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Abstract

Conditional preference networks (CP-nets) express
qualitative preferences over features of interest. A
Boolean CP-net can express that a feature is prefer-
able under some conditions, as long as all other fea-
tures have the same value. This is often a conve-
nient representation, but sometimes one would also
like to express a preference for maximizing a set
of features, or some other objective function on the
features of interest. ASPRIN is a flexible framework
for preferences in ASP, where one can mix hetero-
geneous preference relations, and this paper reports
on the integration of Boolean CP-nets. In general,
we extend ASPRIN with a preference program for
CP-nets in order to compute most preferred answer
sets via an iterative algorithm. For the specific case
of acyclic CP-nets, we provide an approximation
by partially ordered set preferences, which are in
turn normalized by ASPRIN to take advantage of
several highly optimized algorithms implemented
by ASP solvers for computing optimal solutions.
Finally, we take advantage of a linear-time com-
putable function to address dominance testing for
tree-shaped CP-nets.

1 Introduction
Answer set programming (ASP) is a language for knowledge
representation and reasoning supporting several constructs to
ease the specification of complex problems in terms of logic
rules [van Harmelen et al., 2008]. Each solution of a problem
encoded in ASP maps to an answer set, that is, a set of propo-
sitional atoms satisfying all logic rules, and an additional
stability condition empowering the language with nonmono-
tonic reasoning capabilities [Gelfond and Lifschitz, 1991].

Problems that find a natural representation in ASP are often
characterized by several answer sets, which therefore repre-
sent the feasible solutions of the encoded problem. In some
cases, feasible solutions can be compared according to some
features of interest. As a use case, a car dealership may want
to offer a car configurator to its customers. All valid car
configurations constitute the feasible solutions, but not all of
them are equally satisfactory for the customer using the car

configurator. Hence, as an additional service, the car config-
urator may offer the possibility to specify preferences over
some features. For example, a customer may want to specify
that she prefers automatic transmission, convertible car, light
paint for convertible cars and dark paint otherwise, and many
other features. Such preferences are clearly qualitative, and
naturally expressed by ceteris paribus rules, from the Latin
as long as everything else stays the same. In the example,
among two valid configurations differing only on the trans-
mission, the automatic one is preferred; additionally, ceteris
paribus rules may be conditional, so to express that the pref-
erence for the paint is subject to the selection of other features
of interest, in this case whether the car is convertible or not.

ASP offers linguistic constructs for the specification of
preference relations. Weak constraints [Buccafurri et al.,
2000; Simons et al., 2002] are the most frequently used con-
structs for this purpose, and they encode objective functions
to be minimized or maximized, that is, quantitative prefer-
ence relations. While weak constraints are suitable for many
applications, their use to express other common preference
relations requires some additional effort. In particular, the
core language of ASP misses constructs to easily express
conditional preference networks (CP-nets) [Boutilier et al.,
2004a], that is, sets of ceteris paribus rules linked by condi-
tional dependencies among the features of interest.

A more natural alternative is provided by ASPRIN [Brewka
et al., 2015a; Brewka et al., 2015b], a framework han-
dling user-defined preference relations encoded in ASP, and
shipped with a rich library of common preference relations
that can be used and combined by declarative statements.
This paper reports on the integration of CP-nets in ASPRIN.
Specifically, CP-nets are declared by named preference state-
ments comprising preference elements that express condi-
tional ceteris paribus rules; as usual in ASP systems, object
variables can be used for a compact representation of a set of
ground instances, and conditional ceteris paribus rules in AS-
PRIN are not an exception in this respect. CP-nets encoded by
preference statements are mapped to ASP facts by the reifi-
cation procedure implemented in ASPRIN. In ASPRIN, CP-
nets can be combined with composite preference relations,
such as pareto or lexicographic aggregation. The preference
relations involved in a composition can be heterogeneous,
which means that ASPRIN can naturally mix CP-nets with
other qualitative and quantitative preference relations. Such
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a mix is useful in several contexts [Domshlak et al., 2006],
as for example in the car configurator, where the customer is
likely to prefer a less expensive configuration among those
that are otherwise equally preferred. Further ties could be
broken by minimizing the maximum shipping delays among
all extras that are added to the configuration. A strength of
ASPRIN is to provide a uniform syntax to express background
knowledge bases, preference relations, and their aggregation.

