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Abstract
Identification of causal direction between a causal-
effect pair from observed data has recently at-
tracted much attention. Various methods based on
functional causal models have been proposed to
solve this problem, by assuming the causal process
satisfies some (structural) constraints and show-
ing that the reverse direction violates such con-
straints. The nonlinear additive noise model has
been demonstrated to be effective for this purpose,
but the model class is not transitive–even if each
direct causal relation follows this model, indirect
causal influences, which result from omitted in-
termediate causal variables and are frequently en-
countered in practice, do not necessarily follow the
model constraints; as a consequence, the nonlin-
ear additive noise model may fail to correctly dis-
cover causal direction. In this work, we propose
a cascade nonlinear additive noise model to repre-
sent such causal influences–each direct causal re-
lation follows the nonlinear additive noise model
but we observe only the initial cause and final ef-
fect. We further propose a method to estimate
the model, including the unmeasured intermediate
variables, from data, under the variational auto-
encoder framework. Our theoretical results show
that with our model, causal direction is identifiable
under suitable technical conditions on the data gen-
eration process. Simulation results illustrate the
power of the proposed method in identifying in-
direct causal relations across various settings, and
experimental results on real data suggest that the
proposed model and method greatly extend the ap-
plicability of causal discovery based on functional
causal models in nonlinear cases.

1 Introduction
Understanding causal relationships is a fundamental prob-
lem in various disciplines of science, and causal direction
identification is an essential issue in causality studies. It is
well known that using randomized experiments to identify
causal influences usually encounters unethical or substantial
expense issues. Fortunately, inferring causal relations from

pure observations, also known as causal discovery from ob-
servational data, has demonstrated its power in empirical
studies and has been a focus in causality research.

Various methods have been proposed to infer the causal
direction, by exploring properly constrained forms of func-
tional causal models (FCMs). A functional causal model
represents the effect Y as a function of its direct causes X
and independent noise, i.e., Y = f(X; ε), X ⫫ ε. Without
constraints on f , then for any two variables one can always
express one of them as a function of the other and indepen-
dent noise [Zhang et al., 2015]. However, it is interesting
to note that with properly constrained FCMs, the causal di-
rection between X and Y is identifiable because the inde-
pendence condition between the noise and cause holds only
for the true causal direction and is violated for the wrong
direction. Such FCMs include the Linear, Non-Gaussian,
Acyclic Model (LiNGAM) [Shimizu et al., 2006], in which
Y = a

⊺
X + ε with linear coefficients a, the nonlinear addi-

tive noise model (ANM) [Hoyer et al., 2009], in which Y =

f(X)+ε, and the post-nonlinear (PNL) causal model [Zhang
and Hyvärinen, 2009], which also considers possible nonlin-
ear sensor or measurement distortion f2 in the causal process:
Y = f2(f1(X) + ε). It has been shown that in the generic
case, for data generated by the above FCMs, the reverse di-
rection will not admit the same FCM class with indepen-
dent noise. One can then find causal direction by estimating
the FCM followed by testing for independence between the
hypothetical cause and estimated noise [Hoyer et al., 2009;
Zhang and Hyvärinen, 2009].

In reality, we can usually record only a subset of all vari-
able which are causally related. If some variable is the direct
cause of only one measured variable and is not measured, it
is considered as part of the omitted factors, or noise. If a
hidden variable is a direct cause of two measured variables,
it is a confounder, and causal discovery in the presence of
confounders is challenging, although there exist some meth-
ods with asymptotic correctness guarantees, such as the FCI
algorithm [Spirtes et al., 2000]. In this paper, we are con-
cerned with unmeasured intermediate causal variables. Sup-
pose X1 → X2 → X3, with X2 unmeasured, and that each
direct causal influence can be represented by a FCM in a cer-
tain class. If the direct causal relations are linear with ad-
ditive noise, then the causal influence X1 → X3 still fol-
lows a linear model with additive noise. However, if each
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Figure 1: Illustration of non-transitivity of nonlinear causal model
classes, in which X1 → X2 → X3 and each direct causal influence
follows a nonlinear model with additive noise. Panels (a), (b), and
(c) show the scatter plot ofX1 andX2 = 2 tanh(5X1)+N2, that of
X2 and X3 = (X2/2)3 +N3, and that of X1 and X3, respectively.
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Figure 2: Illustration of the CANM, where the causal chain from X
to Y consists of three unmeasured intermediate variables Z1, Z2, Z3

with their associated noises N1, N2, N3.

