAC-MAN (we disguised the disease,
medication and biomarker names for HIV), and because un-
derstanding the transition function is more complex in the
HIV domain, which we hypothesized would reduce people’s
ability to use IRL.

Summaries. For each domain, we chose one summary
each for IL and IRL where the pattern of higher accu-
racy for matched-summary reconstructions from the com-
putational experiments was maintained. For gridworld, we
showed length 24 summaries (IL: polynomial kernel, length
scale=0.1, degree=2; IRL: trajectory length=4). For HIV,
we showed length 12 summaries (IL: RBF kernel, length
scale=1.0; trajectory length=3).3

Prediction States. We selected test states to satisfy 2 crite-
ria: 1) A similar computational accuracy grid to the full set of
unseen states. 2) A uniform distribution over actions taken by
the policy. For the random gridworld we selected states that
do not have multiple optimal actions in the policy to avoid

3The HIV summaries are shorter than in the computational ex-
periments so that they will fit on a single page, but this does not
affect the trends from the computational results.

ambiguity. We describe additional subtleties in [Lage et al.,
2019] Appendix C.
Design. Our experiment used a 2X2 between subject design
with domain [HIV or gridworld] and summary type [IRL or
IL] as the main factors.
Participants. 147 participants (Gridworld: IL=36,
IRL=39; HIV: IL=37, IRL=35) were recruited through
Amazon Mechanical Turk (65 female, Mean age = 36.38).
Participants received a base payment of $1.5, and a bonus of
up to $1 based on their performance.4

Interface. Participants completed all predictions on the
same page by choosing actions from dropdown menus with
the summary displayed on the left. For the HIV simulator,
this consisted of either a grid of independent states each out-
lined in black for IL, or a grid of trajectories outlined in black
for IRL. States were visualized as bar graphs with the action
written above (see Figure 2). For the random gridworld, this
consisted of the full grid5, with actions represented as arrows,
and trajectories represented by different colors. See [Lage et
al., 2019] Appendix D for screenshots of all task interfaces.
Procedure. Participants were given instructions explaining
the domain and task, then a comprehension quiz. Upon pass-
ing the quiz, they were shown the summary and answered a
practice round predicting 3 actions. Then, they completed the
main task and predicted 9 additional actions. After making
all predictions, participants were asked to provide a brief text
description of how they made their predictions.

5.2 Results
In the HIV domain, most people employed IL-based re-
construction models, and performance was better with IL
summaries. Based on the qualitative responses to how peo-
ple made their predictions, 1 study author coded participants
as doing IL, IRL or not obviously doing either and a sec-
ond author verified the coding ([Lage et al., 2019] Appendix

4The study was approved by our IRB.
5We argue this difference is a feature of the domains since it is

not obvious how to display the full domain for HIV.
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E). In this domain, 78% of participants reported using IL-
based methods for reconstruction (e.g. “I chose based on the
similarity of the blood tests levels from the scenarios on the
left”), while only one participant reported using an IRL-based
method (“Treatment A is used to decrease middle ones(blue,
light blue and purple)...”). Participants who were shown the
IL summary performed significantly better compared to those
shown the IRL summary with mean accuracy of 0.45 for par-
ticipants shown an IL summary and 0.33 for those shown
an IRL summary (Mann–Whitney U=330.0, n1=37 , n2=35,
P < 0.001 two-tailed). This demonstrates that (1) there are
cases where people use IL-based reconstruction models; and
(2) matching the computational model used during summa-
rization to people’s reconstruction model can improve recon-
struction quality, paralleling our simulation results.

In the gridworld domain, people varied in the reconstruc-
tion models they employed showing a tendency towards
IRL, and there was no difference in performance for dif-
ferent summary types. In the random gridworld domain,
15% of participants described IL-based reconstruction (e.g.
“I tried comparing the colors and deciding which was more
frequent for a color.”), while 27% provided descriptions sug-
gesting IRL-based reconstruction (e.g. “I decided that the
computer seems to be always working towards a blue square.
I chose the simplest path to get to a blue square”). The re-
mainder of descriptions were too vague to imply a specific
method. In contrast to the computational experiments, in this
domain there was no significant difference in participants’
performance based on summary type with mean accuracy of
0.38 for participants shown an IL summary and 0.37 for those
shown an IRL summary (Mann–Whitney U=636.5, n1=36
, n2=37, P=0.24 two-tailed). Participants who reported us-
ing IRL reconstruction did perform significantly better than
those who did not with mean accuracy of 0.27 for participants
who mentioned using IL reconstruction and 0.66 for those
who mentioned using an IRL reconstruction (Mann–Whitney
U=188.0, n1=11, n2=20, P < 0.001 two-tailed) as predicted
by the computational results, but there was again no differ-
ence in performance between summaries among those who
used IRL reconstruction.

There are important differences between computational
and human reconstructions including different feature
spaces and lower accuracies. Overall, participants’ recon-
struction accuracy was lower than predicted by matching the
extraction and reconstruction models in the computational
simulations, though much higher than random guessing (HIV:
0.33-0.45 compared to 0.67-0.78 for matched and 0.25 for
random; Gridworld: 0.37-0.38 compared to to 0.78-1 for
matched and 0.2 for random). In the random gridworld do-
main, reconstruction accuracies were also higher than pre-
dicted by mis-matched extraction and reconstruction models
(0.37-0.38 compared to 0.11-0.22 for mis-matched). In the
qualitative responses for the gridworld condition, some par-
ticipants described the agent’s behavior as based on absolute
position (e.g. “It seems like the agent is trying to get to the
center of the screen”), despite being told the agent navigates
only based on tile color. In HIV, some people relied on ab-
solute values of the features, and others tried matching the

“shape” of the bar graphs (e.g. “I compared the levels of each
of the colors and the shapes of the graphs.”) Perhaps due
to these disconnects in feature spaces and possible cognitive
limitations, people had worse reconstruction accuracy than
the computational models with matched summaries; how-
ever, these tendencies may have also enabled the better ac-
curacies we observed in the random gridworld domain with
mismatched summaries.

6 Discussion & Future Work
In this paper, we explored how the computational models of
users employed during policy summarization affect people’s
ability to reconstruct an agent’s policy. Computational simu-
lations in 3 diverse domains showed the importance of match-
ing the summarization model to the reconstruction model.
Human-subject studies showed that people use different mod-
els when reconstructing policies, sometimes deploying IL and
sometimes IRL, and that the model used during summariza-
tion sometimes affected the quality of their reconstructions.
Together, these findings demonstrate the importance of per-
sonalizing user models for summarization to domain context.

Our findings suggest several avenues for future work. First,
future studies can explore in which circumstances people use
different reconstruction models. We hypothesize that famil-
iarity with the domain might be one aspect, as we observed
that in the less familiar domain of HIV treatment, people
tended toward IL. Better understanding of when people use
which approach can help ensure that matching models will
be used for extraction and reconstruction.

Second, there are additional nuances to people’s extrapola-
tion beyond the choice of IL or IRL – e.g., which feature rep-
resentation they use, and how exactly they perform inference.
Given the sensitivity of the ability to reconstruct policies to
summary extraction models, and the finding that different
people use different models even within the same domain,
we argue that human-in-the-loop approaches to summary ex-
traction are a promising approach to ensure that summaries
match the user’s reasoning about a particular domain.

Finally, approaches to policy summarization based on
models of user extrapolation can be integrated with those
based on “important” states or identifying blind-spots. All
of these can then be combined with approaches for explain-
ing specific agent decisions, to produce summaries that si-
multaneously demonstrate global agent behavior and explain
specific actions.
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