The ASPRIN library is extended with a preference program
for CP-nets, that is, an ASP program whose instantiation with
respect to the reification of a CP-net and a pair of interpreta-
tions is consistent if and only if the pair of interpretations
belongs to the preference relation associated with the CP-net
(Section 3). The preference program is used by the iterative
sat-unsat search algorithm implemented by ASPRIN for com-
puting an optimal answer set, and for blocking all interpreta-
tions that are worse than the computed optimal answer sets.

ASPRIN provides also another solving technique for acyclic
CP-nets, which is based on the notion of approximation [Al-
viano et al., 2018]. Intuitively, a preference relation � ap-
proximates all preference relations being its subsets, and this
property is sufficient to guarantee that all �-optimal mod-
els are in turn optimal with respect to the approximated pref-
erence relations. For example, cardinal-minimality approx-
imates subset-minimality. Approximation can be associated
with upstream expansion functions for introducing auxiliary
symbols, so that the mapping between different preference
relations remains compact. In ASPRIN, CP-nets are approxi-
mated by preference relations induced by strict partial orders
(poset [Rosa et al., 2010]) over a set of auxiliary atoms. The
mapping (given in Section 4) is intuitive, and links CP-nets to
several preference relations in the ASPRIN library.

This section concludes with a few considerations on the
complexity of dominance testing, that is, checking that a pair
of interpretations belongs to the preference relation associ-
ated with a CP-net. The problem is in general PSPACE-
complete [Goldsmith et al., 2008], but there are tractable
cases. Among them, tree-shaped CP-nets, for which domi-
nance testing is linear time computable [Bigot et al., 2013];
accordingly, ASPRIN is equipped with a preference program
specific to this class of CP-nets (Section 5). Concerning
acyclic CP-nets, dominance testing is known to be NP-hard
[Boutilier et al., 2004a], while it is polynomial-time solvable
for the approximation used by ASPRIN; practically, this fact
implies that some optimal answer sets can be discarded at the
beginning of the computation, and recovered after blocking
some other optimal answer sets.

2 Background
Optimal models. A knowledge base Γ is a pair (A,M)
such that A is a (finite) set of (propositional) atoms, andM
is a set of subsets of A. Set A is the domain of Γ, and each
set inM is a model of Γ. A knowledge base is consistent if
M 6= ∅, and inconsistent otherwise. A preference relation
� over a domain A is a partial order over 2A, that is, � is
a subset of 2A × 2A, and � is reflexive, antisymmetric and
transitive. (Note that� also defines a preference relation over
any superset of A in the obvious way, that is, I � J if and

{a, b}

{a, b, c}

{a, c} {b, c}

{a} {b}

∅

{c}

eN−−−→

{xa, xb, xc}

{xa, xb}

{xa, xc} {xb, xc}

{xa} {xb}

{xc}

∅

Figure 1: Hasse diagrams of preference relations from Examples 2
(left) and 1 (right). The two preference relations are linked by an
approximation defined in Section 4.

only if I ∩ A � J ∩ A.) Let � be the strict partial order ob-
tained from �, that is, I � J if and only if I � J and J 6� I .
(Recall that a strict partial order is an irreflexive and transitive
relation.) Let Γ = (A,M) be a knowledge base, and � be a
preference relation over A. I ∈ M is a �-optimal model of
Γ if there is no J ∈M such that J � I .
Approximations. Let A,A′ be sets of atoms such that
A ⊆ A′. An expansion function from A to A′ is a func-
tion e : 2A → 2A

′
such that e(I) ∩ A = I , for all I ⊆ A.