direct causal influence follows the ANM, the causal influ-
ence X1 → X3 does not necessarily follow the same model
class. Fig. 1 gives an illustration of this phenomenon of
“non-transitivity of nonlinear causal model classes,” in which
X2 = 2 tanh(5X1)+N2, andX3 = (X2/2)3+N3, withX1,
N2, and N3 mutually independent and following the uniform
distribution between −0.5 and 0.5. As seen from the hetero-
geneity of the noise in X3 relative to X1, given in Fig. 1(c),
the causal influence from X1 to X3 clearly does not admit
a nonlinear model with additive noise. Hence, even for the
correct causal direction, which is from X1 to X3, the inde-
pendent noise condition is violated, and existing methods for
causal direction determination by checking whether regres-
sion residual is independent from the hypothetical cause may
fail. The PNL is more general than the additive noise model –
in this example, if N3 is zero, then X1 → X3 will follow this
model. However, the PNL model class is also non-transitive.

This paper deals with such indirect, nonlinear causal rela-
tions, which seem to be ubiquitous in practice. Finding causal
direction for such causal relations has recently been posed as
an open problem [Spirtes and Zhang, 2016]. In particular, we
aim to find the causal direction betweenX and Y that are gen-
erated according the process given in Fig. 2, in which there
might be a number of unmeasured intermediate causal vari-
ables Zi in between and each direct causal influence, e.g., the
influence from Z1 and Z2 on Z3, follows the ANM. We name
the causal model from X and Y given in Fig. 2 a Cascade
Additive Noise Model (CANM). We note that the considered
problem is different from causal discovery in the presence of
confounders, for which there have been a number of stud-
ies, including the FCI [Spirtes et al., 2000], RFCI [Colombo
et al., 2012], M3B [Yu et al., 2018] algorithms, and meth-

ods relying on stronger assumptions [Janzing et al., 2009;
Zhang et al., 2010]. [Kocaoglu et al., 2018] propose an al-
gorithm to search for the latent variable along the path X and
Y but they only consider discrete random variables.

To the best of our knowledge, this is a first study as to
finding causal direction between indirectly and nonlinearly
related variables. The considered causal model can be seen
as a cascade of processes, each of which follows the ANM,
and the intermediate variables are unmeasured. Intuitively,
the independence between the noise and cause is still help-
ful in finding causal direction–the wrong direction will not
follow the independence noise condition in the generic case,
allowing us to correctly identify causal direction. This will
be supported by our theoretical studies and empirical results
in subsequent sections.

2 Cascade Additive Noise Model
Without loss of generality, let X be the cause of effect Y
(X → Y ), with unmeasured intermediate variables Zi be-
tween them, as shown in Fig. 2. We further assume there is
no confounder in the mechanism and the data generation fol-
lows the nonlinear additive noise assumption. Then, such an
indirect causal mechanism can be formalized by the CANM
in the following definition.
Definition 1. A CANM for cause X and effect Y is that there
exists a sequence of unmeasured intermediate variables be-
tweenX and Y such that no variable in the latter is the cause
of the former one:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Z1 = f1(X) +N1,

Zt = ft(Zpa(t)) +Nt,
Y = fT+1(Zpa(y)) + ε,

(1)

where X , Ni, and ε are mutually independent, T denotes
depth of the chain, and Zpa(t),Zpa(y) denote parents of
the Zt and y, respectively. To ensure the cascade struc-
ture, the causal relations among Zi are recursive. Let f =
{f1, f2, ..., fT } and N = {N1, N2, ..., NT } denote a set of
nonlinear functions and the corresponding additive noises at
each depth in the chain, respectively. Naturally, here the di-
rect cause and the noises are independent from each other.

We are given a set of data D = {x(i)
, y

(i)}mi=1. Let θ be
the parameters of the causal mechanism. Combing all the
independence relations of CANM, we can derive its marginal
log-likelihood as follows:

log
m

∏
i=1

∫ pθ(x(i)
, y

(i)
, z)dz

= log
m

∏
i=1

∫ pθ(x(i))pθ(y(i)∣zpa(y))
T

∏
t=2

pθ(zt∣zpa(t))pθ(z1∣x(i))dz

= log
m

∏
i=1

∫ p(x(i))pθ(ε(i) = y(i) − f(x(i)
,n))

T

∏
t=1

pθ(nt)dn

= log
m

∏
i=1

∫ pθ(x(i)
, ε

(i)
,n)dn.

(2)
Eq. (2) first decomposes the joint likelihood based on the

Markov condition [Spirtes et al., 2000], then applies the
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independence property between the cause and the noise in
the second equality, i.e., p(Zt∣Zpa(t)) = p(Nt = Zt −

ft(Zpa(t))∣Zpa(t))
Zpa(t)⫫Nt
========== p(Nt = Zt − ft(Zpa(t))). At

the same time, we replace dz with dn and rewrite function
fT+1(Zpa(y)) as f(X,N), because the last unobserved di-
rect cause ZT ⊂ Zpa(t) contains all the information of the
noise N and cause X relative to Y .

In the above derivation, we used the transformation from
X and noises to Y . The property of the transformation helps
study identifiability and find a practical solution. In light of
the independence property of the noises, below we propose
a variational approach to approximating the marginal log-
likelihood as well as identifying the causal direction.

2.1 Variational Solution of CANM
The variational solution to estimation of CANM consists of
two steps. First, we take advantage of the independence
property in CANM to replace the latent variable Z with
N. Second, we find an amortized inference distribution
qφ(N∣X,Y ) with respect to the parameter φ to approximate
the intractable posterior pθ(N∣X,Y ) and jointly optimize a
variational lower bound of the marginal log-likelihood. Note
that, different from the vanilla VAE, Y can be seen as a func-
tion of X and N and, as a result, N is a function of X and Y
and we need to recover N from both X and Y . According to
Eq. (2), the (log) marginal likelihood, as the sum over of the
marginal likelihoods over individual data points:

log
m

∏
i=1

∫ pθ(x(i)
, ε

(i)
,n)dn

=

m

∑
i=1

En∼qφ(n∣x(i),y(i))[ log
pθ(x(i)

, ε
(i)
,n)

qφ(n∣x(i), y(i))
]

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
∶=L(θ,φ;x(i),y(i))

+

KL(qφ(n∣x(i)
, y

(i))∥pθ(n∣x(i)
, y

(i)))

⩾

m

∑
i=1

L (θ, φ;x(i)
, y

(i)) ,

(3)

where L (θ, φ;x(i)
, y

(i)) be the lower bound at data point

(x(i)
, y

(i)), resulting from approximating an intractable pos-
terior pθ(n∣x(i)

, y
(i)) by qφ(n∣x(i)

, y
(i)). Under the frame-

work of CANM, the lower bound of the total marginal likeli-
hood can be further estimated as follows:
m

∑
i=1

L (θ, φ;x(i)
, y

(i))

=

m

∑
i=1

En∼qφ(n∣x(i),y(i)) [− log qφ (n∣x(i)
, y

(i))

+ log pθ (x(i)
, ε

(i)
,n)]

=

m

∑
i=1

log p (x(i)) −KL(qφ(n∣x(i)
, y

(i))∥pθ(n))

+ En∼qφ(n∣x(i),y(i)) [log p (ε(i) = y(i) − f (x(i)
,n; θ))] .