Abusing notation, for a knowledge base Γ = (A,M), let
e(Γ) be the knowledge base (A′, {e(I) | I ∈M}). Let � be
a preference relation for A, and e be an expansion function
from A to A′. A preference relation �′ is an approximation
of � with respect to e, or e-approximation, if I � J implies
e(I) �′ e(J), for all I, J ⊆ A. Approximations are closed
under composition (Theorem 1 in [Alviano et al., 2018]), and
the optimal models they characterize are also optimal for the
approximated preference relation (Theorem 2 in [Alviano et
al., 2018]). These two properties are stated next.

Proposition 1. Let e : 2A → 2A
′
, e′ : 2A

′ → 2A
′′

be
expansion functions. Their composition e′ ◦ e : 2A → 2A

′′
is

an expansion function. Moreover, if�′ is an e-approximation
of �, and �′′ is an e′-approximation of �′, then �′′ is an
(e′ ◦ e)-approximation of �.

Proposition 2. Let Γ = (A,M) be a knowledge base, � be
a preference relation over A, e : 2A → 2A

′
be an expan-

sion function, and �′ be an e-approximation of �. For any
I ⊆ A, if e(I) ⊆ A′ is a �′-optimal model of e(Γ), then I is
a �-optimal model of Γ.

Posets. Let� be a strict partial order over a setA of atoms,
that is, � is a subset of A × A, � is irreflexive (p 6� p for
all p ∈ A), and � is transitive (p1 � p2 and p2 � p3 implies
p1 � p3, for all p1, p2, p3 ∈ A). The preference relation
poset� over A defined by � is the reflexive (and transitive)
closure of {(I, J) | I, J ⊆ A, I \ J 6= ∅, for all p ∈ J \ I
there is p′ ∈ I \ J such that p′ � p}.
Example 1. Let � be such that xa � xc and xb � xc. Pref-
erence relation poset� is shown in Figure 1. �
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a

b

c

a � ¬a

b � ¬b

a ∧ ¬b : c � ¬c
¬a ∧ b : c � ¬c
¬a ∧ ¬b : ¬c � c
a ∧ b : ¬c � c

Figure 2: Dependency graph from Example 2, and preference tables
of domain atoms.

CP-nets. In order to uniform the notation, let us define
a (Boolean) CP-net N over a domain A as a set compris-
ing conditional ceteris paribus statements of the form p :
(Ap,Mp) for each p ∈ A, where Ap ⊆ A \ {p}, and
(Ap,Mp) is a knowledge base. The dependency graph GN
of N has nodes A, and arcs from all atoms in Ap to p, for all
p : (Ap,Mp) in N . N is acyclic if GN is acyclic. The pref-
erence relation cpN defined by N is the reflexive, transitive
closure of

{(I ∪ {p}, I \ {p}) | p : (Ap,Mp) belongs to N ,
I ⊆ A, I ∩ Ap ∈Mp}

∪ {(I \ {p}, I ∪ {p}) | p : (Ap,Mp) belongs to N ,
I ⊆ A, I ∩ Ap /∈Mp)}.

(In this paper, cpN is assumed to be antisymmetric, that is,
N is consistent according to [Boutilier et al., 2004a].)
Example 2. Let N be the following CP-net:

a : (∅, {∅}) b : (∅, {∅}) c : ({a, b}, {{a}, {b}})

Preference relation cpN is shown in Figure 1. The depen-
dency graph of N is shown in Figure 2 (which also reports
the preference tables of domain atoms, a common way to ex-
press CP-nets). �

A CP-net N is tree-shaped if GN is a forest (i.e., a set
of trees), and each ceteris paribus statement p : (Ap,Mp)
is such that Ap is empty (i.e., p is a root) or Mp is a sin-
gleton (for otherwise, Ap can be reduced to the empty set).
For a tree-shaped CP-net N over a domain A, and two sets
I, I ′ ⊆ A, IcpN I ′ can be checked in time O(|A|2) by al-
gorithm TREEDT [Boutilier et al., 2004a], shown as Algo-
rithm 1. Function flip(p, I ′) returns I ′ \ {p} if p ∈ I ′,
and I ′ ∪ {p} otherwise. For a forest G, let subtree(G, p)
be the subtree of G whose root is p. An atom p ∈ A such
that (flip(p, I ′), I ′) belongs to cpN is said I ′-improvable;
p is G-I ′-improvable if p is the only I ′-improvable node
in subtree(G, p). Hence, the algorithm removes leaves that
match in I and I ′ (lines 3–4), and flips G-I ′-improvable atoms
(line 7), until either all nodes are eliminated (i.e., all nodes
match; line 5) or there is no I ′-improvable node (i.e., I ′ can-
not be further improved).

3 CP-nets in ASPRIN
In ASPRIN, knowledge bases and preference relations are en-
coded by ASP programs (refer to [Gebser et al., 2015] for
syntax and semantics of ASP, and [Brewka et al., 2015b]
for details on ASPRIN). Specifically, a (ground) ASP pro-
gram with atoms A and answer sets M encodes the knowl-
edge base (A,M), while preference relations are declared by

Algorithm 1: TREEDT(N , I , I ′)
1 G := GN
2 loop
3 while G has a leaf p s.t. {p} ∩ I = {p} ∩ I ′ do
4 remove p from G

5 if G is empty then return YES
6 if no node in G is I ′-improvable then return NO
7 I ′ := flip(p, I ′) for some p being G-I ′-improvable

statements of the following form:

#preference(id , type){e1; · · · ; en}.
where n ≥ 1 and each ei (i ∈ [1..n]) is a preference ele-
ment. For CP-nets, type is cp, and preference elements have
the form ` ‖ L, where ` is a literal and L is a (semicolon-
separated) set of literals (a literal is an atom possibly preceded
by not). Intuitively, a ceteris paribus statement p : (Ap,Mp)
with Ap 6= ∅ is encoded by p ‖ L1; · · · ; p ‖ Lm; not p ‖
Lm+1; · · · ; not p ‖ Ln, where

∨m
i=1

∧
Li (and equivalently

¬
∨n

i=m+1

∧
Li) encodes (Ap,Mp); p : (∅, {∅}) is encoded

by p, and p : (∅, ∅) is encoded by not p.
Example 3. In ASPRIN, the CP-net from Example 2 can be
declared as follows:
#preference(cp_from_example, cp) {
a; b; c || {a; not b}; c || {not a; b};
not c || {not a; not b}; not c || {a; b}

}.

(Preference element a can be also written a >> not a, and
similar for the other preference elements, a syntax closer to
preference tables in the literature.) �

To simplify the presentation, the input is assumed to in-
clude exactly one preference statement of type cp, encoding
a CP-net N over a domain A. ASPRIN reifies the i-th prefer-
ence element ` : {`1; · · · ; `n} (n ≥ 0) as follows:
pref(i,1,encode(`)).
pref(i,0,encode(`j)). ∀j ∈ [1..n]

where encode maps p to atom(p), and not p to
neg(atom(p)), for every atom p. (Actually, ASPRIN uses
predicate pref and arguments for the name and the type
of the preference relation, as well as other extra arguments
which are not given here for simplicity.) Let ΠN be the reifi-
cation of all preference elements in N .
Example 4. The reification of the first three preference
elements in Example 3 is the following:
pref(1,1,atom(a)). pref(2,1,atom(b)).
pref(3,1,atom(c)). pref(3,0,atom(a)).
pref(3,0,neg(atom(b))). �

Figure 3 shows the preference program ΠCP asso-
ciated with CP-nets (note that the conditional literal
holds(atom(A)): holds’(atom(A)) is expanded into a
conjunction and is essentially interpreted as #count{A :
not holds(atom(A)), holds’(atom(A))} = 0 ). The
program encodes the following planing problem: Start from
an interpretation encoded by predicate holds’, and choose
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better :- not eq, not fail.
eq :- holds(atom(A)) : holds’(atom(A));

holds’(atom(A)) : holds(atom(A)).
% guess plan
{do(I,T) : pref(I,1,_)} = 1 :- T=1..diameter.
% initial situation
true(A,0) :- holds’(atom(A)).
% positive effects and inertia
true(A,T) :- do(I,T), pref(I,1,atom(A)).
true(A,T) :- true(A,T-1), T <= diameter,

not do(I,T) : pref(I,1,neg(atom(A))).
% preconditions
fail :- do(I,T), pref(I,0,atom(A)),

not true(A,T-1).
fail :- do(I,T), pref(I,0,neg(atom(A))),

true(A,T-1).
% goal
fail :- true(A,diameter), not holds(atom(A)).
fail :- not true(A,diameter), holds(atom(A)).