(4)
The details of derivation can be found in Supplementary A in
[Cai et al., 2019]. As shown in Eq. (3), the lower bound L is

 (!),
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Figure 3: Toy Example for CANM Variational Auto-encoder.

tight at KL(qφ(n∣x(i)
, y

(i))∥pθ(n∣x(i)
, y

(i))) = 0. That is,
when qφ(n∣x(i)

, y
(i)) = pθ(n∣x(i)

, y
(i)), the marginal log-

likelihood is equal to the lower bound. Below we will maxi-
mize the variational lower bound.

Here, we assume the distributions of noise N can be fac-
torized as pθ(N) =∏T

t=1 pθ(Nt). Note that if N is an empty
set, the above lower bound is equivalent to the log-likelihood
of the standard additive noise model.

2.2 Variational Auto-encoder
The design of the variational auto-encoder (VAE) gen-
erally follows the typical configuration in [Kingma and
Welling, 2014]. We denote qφ(n∣x(i)

, y
(i)) as encoder and

pθ(y(i)∣n, x(i)) as decoder, using a multilayer perceptron
(MLP) as an universal approximator for this two functions.

In the encoder phase, the noises of CANM are in-
ferred by an encoder network with a reparameteriza-
tion trick. That is, reparameterize the random vari-
able n ∼ qφ(n∣x, y) with a differentiable transforma-
tion hφ(x, y, u) such that n ∼ hφ(x, y, u) with u ∼

p(u). Then we can estimate the expectation of lower bound
En∼qφ(n∣x,y) [p (ε(i) = y(i) − f (x(i)

,n; θ))] using Monte
Carlo with the reparameterization trick.

In the decoder phase, we estimate the ε
(i) by subtract-

ing sample y
(i) from the reconstruction value of decoder

f (x(i)
, hφ(x(i)

, y
(i)
, u

(l)); θ), where u(l)
∼ p(u). Then, al-

ternatively, processes the encoder and decoder phases, we can
optimize the lower bound until it converges.

Fig. 3 shows a toy example of the structure of the
CANM variational auto-encoder with qφ(n∣x(i)

, y
(i)) =

N (n;µφ (x(i)
, y

(i)) , σφ (x(i)
, y

(i)) I), where µφ and σφ are
deterministic function with parameter φ. In the encoder
phase, we encode the samples into the noises using a reparam-
eterization trick n

(l)
= µφ (x(i)

, y
(i)) + σφ (x(i)

, y
(i))u(l)

where u(l)
∼ N (0, 1). In the decoder phase, the sample y(i)

is reconstructed by the decoder y′(i) = f (x(i)
,n

(l)
; θ).

2.3 Practical Algorithm
Finally, we propose a general principle that makes use of the
VAE to estimate the marginal log-likelihood as well as iden-
tify the causal direction.
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Algorithm 1 Inferring causal direction with CANM

Input: Data samples {(x(i)
, y

(i))}mi=1.
Output: The causal direction.
1: Split the data into training and test sets;
2: Choose the best number of latent variables by optimizing

the variational lower bound (Eq. (3)) on the training set
and evaluating the performance on the test set;

3: Optimize the lower bound in both directions with the best
number of latent variables on the full dataset, obtaining
LX→Y and LY→X (see Eq. (4)), respectively.

4: if LX→Y > LY→X + δ, where δ is a pre-asigned small
positive number, then,

5: Infer X → Y
6: else if LX→Y < LY→X − δ, then
7: Infer Y → X
8: else
9: Non-identifiable

10: end if

Algorithm 1 consists of two phases; the first is model se-
lection, selecting the best number of latent noises, and the
second is to identify the causal direction. In phase 1, by split-
ting the data into training and testing sets, the best number
of noises is selected based on the performance on the test set
(Line 1-2). In phase 2, we use the number of the latent noises
determined in phase 1 to optimize the variational lower bound
on the full dataset and then identify causal direction accord-
ing to the likelihood for both directions (Line 3-10).