Figure 3: Preference program ΠCP for (possibly cyclic) CP-nets

a sequence of preference elements so to reach a better inter-
pretation encoded by predicate holds. A preference element
` ‖ L chosen at time t must be applicable, that is, each literal
in L must be true at time t − 1, and causes the truth of ` at
time t. The length of the plan is bounded by the numeric con-
stant diameter, which generally is assigned the value 2|A|;
smaller values can be used under some conditions (for ex-
ample, |A|2 is sufficient if GN is a forest [Boutilier et al.,
2004a]).

The preference program satisfies the following invariant:
if I, I ′ ⊆ A are encoded by predicates holds and holds’,
respectively, then an answer set exists if and only if I is better
than I ′ in cpN . More formally, let ΠN ,I,I′,d be the program
ΠCP ∪ΠN extended with the following rules:
#const diameter = d.
:- not better.
holds (atom(p)). ∀p ∈ I
holds’(atom(p)). ∀p ∈ I ′

The invariant is stated by the next claim.

Theorem 1. Let N be a CP-net over a domain A. For all
I, I ′ ⊆ A, program ΠN ,I,I′,2|A| is consistent if and only if
(I, I ′) ∈ cpN and I 6= I ′.

Example 5. Continuing with Example 4, for I = {a, b}
and I ′ = {a, c}, an answer set for ΠN ,I,I′,23 is obtained by
choosing do(2,1) and do(6,t) for all t ∈ [2..8] (as well as
all other implied atoms). Indeed, do(2,1) transforms {a, c}
into {a, b, c}, and do(6,2) transforms {a, b, c} into {a, b}.
All other do(6,t) atoms just maintain {a, b}. �

Theorem 1 guarantees correctness of the iterative sat-unsat
search algorithm implemented in ASPRIN for computing one
cpN -optimal answer set of a program Π. Specifically, better
and better answer sets are searched until the processed pro-
gram has no answer sets, witnessing the optimality of the lat-
est computed answer set. Moreover, when computing many
optimal answer sets, ASPRIN uses the preference program to

Algorithm 2: TREEDT-restated(N , I , I ′)
// Lines 1-6 from TREEDT

7 I ′ :=flip(subtree(GN, p), I ′) for all G-I ′-improvable p

block any computed cpN -optimal answer set I , and any in-
terpretation I ′ such that (I ∩A, I ′ ∩A) ∈ cpN . The process
is completely automated by ASPRIN, and described in detail
in the literature [Brewka et al., 2015a].

4 From Acyclic CP-nets to Posets
LetN be a CP-net overA. Let eN be the following expansion
function from A to A ∪ {xp | p ∈ A}:

eN (I) := I ∪ {xp | p : (Ap,Mp) belongs to N ,
p ∈ I, I ∩ Ap ∈Mp}

∪ {xp | p : (Ap,Mp) belongs to N ,
p ∈ A \ I, I ∩ Ap /∈Mp}.

Let �N be the poset over {xp | p ∈ A} such that xp � xq if
GN has a path from p to q (that is, if p is an ancestor of q).

Example 6. For the CP-net N from Example 2, the ex-
pansion function eN is schematically shown in Figure 1:
{a, b} 7→ {a, b, xa, xb, xc}, {a, b, c} 7→ {a, b, c, xa, xb},
{a, c} 7→ {a, c, xa, xc}, and so on. Moreover, �N is the
strict partial order from Example 1. �

The next theorem states that acyclic CP-nets are approxi-
mated by poset preference relations.

Theorem 2. Let N be a (Boolean) acyclic CP-net over A.
Relation poset�

N
is an eN -approximation of cpN .

The ASPRIN library is extended with an ASP encoding to
map acyclic CP-nets to poset, and in turn to either weak con-
straints or lexicographic composition of subset preference re-
lations. The underlying ASP solver is then asked to compute
some optimal models, which are in turn optimal models ac-
cording to the CP-net.

5 Tree-shaped CP-nets
For tree-shaped CP-nets, TREEDT iteratively removes
matching leaves, and then flips some G-I ′-improvable node
p. After flipping p, all children of p (if any) become G-I ′-
improvable, and then they are flipped in subsequent steps of
the algorithm. It turns out that all the nodes in subtree(p) are
flipped in this way, so that the leaves of subtree(p) will be
removed. Moreover, all G-I ′-improvable nodes can be pro-
cessed in a single step of the algorithm. Hence, TREEDT is
restated as shown in Algorithm 2.

An interesting observation is that, after each step of the re-
stated algorithm, nodes in subtree(p) are not I ′-improvable
(because they have been just flipped). Hence, in a run of Al-
gorithm 2, each node is I ′-improvable at most once, and any-
how before being flipped. Therefore, I ′-improvable nodes
can be determined before starting the loop of the algorithm,
on the I ′ in input.

We can also determine the number of times a node p has
to flip back to its original value in I ′ before being removed
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(the algorithm returns NO if such a number is unreachable).
This number is referred to as the loops of a node, and defined
inductively as follows (for a fixed CP-net N and sets I, I ′):

lps(p) :=

{
0 if p is a leaf
maxpq∈GN lps(p, q) otherwise

lps(p, q) :=



lps(q) + 1 if q is not I ′-improv.,
{p} ∩ I = {p} ∩ I ′,
{q} ∩ I 6= {q} ∩ I ′

max(0, lps(q)− 1) if q is I ′-improvable,
{p} ∩ I 6= {p} ∩ I ′,
{q} ∩ I = {q} ∩ I ′

lps(q) otherwise

Intuitively, a leaf does not loop because it must be removed
in the first two iterations of the restated algorithm. Internal
nodes, instead, may loop in order to let their descendants be
removed. Specifically, if a node q is not I ′-improvable and
{q} ∩ I 6= {q} ∩ I ′, its flipping requires a flip of its parent
p (so that q becomes improvable); if {p} ∩ I = {p} ∩ I ′

holds, then p has to be flipped back to its value, i.e., p requires
an additional loop. On the other hand, if q is I ′-improvable,
{q} ∩ I = {q} ∩ I ′, and {p} ∩ I 6= {p} ∩ I ′, then q can do
one loop (if any) without imposing a loop of p as follows: flip
q, then flip p and make q improvable again, so that q can be
flipped back to its original value. In all other cases, each loop
of q implies a loop of its parent p.
Theorem 3. Let N be a tree-shaped CP-net over a domain
A. For all distinct I, I ′ ⊆ A, (I, I ′) ∈ cpN if and only if
(i) for each p : (∅, {∅}) inN , lps(p) = 0 and either {p}∩I =
{p}∩I ′ or p ∈ I , and (ii) for each p : (∅, ∅) inN , lps(p) = 0
and either {p} ∩ I = {p} ∩ I ′ or p /∈ I . The time complexity
to check (i) and (ii) is O(|A|).

Figure 4 reports an ASP encoding of the conditions used
in Theorem 3 to check that an interpretation is preferred to
another according to a tree-shaped CP-net. The encoding in
the ASPRIN library is more involved (because it must serve
all use cases of the framework), and does not use the #max
aggregate (because it is involved in a recursive definition).