3 Identifiability
In this section, we investigate whether there exist any
CANMs whose generated data also admit a CANM in the
reverse (anti-causal) direction. In the following theorem, we
propose a way to derive the noise distribution for the reverse
direction p(ε̂) by making use of the theory of Fourier trans-
form [Bracewell and Bracewell, 1986]. The causal direction
is unidentifiable according to the CANM if ε̂ is independent
from Y and N̂ (i.e., the marginal likelihoods for both direc-
tions are equal).
Theorem 1. Let X → Y follow the cascade additive noise
model, while there exists a backward model following the
same form, i.e.

Y = f(X,N) + ε,
X = g(Y, N̂) + ε̂,

X,N, and ε are independent,

Y, N̂, and ε̂ are independent,
(5)

then the noise distribution of the reverse direction pε̂ must be

pε̂ (ε̂)=∫ e2πiε̂⋅ν
∫∫ p(x)p(n)pε(y − f(x,n))e−2πix⋅νdndx

p(y) ∫ p (n̂) e−2πig(y,n̂)⋅νdn̂
dν,

(6)
where f, g denote the function implied by the cascade pro-
cess.

Proof. See Supplementary B in [Cai et al., 2019].

Roughly speaking, regardless of the linear case, The-
orem 1 implies that the noise distribution in the reverse

direction is generally coherent with y. To ensure such
noise is independent from Y , one strict condition must
holds, i.e., ε̂ should be independent from Y in the sense

that ∀y1, y2, ∫e2πiε̂⋅ν ∫∫ p(x)p(n)pε(y1−f(x,n))e−2πix⋅νdndx
p(y1) ∫ p(n̂)e−2πig(y1,n̂)⋅νdn̂

dν =

∫e2πiε̂⋅ν ∫∫ p(x)p(n)pε(y2−f(x,n))e−2πix⋅νdndx
p(y2) ∫ p(n̂)e−2πig(y2,n̂)⋅νdn̂

dν. However, in
general, it seems that such a condition holds only in restric-
tive cases. Therefore, in most cases, after the latent noise is
recovered, we can identify the causal direction by using the
independence property for (X,N, ε).

To further illustrate the implication of Theorem 1, we pro-
vide two special cases in the following corollaries. In Corol-
lary 1, we show that CANM is unidentifiable if the generation
process is linear Gaussian. In Corollary 2, we show the con-
nection with ANM when there is no unmeasured intermediate
variables, and shows a generic choices of f , pX(x), and pε(ε)
for the identification of the model. Those two special cases
are consistent with the previous results.
Corollary 1. Assume that CANM is linear Gaussian, i.e.,

Y = aX + bN + ε,

where X,N, ε ∼ N (0, 1), then their exist a backward CANM

X =
a

a2 + b2 + 1
Y +

a√
a2 + b2 + 1

N̂ + ε̂,

where N̂ , ε̂ ∼ N (0, 1) and ε̂ is independent of Y and N̂ .

Proof. See Supplementary C in [Cai et al., 2019].

Corollary 2. Suppose that there is no unmeasured interme-
diate noises in CANM, if the solution of Eq. (6) exists, then
the triple (f, pX , pε) must satisfy the differential equation
from ANM [Hoyer et al., 2009, Theorem 1] for all x, y with
ν
′′(y − f(x))f ′(x) ≠ 0:

ξ
′′′
= ξ

′′ (−ν
′′′
f
′

ν ′′
+
f
′′

f ′
)−2ν ′′f ′′f ′+ν ′f ′′′+ν

′
ν
′′′
f
′′
f
′

ν ′′
−
ν
′ (f ′′)2

f ′
,

(7)
where ν ≔ log pε, ξ ≔ log pX

Proof. See Supplementary D in [Cai et al., 2019].