6 Experiments
The different solving techniques for CP-nets available in AS-
PRIN are evaluated empirically on testcases generated from
the 193 instances of [Brewka et al., 2015b]. We obtained
three testcases for each instance, generating a CP-net with a
given structure (list-shaped, tree-shaped or acyclic) involv-
ing all atoms in the optimization statement of the original
instance. We measured the time to compute one optimal
answer set with up to five techniques: LOOPS, the algo-
rithm in Section 5; USC, the approximation (Section 4) pro-
vided by weak constraints using unsatisfiable core analysis
(--opt-strat=usc option); HEUR, the approximation pro-
vided by lexicographic compositions of subset preferences
using domain heuristics (#heuristic directives); PL-SQ and
PL-LIN, the algorithm in Section 3 respectively with quadratic
and linear diameter. Experiments ran on an Intel Xeon
2.20GHz processor under Linux, and resources were limited
to 3600 seconds of runtime and 8 GB of memory. Testcases
and details can be downloaded at https://potassco.org/asprin/.

better :- not eq, not fail.
eq :- holds(atom(A)) : holds’(atom(A));

holds’(atom(A)) : holds(atom(A)).

p(I,N,A,pos) :- pref(I,N,atom(A)).
p(I,N,A,neg) :- pref(I,N,neg(atom(A))).

edge(P,Q) :- p(I,0,P,_), p(I,1,Q,_).
leaf(P) :- p(_,_,P,_), #count{Q:edge(P,Q)}=0.
root(Q) :- p(_,_,Q,_), #count{P:edge(P,Q)}=0.

match(A) :- atom(A), #count{
1:holds(atom(A)); 2:holds’(atom(A))} != 1.

improvable(Q) :- p(I,0,P,SP), p(I,1,Q,SQ),
#count{1: SP=pos; 2: holds’(atom(P))} != 1,
#count{1: SQ=pos; 2: holds’(atom(Q))} = 1.

inc(P,Q) :- edge(P,Q), not improvable(Q),
match(P), not match(Q).

dec(P,Q) :- edge(P,Q), improvable(Q),
not match(P), match(Q).

lps(P,0) :- leaf(P).
lps(P,M) :- edge(P,_), M=#max{L:lps(P,Q,L)}.

lps(P,Q,L-1) :- dec(P,Q), lps(Q,L), L > 0.
lps(P,Q,L) :- dec(P,Q), lps(Q,L), L = 0.
lps(P,Q,L) :- edge(P,Q), not inc(Q),
not dec(Q), lps(Q,L).

lps(P,Q,L+1) :- inc(P,Q), lps(Q,L).

fail :- root(A), not match(A), #count{
1 : pref(I,1,atom(A)); 2 : holds’(A)} != 1.

fail :- root(A), lps(A,L), L > 0.

Figure 4: Preference program for tree-shaped CP-nets

Experimental results are shown in Figure 5. For list-
shaped and tree-shaped CP-nets we registered timeouts for
almost all CP-nets with thousands of atoms, while for smaller
CP-nets a good performance is achieved using the encoding
from Section 5, or the approximation from Section 4 com-
bined with unsatisfiable core analysis [Andres et al., 2012;
Alviano and Dodaro, 2016; Alviano and Dodaro, 2017] or
domain heuristics [Gebser et al., 2013]. The encoding from
Section 3 is less competitive, even limiting the diameter to be
quadratic or linear with respect to the domain of the processed
CP-net. As expected, using a linear diameter results into bet-
ter performance, but then the optimality of the solutions is not
guaranteed, and indeed 3 of the 62 computed solutions were
non-optimal. It is interesting to observe that tree-shaped in-
stances are simpler than list-shaped instances, which is due to
the fact that list-shaped instances have larger diameters.

Concerning acyclic CP-nets, LOOPS is not applicable, and
the encoding from Section 3 using linear or quadratic diame-
ters may compute non-optimal solutions (larger diameters led
to much worse performance). Graphs were generated starting
from a list comprising node 1 and 2, and then setting the par-
ents of each n ≥ 3 to be n/2 and some other randomly chosen
node. Also for these testcases the encoding from Section 3 is
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Figure 5: Experimental results aggregated per structure of gener-
ated CP-net. Each timeout contributes 3600 seconds to the average
execution time.

not competitive with the approximation from Section 4.
To sum up, these preliminary experimental results well mo-

tivate the several encodings added to the ASPRIN library in
order to integrate CP-nets. The linear encoding from Sec-
tion 5 and the approximation from Section 4 are necessary in
practice with CP-nets involving hundreds of atoms.