4 Experiments
4.1 Synthetic Data
In this section, we design three experiments with known
ground truth, with the depth = {0, 1, 2, 3, 4, 5}, sample size
= {250, 500, 1000, 2000, 3000, 4000, 5000, 6000}, and with
different sample sizes for some fix structure. The default set-
ting is marked in bold. All experimental results are averaged
over 1000 randomly generated causal pairs by the cascade
additive noise model. Code for CANM is available online1.

To make the synthetic data general enough, in each
depth, we randomly generate an additive noise model and
then stack it together to obtain the cascade additive noise
model. In detail, the cause (X) is sampled from a ran-
dom Gaussian Mixture model of 3 components p(xi∣θ) =

1https://github.com/DMIRLAB-Group/CANM
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∑3
k=1 πkN (xi∣µk, σk) where µk ∼ N (0, 1), σk ∼ Super −

Gaussian. For each layer xt = ft(xt−1) + nt where nt ∼
N (0, 1) and ft is generated from a cubic spline interpolation
using a 6-dimensional grid from min(xt−1) to max(xt−1)
as input with respect to 6 random generated points as knots
for the interpolation; the generated points are sampled from
N (0, 1) and the number of knots is used to control non-
linearity of the function. Such generative process follows the
instrument given in [Prestwich et al., 2016].

The following four algorithms are taken as baseline meth-
ods: ANM [Hoyer et al., 2009], CAM [Bühlmann et al.,
2014], IGCI [Janzing et al., 2012], and LiNGAM [Shimizu
et al., 2006]. We also improve the implementation for ANM
by using the XGBoost [Chen and Guestrin, 2016] for regres-
sion and the Hilbert-Schmidt independence criterion (HSIC)
[Gretton et al., 2008] as the independence test. Therefore,
ANM can be evaluated in two ways. First, we compare the
HSIC statistic to determine the direction and second, we se-
lect the best significance level (p = 0.01) range from 0.01
to 1 to determine the causal direction. At the same time,
the best parameter setting of IGCI is chosen. For the other
baseline methods, we use the parameter settings in their orig-
inal papers. The implementation and the parameter settings
of LiNGAM and CAM are based on the CompareCausalNet-
works packages in R [Heinze-Deml et al., 2018].

Sensitivity to Depth
Fig. 4 shows the accuracy with different depths in 3000 sam-
ples. First, when the depth equals 0 (the original ANM), all
CANM, ANM, and CAM achieve a high accuracy. Note that
CANM still has a similar performance comparing with ANM
even though CANM assume that there might exist unmea-
sured intermediate variables, which demonstrates the robust-
ness of our method. Second, as the depth increases, the ac-
curacy of CANM is stable and around 90% accuracy with a
slight decrease, while the performance of the rest methods
decreases rapidly as the depth grows. In particular, the ANM
with the significance level of 0.01 gives almost random deci-
sions when the cascade structure exists.

Sensitivity to Sample Size
Fig. 5 shows the accuracy with different sample sizes while
the depth is fixed at 3. The result shows that even in the
small sample size, CANM still outperforms the other meth-
ods. As the sample size increases, the accuracy of CANM
grows faster than the other methods. Thus, large samples are
beneficial to CANM, because of the variational auto-encoder
framework employed in CANM. A similar result also can be

0.00

0.25

0.50

0.75

1.00

250 500 1000 2000 3000 4000 5000 6000

Sample Size

A
c
c
u

ra
c
y

CANM
ANM

LiNGAM

CAM
IGCI

 ANM (α=0.01)

Figure 5: Sensitivity to Sample.

−3.5

−3.4

−3.3

−3.2

−3.1

−3.0

250 500 1000 2000 3000 4000 5000 6000

Sample Size

L
ik

e
lih

o
o

d

    X → Y

    X ← Y

Figure 6: Sensitivity to Sample in a Fixed Structure.

observed in ANM and CAM while the other methods are less
sensitive to the sample size due to the model restriction.

Sensitivity to Sample Size in a Fixed Structure
Fig. 6 shows the accuracy with different numbers of samples
while we use a fixed causal mechanism, which was randomly
generated with depth=3. When the sample size is small, the
variance of the likelihood is large; however, the asymmetry
in the causal direction is still clear. As the sample size in-
creases, the variance of the likelihood decreases and the ac-
curacy increases, which implies the effectiveness and robust-
ness of CANM as the sample size grows.

4.2 Real World Data
Electricity Consumption Dataset
The electricity consumption dataset [Prestwich et al., 2016]
has 9504-hour measurements from the energy industry, con-
taining the hour of data, outside temperature and the
electricity load on the power station. The causal mechanism
among the three variables are hour of day → temperature
and temperature → electricity load. The first pair is gen-
erally caused by the heating of sunlight and the second pair is
base on the fact that the usage of heating or air condition de-
pends upon temperature. We are interested to know whether
we can identify the hour of day (X) is the cause of the
electricity load (Y ) and what intermediate variable will be
inferred via CANM.

In general, we successfully identify the correct causal di-
rection with average score LX→Y = −2.62 > LY→X =

−2.67 while ANM fails on this pair (the p-value = 0 on both
directions). The prediction of electricity is given in Fig. 7. It
is interesting to note that there might exist more than one un-
measured variable, e.g., season, causing a different electricity
load at the same hour of day. Such unmeasured variables are
successfully captured by CANM as the prediction separating
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Figure 8: Temperature Against Fitted Intermediate Variable.

into both upper and lower parts. Furthermore, the intermedi-
ate variable inferred by our method has rather high correlation
(ρ = −0.35) with the temperature as shown in Fig. 8, which
means that CANM not only recovers the information of the
season but also the information of the temperature.

Stock Market Dataset
The stock market dataset is collected by Tübingen
causal effect benchmark (https://webdav.tuebingen.mpg.de/
cause-effect/) as pairs 66-67. It contains the stock return
of Hutchison, Cheung Kong and Sun Hung Kai with
the causal relationship: Hutchison → Cheung Kong and
Cheung Kong → Sun Hung Kai. The reason for the first
pair is that Cheung Kong owns about 50% of Hutchison. For
the second pair, Sun Hung Kai Prop., a typical stock in the
Hang Seng Property subindex, is believed to depend on the
major stock Cheung Kong. Similarly to the previous experi-
ment, we are interested to know whether we can identify the
Hutchison (X) is the cause of the Sun Hung Kai (Y ).

Since these three stocks form a causal chain that
Hutchison → Cheung Kong → Sun Hung Kai, using
CANM, we successfully identify the indirect causal direction
with average score LX→Y = −2.49 > LY→X = −2.51 while
ANM fails on this pair (the p-value = 0.006 < 0.05 on the
causal direction and p-value = 0.29 > 0.05 on the reverse
direction). Fig. 9 shows the prediction of the stock return of
the Sun Hung Kai. We also find that the fitted intermedi-
ate variable has a high correction (ρ = −0.54) with the stock
return of Cheung Kong as shown in Fig. 10.

5 Conclusion
In this paper, we proposed the cascade nonlinear additive
noise model, as an extension of the nonlinear additive noise
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Figure 9: Stock return of Hutchison Against Stock return of Sun
Hung Kai Prop.
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Figure 10: Stock return of Cheung kong Against Fitted Intermediate
Variable.

model, to represent indirect causal influences, which result
from unmeasured intermediate causal variables. We have
demonstrated that, the independence between the noise and
cause is still generally helpful to determine causal direction
between two variables, as long as the cascade additive noise
process holds. We propose to estimate the model as well as
the intermediate causal variables with the variational auto-
encoder framework, and the produced likelihood indicates the
asymmetry between cause and effect. As supported by our
theoretical and empirical results, the proposed approach pro-
vides an effective method for causal direction determination
from data generated by nonlinear, indirect causal relations.
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