7 Related Work
Several works in constraint programming are related to this
paper. CP-nets were used to express a preference relation
over the models of knowledge bases encoded by hard con-
straints [Boutilier et al., 2004b], and acyclic CP-nets were
approximated by weighted soft constraints (essentially weak
constraints) and used in combination with hard and soft con-
straints [Domshlak et al., 2006]. In comparison, an advantage
of ASPRIN is that CP-nets can be combined with many other
preference relations, even those defined by the user. More-
over, the notion of approximation used in this paper is more
general, as it is parametrized by an upstream expansion func-
tion for introducing auxiliary symbols [Alviano et al., 2018].
Since approximations are closed under composition, the one
in Section 4 is sufficient to map CP-nets to weak constraints
or lexicographic compositions of subset preferences.

To the best of our knowledge, no implementation related
to [Boutilier et al., 2004b; Domshlak et al., 2006] is avail-
able. Moreover, systems for reasoning with CP-nets alone
cannot express some quantitative preferences [Domshlak et
al., 2006]. For example, minimizing (2 if a,not b) + (1
if not a,b) corresponds to the order {a, b} � {b} � {a},
∅ � {b}, and ∅ � {a}, which cannot be represented by any
CP net: for any CP net such that {b} � {a}, given that sets
{b} and {a} differ in two atoms (a and b), there must be some
set X such that {b} � X and X � {a}; neither X = {a, b}
nor X = ∅ have this property. The same example applies to
more-or-less CP nets [Yaman and desJardins, 2007].

Acyclic CP-nets were also approximated in the language
of answer set optimization (aso) [Brewka et al., 2003]. Ac-
tually, the ASPRIN library provides approximations for aso
preference relations [Alviano et al., 2018], and therefore one
could encode acyclic CP-nets in aso and use ASPRIN for rea-
soning on them, as an alternative to the approximation pre-
sented in Section 4. However, the approximation provided
by poset preserves more structure of the approximated CP-
net. For example, consider a CP-net comprising a : (∅, {∅}),
b : (∅, {∅}), and c : ({a}, {{a}}). Atoms b and c are unre-
lated in the approximation provided by poset, as well as in
the CP-net. On the other hand, b is preferred to c in the ap-
proximation provided by aso (whose ranking gives priority to
a and b over c).

The preference program in Section 3 is inspired by an
analogous SAT encoding for dominance testing [Allen et al.,
2017]. In ASPRIN, the preference program finds several other
applications. In fact, it is not only used by the sat-unsat search
algorithm, but also processed by a meta-programming encod-
ing in order to block all computed optimal answer sets and
undesired interpretations [Gebser et al., 2008]. Moreover, the
preference program in the ASPRIN library is parametrized by
the name of the processed CP-net, so to enable combinations
with other preference relations. As for tree-shaped CP-nets,
function lps is inspired by algorithm TREEDT, and provides
an alternative proof for the nontrivial linear time complexity
of the problem [Bigot et al., 2013]; in fact, one can build a
tree-shaped CP-net N over a domain A, and interpretations
I, I ′ such that the smallest sequence I0 = I, . . . , In = I ′

with (Ii, Ii+1) ∈ cpN (for all i ∈ [1..n−1]) contains Θ(|A|2)
interpretations [Boutilier et al., 2004a].

At a semantic level, in ASPRIN CP-nets are associated
with a domain comprising all atoms occurring in their prefer-
ence statements, and ceteris paribus rules are applied only to
these atoms. A don’t care atom a can be introduced with
the help of a fresh atom na by adding the preference ele-
ments a >> not a and na >> not na, as well as the rule
na :- not a to the knowledge base.

8 Conclusion
The integration of CP-nets in ASPRIN involved the definition
of a preference program for the general case to enable the it-
erative sat-unsat search algorithm of the system. Moreover,
driven by the liner time complexity of dominance checking
for tree-shaped CP-nets, the ASPRIN library was further ex-
tended with a preference program tailored for tree-shaped
CP-nets. Finally, the approximation given in terms of poset
preference relations enables several other algorithms imple-
mented by ASP solvers for computing optimal solutions.
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